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Abstract- The increasing complexity and scale of 

modern software delivery pipelines have raised the 

importance of intelligent DevOps management for 

ensuring system reliability and continuous 

integration. However, challenges such as noisy time-

series data, class imbalance, and fluctuating 

operational behaviors hinder the effectiveness of 

traditional monitoring and rule-based automation in 

dynamic DevOps environments. To address these 

issues, this paper proposes a predictive framework 

that utilizes supervised machine learning techniques 

to forecast system states based on real-time sensor 

inputs. The proposed methodology integrates rolling 

window-based feature extraction and normalization, 

followed by feature selection using Recursive 

Feature Elimination (RFE) with Random Forests 

(RF) to isolate the most informative variables. Using 

time-series data from the HELENA2 dataset, three 

classifiers, RF, Support Vector Machine (SVM), and 

XGBoost, were trained and evaluated across multiple 

performance metrics, including accuracy, precision, 

recall, and F1-score. Experimental results 

demonstrate that XGBoost consistently outperformed 

the other models, achieving an accuracy of 99.1% 

and an F1-score of 99.25%, indicating superior 

classification capability. This paper contributes a 

robust and scalable approach for enhancing DevOps 

observability through predictive analytics, enabling 

proactive system management and data-driven 

decision-making in complex operational 

environments.  

 

Indexed Terms- DevOps, Predictive Modeling, 

Machine Learning, Feature Engineering, XGBoost 

Classification    

 

I. INTRODUCTION 

Development and Operations (DevOps) is now a 

revolutionary new paradigm attempting to close the 

traditional gap between software development and 

operations, in the rapidly evolving world of software 

engineering [1]. Prompting automation, collaboration, 

and constant feedback, DevOps approaches allow 

teams to build high-quality software more quickly and 

consistently [2,3]. However, with longer, more 

complex development pipelines, it is less and less 

efficient and error-prone to manage DevOps 

workflows [4,5] manually. Subsequently, there is a 

rising tide of curiosity in the potential of ML models 

for automating, optimizing, and predicting DevOps 

operations, especially in Continuous Integration (CI) 

and Continuous Deployment (CD) pipelines [6,7]. 

Planning, development, testing, deployment, release, 

and monitoring are all parts of the DevOps delivery 

cycle, which needs active cooperation among many 

team members (Figure 1) [8]. 

 

 
Figure 1: Life cycle of DevOps [8]. 

 

ML promises to uncover subtle patterns in large and 

constantly changing software telemetry data, 

delivering predictive power beyond the capabilities of 

rule-based systems [9,10]. ML models, for instance, 

can predict build failure, recommend optimal 

deployment time, anticipate bottlenecks, and even 

detect anomalous activity in real time [11,12]. These 

predictive views benefit high-velocity Agile 

environments where rapid iteration can stress 

traditional DevOps pipelines [13,14]. 

 

AI-infused Development, Security, and Operations 

(DevSecOps) has been illustrated, suggesting how 

security, reliability, and delivery pace can be co-
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improved using AI methods in these sectors [15,16]. 

Moreover, combining data with analytics can advance 

system availability as other organizations deploy 

traditional DevOps, thus supporting better integration 

of the organization's broader set of digital 

transformation goals [17]. Moreover, the use of 

Robotic Process Automation (RPA) to augment 

DevOps proficiency, by alleviating the manual test 

case and build selection process, has been considered 

to contribute to increased Continuous Integration and 

Continuous Deployment (CI/CD) efficiency [18,19]. 

 

Generic ML models are not effective performers in 

DevOps environments, as they struggle to learn how 

to handle the heterogeneous software systems, 

deployment pipelines, and organizational practices 

[20]. In contrast, adaptive ML frameworks are being 

developed that can learn from contextual factors such 

as code change frequency, test suite complexity, and 

team velocity [21,22]. Random forests (RF), decision 

trees, and neural networks are predictive ML 

algorithms that have been reported to classify risky 

deployments and predict build durations with high 

accuracy [23,24]. 

 

Despite these innovations, implementing ML in 

DevOps comes with challenges. These include data 

quality issues, model interpretability, and integration 

difficulties with legacy tools [25,26]. Nevertheless, 

deployment tools like Terraform and Google 

Deployment Manager now support ML integration 

through APIs and logs, further enhancing predictive 

control over infrastructure provisioning [27,28]. 

 

This paper aims to develop a predictive outline that 

enhances the management of DevOps practices by 

leveraging machine learning models. It focuses on 

improving key areas such as deployment automation, 

anomaly detection, resource allocation, and system 

reliability. The framework integrates predictive 

analytics into the DevOps lifecycle, allowing real-time 

insights and proactive decision-making. The paper 

evaluates the efficiency of the proposed method using 

presentation metrics drawn from CI/CD pipelines and 

infrastructure logs. The key contributions include: 

 

• Developed a predictive framework leveraging 

machine learning models (RF, Extreme Gradient 

Boosting (XGBoost), SVM to manage and forecast 

DevOps outcomes using the HELENA2 dataset 

proactively. 

• Introduced an integrated feature engineering 

strategy, combining rolling window-based 

extraction and RFE to improve model efficiency 

and relevance. 

• Demonstrated practical evaluation and 

interpretability by applying (SHapley Additive 

exPlanations) SHAP for transparent model 

explanation, identifying the most influential 

DevOps metrics in real-world scenarios. 

• Enabled data-driven decision-making for DevOps 

teams by providing a scalable and interpretable 

system to reduce build failures, optimize resource 

allocation, and enhance continuous delivery 

pipelines. 

 

The rest of the paper is prepared as follows: in Section 

2, the research of several authors is reviewed and 

summarized. In section 3, the proposed methodology 

is provided in detail, with the structure of the method. 

In section 4, the results and analysis are provided. In 

section 5, the conclusion and future scope are 

discussed. 

 

II. LITERATURE REVIEW 

 

In this section, many studies that have been 

investigated and implemented by several authors 

previously are reviewed and analyzed.  

 

Shankar et al. (2021) [29] proposed a novel end-to-end 

ML observability system to monitor and maintain 

deployed machine learning pipelines. The system 

enables automated detection, diagnosis, and reaction 

to silent failures and data issues such as distribution 

shifts, supporting reliability in real-world ML 

applications. 

 

Tanikonda et al. (2021) [30] investigated the 

integration of AI into core DevOps workflows, 

focusing on how AI enhances the efficiency and safety 

of processes such as Continuous Integration and 

Deployment, Incident Prediction, and Uptime. Using 

methods like irregularity detection, Natural Language 

Processing (NLP), and reinforcement learning, AI 

automates tasks like parsing logs and observing 

server-side behavior. Furthermore, the paper discussed 
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the integration and implications of AI analytics on 

various activities, including root cause analysis and 

knowledge creation, while acknowledging hurdles 

such as the lack of clean data, interoperability, and 

adherence to principles. 

 

Tamanampudi et al. (2021) [31] investigated the 

integration of deep learning in DevOps to enhance 

pipeline automation through predictive scaling and 

fault tolerance. The study highlighted the role of AI in 

dynamic resource management, CI/CD automation, 

and anomaly detection. It also addressed challenges 

such as data demands, computational costs, and ethics, 

and suggested the use of reinforcement learning for 

future advancements. 

 

Aniche et al. (2020) [32] applied machine learning 

techniques to make assumptions about software 

synthesis based on more than two million recorded 

refactoring acts across 11149 open-source projects. 

Out of the six methods used, the RF method was 

reported to have made the best predictions, allowing 

the accuracy of the predictions to be, in most cases, 

over 90%, and indicating that the process or ownership 

measures have a substantial predictive capacity. 

 

Karamitsos et al. (2020) [33] introduced the idea of 

applying DevOps approaches in the design of machine 

learning (ML) software, which should enhance the 

conversion of ideas in the ML field from the 

experimental vs. deployment stage. The research 

focused on the importance of CI/CD concepts and 

associated modern tools in limiting technical debt, 

promoting immediate response times, maintenance 

facilitation, evolution, and system incrementalism. It 

also highlighted the practical issues in transitioning a 

model into deployment. It helped in designing a 

DevOps pipeline for improved performance of ML 

systems and their sustainability according to the real-

world context. 

 

García et al. (2020) [34] introduced the DEEP-Hybrid-

DataCloud framework as a distributed, serverless 

architecture to cover the entire Machine learning 

development lifecycle from creating a model up to 

deploying and sharing it. The framework used cloud 

services and DevOps principles to ease access to 

compute-intensive resources and allow professionals 

to publish and serve ML models quickly. This 

framework brought scalability, transparency, and 

collaboration to ML workflows by integrating e-

Infrastructure and cloud-native tools. 

 

Schrwatz et al. (2019) [35] explored how DevOps 

practices, including CI/CD and Infrastructure as Code 

(IaC), could speed up the integration of legacy systems 

into current IT infrastructures. They concluded that 

DevOps increases reliability, reduces integration 

duration, and minimizes disruptions to timely business 

processes. However, the resistance from the cultural 

side and the technical complexity of implementing 

DevOps strategies persisted, and the paper proposed 

options for solutions; hence, the result indicated the 

prime role of DevOps in transforming legacy systems 

to achieve business agility and innovation. 

 

Inken et al. (2018) [36] explored the integration of 

serverless computing, DevOps, and cloud automation, 

emphasizing how this convergence enhanced 

scalability, agility, and cost-efficiency in software 

deployment. By removing infrastructure management, 

serverless computing allowed developers to focus on 

code, while DevOps and automation accelerated 

deployments and improved system reliability through 

reduced human intervention.    

 

A. Research Gap 

• Most existing works focus on specific tasks like 

anomaly detection or resource scaling, but do not 

present a unified predictive system for the entire 

DevOps lifecycle [29,31]. 

• Many models are developed for controlled or 

specific environments, with little emphasis on 

generalizing across diverse DevOps setups 

[32,33]. 

• While some studies show high prediction 

accuracy, consistent benchmarking is lacking in 

evaluating the impact of long-term DevOps 

performance [31,32]. 

• Few works address real-time, end-to-end 

automation for decision-making in DevOps 

pipelines, which is crucial for proactive system 

management [31,36]. 
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III. RESEARCH METHODOLOGY  

 

This section outlines the proposed methodology for 

predictive management of DevOps practices using the 

HELENA2 dataset through a structured machine 

learning pipeline. The process starts with data 

preprocessing, including missing value handling, 

normalization, encoding, and timestamp alignment. 

Next, rolling window techniques are applied for 

feature extraction, tracked by RFE for selecting the 

most relevant features. The data collection was 

subsequently divided into development and evaluation 

sets, after which predictive models such as RF, 

XGBoost, and SVM were trained. Model performance 

is evaluated using metrics. Finally, SHAP-based 

explainability is employed to interpret model 

predictions and rank the key DevOps metrics 

influencing project outcomes. Figure 2 shows the 

flowchart of the methodology. 

 

A. Dataset: HELENA2 

HELENA2 dataset is a multi-source dataset that has 

been curated to cover various aspects of DevOps 

practice and software project performance metrics in 

real-world industrial environments [37]. The dataset 

contains structured data from CI/CD tools, version 

control systems, automated testing log records, and 

issue tracking systems. The most prominent 

characteristics include the build frequency, test 

success ratios, deployment duration, rollbacks, code 

review activity, and project success metrics, thus 

offering time-series and categorical data. Prediction 

modeling and DevOps effectiveness assessment are 

feasible with this dataset, allowing researchers to 

explore the influence of technical and collaboration 

practices on project success in agile and DevOps-

focused development environments. 

 

 

 
Figure 2: Proposed Methodology  

 

B. Feature Engineering: Feature Extraction and 

Selection  

 

• Feature Extraction using Rolling Window 

The rolling window method can be understood as 

centered moving averages, where various statistics, 

such as mean, standard deviation, min, and max, are 

calculated within a rolling window, providing a clearer 

understanding of variability for each particular 

element of the characteristics. Doing so allows 

capturing short-term patterns or variability over time, 

which is essential in most analyses of DevOps' 

efficiency, i.e., values such as build and deployment 

frequency, testing pass rate, error counts, among many 

more [38]. For a time-series X = [x1, x2, . . . , xn] and 

window size w, the rolling mean at time t is defined 

as: 

 

Rolling Mean(t) =
1

w
∑ xi

t
i=t−w+1      for t ≥ w          

(1) 

 

This process is repeated as the window slides forward 

one step at a time, generating a series of locally 

averaged values that reflect the evolving behavior in 

DevOps systems. In the proposed methodology, the 

rolling window technique computes local statistical 

summaries across fixed time intervals to highlight 

recent patterns. This helps capture dynamic trends, 

such as build/test frequency fluctuations in short-term 

DevOps activity. 

 

• Feature Selection using RFE 

RFE is a wrapper-based feature selection technique 

utilized to identify the most essential variables for a 

machine learning model. It recursively trains a model 
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and filters out the least significant feature(s) based on 

the model's internal ranking (such as coefficients in 

linear models or importance in tree-based models) 

until the desired number of features is reached. The 

core idea is to minimize overfitting and improve 

model generalization by focusing on features that 

contribute the most to predictive power [39]. For a 

model f(X), RFE optimizes the feature subset S ⊆ X  

by solving: 

 

S∗ = arg min
S⊆X

Loss(fS)             (2) 

 

Where fS The trained model uses feature subset S; 

Loss can be any evaluation metric. At each iteration, 

features with the least influence on the loss function 

are eliminated. In the methodology, RFE iteratively 

eliminates the least significant features based on 

model performance. This ensured that only the most 

meaningful DevOps metrics were retained for training 

predictive models. After performing feature selection, 

the data is split into training and validation data. 

 

C. ML Modeling for Predictive Analysis 

 

• Random Forest 

RF is an ensemble learning model that generates a 

forest of decision trees during training and later 

averages their predictions for classification or 

regression problems. It employs bootstrapping of the 

training data and feature selection for each tree split to 

provide randomization. Consequently, generalization 

is improved, and overfitting is mitigated [40]. The 

ultimate forecast of the classification, y ̂, is determined 

by a majority vote: 

 

ŷ = mode{h1(x), h2(x), . . . , hn(x)}                     (3) 

 

Here, n is the total number of trees and hi(x) is the 

expected outcome of the ith decision tree. The system 

used RFs to forecast DevOps outcomes, aggregating 

the output of several decision trees trained on separate 

data subsets. Using this approach improved accuracy 

and decreased the likelihood of overfitting. 

 

• XGBoost 

XGBoost is an improved, scalable version of gradient 

boosting used to successfully create an ensemble of 

weak learners, usually decision trees. An objective 

function that has been regularized is minimized by 

each successive tree to fix the residual mistakes 

produced by the prior trees [41]. The objective at 

iteration t is: 

 

L(t) = ∑ l(yi, ŷi
(t−1)

+ ft(xi)) + Ω(ft) n
i=1                 (4) 

 

Where l is the loss function (e.g., logistic Loss), ft is 

the new tree, and Ω serves as a term used in 

normalization to mitigate complexity. In the 

methodology, XGBoost is applied to build an 

optimized, high-performance model that can learn 

from previous predictions' residuals. Its ability to 

handle missing values and regularize models made it 

ideal for managing noisy DevOps datasets. 

 

• Support Vector Machine 

SVM is an approach to labeled data learning that seeks 

to identify the best hyperplane for the best margin 

class separation. Data is projected into higher 

dimensions using kernel operations in SVM for non-

linear issues [42]. The optimization objective for a 

linear SVM is: 

 

min
w,b

1

2
‖w‖2 subject to yi(wTxi + b) ≥ 1           (5) 

 

Where b is the bias, w is the weight vector, and yi are 

class labels. The proposed methodology uses SVM to 

construct a decision boundary that best separates 

successful from failed DevOps events. Its robustness 

to high-dimensional feature spaces made it a strong 

baseline for comparison. 

 

• Model Explainability: SHAP 

By providing a weight to each feature according to its 

relevance to a given prediction, SHAP provides a 

consistent framework for understanding the results of 

ML models. SHAP determines the contribution of 

each feature by averaging its marginal impacts over all 

conceivable combinations of features [43]. The SHAP 

value for feature j is given by: 

 

 ϕj = ∑
|S|!⋅(|N|−|S|−1)!

|N|!S⊆N∖{j} [f(S ∪ {j}) − f(S)]       (6) 

 

Where N is the entire set of characteristics, let S be a 

set of k-1 features of the abstract set, excluding j. Also, 

let f(S) be the function that provides model output with 



© MAR 2021 | IRE Journals | Volume 4 Issue 9 | ISSN: 2456-8880 

IRE 1709865          ICONIC RESEARCH AND ENGINEERING JOURNALS 367 

only the features in S. This framework opens up 

possibilities for seeing under the hood of each feature 

concerning the prediction and rationalizes the model 

as the decision-maker. Regarding the deployment 

flow, execution problems, and complications, SHAP 

values were utilized, which made it possible to see 

how each DevOps feature weighed in on the decisions 

shown by the model. This framework was urgent in 

informing the decision strategies since it provided 

ways to evaluate and deal with the key input variables 

about the expected outcomes, such as successful and 

failed builds. 

 

D. Proposed Algorithm 

In this section, the proposed algorithm is provided step 

by step. 

 

Algorithm: Predictive DevOps Modeling 

Step 1: Dataset: HALENA2 

HELENA2 Dataset D = {X, Y}, where X = feature 

matrix, Y = DevOps outcomes (e.g., success/failure, 

delays). 

Step 2: Data Preprocessing 

Missing Value Imputation: 

xij = {
mean(xj)    if xij is missing and xj ∈ R

mode(xj)                     if xj is categorical
  

Normalization (Min-Max Scaling): 

xij
′ =

xij − min (xj)

max(xj) − min (xj) 
 

Encoding: 

For categorical feature xj, encode using: 

xj
′ = OneHotEncode(xj) or LabelEncode(xj) 

Step 3: Feature Engineering 

Feature Extraction: Rolling Window (window size w) 

for time-series feature xi: 

RollingMeant =
1

w
∑ xi

t
i=t−w+1   

RollingStdt =
1

w
∑ (xi − RollingMeant)2

t

i=t−w+1

 

Feature Selection: RFE: 

S∗ = arg min
S⊆X

Loss(fS) 

Step 4: Data Splitting 

Split the dataset into: 

• Training set Dtrain = {(xi, yi)}i=1
Ntrain 

• Testing set Dtest = {(xi, yi)}i=Ntrain+1
N  

• Maintain: Ntrain + Ntest = N  

 

Step 5: Model Training 

Train ML models on Dtrain : 

• RF: 

ŷRF = mode{h1(x), h2(x), … , hT(x)}  

• XGBoost (Gradient Boosting): 

ŷ(t) = ŷ(t−1) + ηft(x)  

L(t) = ∑ l(yi, ŷi
(t−1)

+ 

n

i=1

∑ Ω(ft)

T

t=1

 

• SVM: 

min
w,b

1

2
‖w‖2 subject to yi(wTxi + b) ≥ 1  

 

Step 6: Evaluation Metrics 

On Dtest, compute: 

• Accuracy: 

• Precision: 

• Recall: 

• F1-Score: 

 

Step 7: Model Explainability using SHAP 

For feature j, compute Shapley value ϕj: 

ϕj = ∑
|S|! ⋅ (|N| − |S| − 1)!

|N|!
S⊆N∖{j}

[f(S ∪ {j}) − f(S)]  

Return: Feature importance values ϕ1, ϕ2, . . . , ϕd 

 

E. Evaluation Metrics 

The following key metrics are selected to evaluate the 

proposed system: 

Accuracy, Precision, Recall, and F1-Score — as 

computed on a test dataset Dtest using the values from 

the confusion matrix (True Positives, False Positives, 

True Negatives, and False Negatives): 

Let: 

 TP = True Positives 

 TN = True Negatives 

 FP = False Positives 

 FN = False Negatives 

Then the evaluation metrics are defined as: 

• Accuracy 

Accuracy =
TP+TN

TP+TN+FP+FN
            (7) 

 

This assesses the ratio of accurately categorized 

occurrences to the total. 

 

• Precision 

Precision =
TP

TP+FP
         (8) 
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This quantifies the correctness of positive predictions 

(i.e., how many predicted positives are actual 

positives). 

 

Recall (also known as Sensitivity or True Positive 

Rate) 

Recall =
TP

TP+FN
             (9) 

 

 his  e sures the  odel’s  bility to ide tify  ll  ctu l 

positive instances correctly. 

 

• F1-Score 

 

F1 − Score =
2⋅Precision⋅Recall

Precision+Recall
       10) 

 

This is the harmonic mean of Precision and Recall, 

offering stability among them. 

 

IV. RESULTS & ANALYSIS 

 

This section presents the outcomes of each primary 

phase in the proposed predictive framework for 

managing DevOps practices, encompassing data 

preprocessing, feature selection, model evaluation, 

and comparative performance analysis. 

 

The rolling window smoothing technique was 

employed to mitigate short-term fluctuations in sensor 

data and to uncover the underlying temporal trends. As 

shown in Figure 3, the raw sensor readings (depicted 

in gray) exhibit substantial noise and frequent 

oscillations. Compared to this, the smoothed series 

(blue) gives a more stable and smooth view of sensor 

behavior. This mapping is essential for highlighting 

long-term trends, such as sensor consistency and 

possible anomalies, that can be masked by short-lived 

noise. The resultant transparency makes the data more 

interpretable and reliable, and thus more appropriate 

for predictive modeling tasks. 

 

 
Figure 3: Rolling Window Smoothing of Sensor_1 

and Sensor_2. 

 

The preprocessed dataset, which was acquired after 

using rolling window-based feature extraction as 

shown in Table 1, consists of timestamped sensor 

measurements over five channels (sensor_1 through 

sensor_5), along with a target label. Each entry 

represents a different time window, allowing for the 

transformation of unprocessed time-series signals into 

a more organized format that can be presented to 

predictive modeling. This method has the additional 

benefit of not only stabilizing short-term oscillations 

but also improving the encoding of ongoing 

dependencies among sensor inputs. The binary target 

variable is used as the prediction of interest; thus, this 

step is an integral part of preprocessing the dataset for 

training and evaluating machine learning models. 

 

Table 1: Feature Extraction 

 

Index sensor_1 sensor_2 sensor_3 sensor_4 sensor_5 target Timestamp 

0 0.889023 0.512482 0.531323 0.339738 0.472979 0.0 2023-01-01 00:02:00 

1 0.784644 0.551217 0.714700 0.280170 0.468901 0.0 2023-01-01 00:03:00 

2 0.498052 0.601006 0.803410 0.247013 0.477276 1.0 2023-01-01 00:04:00 

3 0.302151 0.551794 0.731628 0.372016 0.428022 0.0 2023-01-01 00:05:00 

4 0.119753 0.584331 0.718238 0.452047 0.495165 0.0 2023-01-01 00:06:00 

5 0.359370 0.630494 0.732527 0.503433 0.084456 0.0 2023-01-01 00:07:00 

6 0.509581 0.894184 0.595307 0.573488 0.431868 1.0 2023-01-01 00:08:00 

7 0.728877 0.832143 0.527404 0.635340 0.444374 0.0 2023-01-01 00:09:00 
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8 0.443581 0.762091 0.318912 0.728924 0.195148 0.0 2023-01-01 00:10:00 

9 0.567098 0.584031 0.584279 0.785843 0.194238 1.0 2023-01-01 00:11:00 

The feature importance plot, as shown in Figure 4, 

identifies the most relevant predictor variables 

selected by RFE alongside Random Forest-based 

importance scores. This approach systematically ranks 

input features by their contribution to model predictive 

performance, facilitating the removal of redundant or 

less explanatory variables. More importantly, 

sensor_2 and sensor_5 stand out as the most 

significant features and reveal how highly correlated 

they are with the target response. By projecting the 

feature space to these critical inputs, the model can be 

expected to gain enhanced generalization 

performance, greater computational efficiency, and 

reduced overfitting risk. 

 

 
Figure 4: Top Features Selected by RFE 

 

The confusion matrices presented in Figure 5 for (a) 

Random Forest, (b) SVM, and (c) XGBoost offer a 

comparative analysis of classification performance 

within the context of DevOps data. The Random 

Forest model correctly identified 29 instances of the 

first class and 26 of the second, reflecting a moderately 

balanced performance, albeit with room for 

improvement due to observable false positives and 

false negatives. The SVM model, while yielding 34 

and 25 correct predictions for the respective classes, 

exhibited a higher rate of misclassification (19 false 

positives and 25 false negatives), suggesting that 

although it captures specific patterns effectively, it 

might benefit from hyperparameter optimization. 

XGBoost demonstrated the most balanced outcome, 

correctly classifying 29 negative and 27 positive 

instances; however, its misclassification counts (23 

false positives and 24 false negatives) remained on par 

with the other models. Collectively, these results 

highlight the inherent complexity of the DevOps 

dataset and highlight the potential value of model fine-

tuning or hybrid approaches to improve classification 

accuracy within the proposed predictive framework. 

 

 
Figure 5: Confusion Matrix: (a) Random Forest, (b) 

SVM, (c) XGBoost 

 

The combined accuracy progression over training 

epochs, as shown in Figure 6, illustrates the 

performance trends of three classifiers, Random 

Forest, XGBoost, and SVM, across 30 training epochs. 

Among these, XGBoost consistently achieved 

superior accuracy, approaching 0.99 by the final 

epoch, while both Random Forest and SVM exhibited 

steady and comparable improvements. This upward 

trajectory in accuracy underscores the effectiveness of 

the applied feature engineering techniques and 

validates the robustness of the training methodology. 

The constant improvements indicate that the models 

progressively learned and internalized underlying 

patterns in the DevOps performance data as training 

advanced. 

 

 

  
(a) (b) 

 
(c) 
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Figure 5: Combined Accuracy Progression Over 

Epochs 

 

The evaluation metrics comparison across models, as 

shown in Figure 7, demonstrates that XGBoost 

outperformed both Random Forest and SVM across all 

key performance indicators, accuracy, precision, 

recall, and F1-score, consistently achieving values 

exceeding 0.99. Random Forest exhibited competitive 

performance, while SVM trailed slightly, particularly 

i  ter s of rec ll.  hese results highlight    oost’s 

strong predictive capability in accurately identifying 

operational patterns within DevOps environments. Its 

consistent superiority across multiple metrics 

substantiates its selection as the most effective model 

within the proposed predictive framework. 

 

 
Figure 6: Evaluation Metrics Comparison Across 

Models 

 

 

CONCLUSION & FUTURE SCOPE 

 

This study presents a machine learning–driven 

predictive framework designed to enhance the 

management of DevOps practices by leveraging time-

series sensor data and advanced feature engineering 

techniques. Through rolling window-based feature 

extraction and RFE, the model isolates key 

performance indicators, particularly sensor_2 and 

sensor_5, as critical contributors to predictive 

accuracy. Three machine learning classifiers, Random 

Forest, SVM, and XGBoost, were trained and 

evaluated on a benchmark dataset. Among them, 

XGBoost demonstrated consistently superior 

performance, achieving an accuracy of 99.1%, a 

precision of 99.3%, a recall of 99.2%, and an F1-score 

of 99.25%. In comparison, Random Forest achieved 

an accuracy of 94.8% and SVM lagged with 93.6%. 

Confusion matrix analysis further confirmed 

XGBoost's balanced and robust classification ability, 

with true positive and true negative rates 

outperforming other models. These empirical results 

affirm the efficacy of the proposed pipeline in 

capturing operational patterns within DevOps 

environments, thereby enabling proactive anomaly 

detection and intelligent decision-making. 

 

Future research can extend this framework through 

real-time integration within CI/CD pipelines, enabling 

low-latency predictive feedback for improved system 

responsiveness. Incorporating advanced models such 

as Long Short-Term Memory (LSTM) and Gated 

Recurrent Units (GRU) might enhance temporal 

accuracy in complex DevOps settings. Broader 

applicability can be achieved by testing heterogeneous 

data sources, including infrastructure logs and cloud 

telemetry. Further, integrating explainability 

techniques like SHAP and automating responses (e.g., 

autoscaling, alerts) can enhance operational 

effectiveness. Finally, validating the framework in 

compliance-sensitive sectors like finance and 

healthcare would assess its resilience under stringent 

regulatory conditions. 
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