
© MAR 2021 | IRE Journals | Volume 4 Issue 9 | ISSN: 2456-8880

IRE 1709865 ICONIC RESEARCH AND ENGINEERING JOURNALS 362

A Predictive Framework for Managing DevOps Practices

Using Machine Learning Models

ASHISH GUPTA

Senior Technology Architect, Department of Solution Design & Engineering, DXC Technology USA

Abstract- The increasing complexity and scale of

modern software delivery pipelines have raised the

importance of intelligent DevOps management for

ensuring system reliability and continuous

integration. However, challenges such as noisy time-

series data, class imbalance, and fluctuating

operational behaviors hinder the effectiveness of

traditional monitoring and rule-based automation in

dynamic DevOps environments. To address these

issues, this paper proposes a predictive framework

that utilizes supervised machine learning techniques

to forecast system states based on real-time sensor

inputs. The proposed methodology integrates rolling

window-based feature extraction and normalization,

followed by feature selection using Recursive

Feature Elimination (RFE) with Random Forests

(RF) to isolate the most informative variables. Using

time-series data from the HELENA2 dataset, three

classifiers, RF, Support Vector Machine (SVM), and

XGBoost, were trained and evaluated across multiple

performance metrics, including accuracy, precision,

recall, and F1-score. Experimental results

demonstrate that XGBoost consistently outperformed

the other models, achieving an accuracy of 99.1%

and an F1-score of 99.25%, indicating superior

classification capability. This paper contributes a

robust and scalable approach for enhancing DevOps

observability through predictive analytics, enabling

proactive system management and data-driven

decision-making in complex operational

environments.

Indexed Terms- DevOps, Predictive Modeling,

Machine Learning, Feature Engineering, XGBoost

Classification

I. INTRODUCTION

Development and Operations (DevOps) is now a

revolutionary new paradigm attempting to close the

traditional gap between software development and

operations, in the rapidly evolving world of software

engineering [1]. Prompting automation, collaboration,

and constant feedback, DevOps approaches allow

teams to build high-quality software more quickly and

consistently [2,3]. However, with longer, more

complex development pipelines, it is less and less

efficient and error-prone to manage DevOps

workflows [4,5] manually. Subsequently, there is a

rising tide of curiosity in the potential of ML models

for automating, optimizing, and predicting DevOps

operations, especially in Continuous Integration (CI)

and Continuous Deployment (CD) pipelines [6,7].

Planning, development, testing, deployment, release,

and monitoring are all parts of the DevOps delivery

cycle, which needs active cooperation among many

team members (Figure 1) [8].

Figure 1: Life cycle of DevOps [8].

ML promises to uncover subtle patterns in large and

constantly changing software telemetry data,

delivering predictive power beyond the capabilities of

rule-based systems [9,10]. ML models, for instance,

can predict build failure, recommend optimal

deployment time, anticipate bottlenecks, and even

detect anomalous activity in real time [11,12]. These

predictive views benefit high-velocity Agile

environments where rapid iteration can stress

traditional DevOps pipelines [13,14].

AI-infused Development, Security, and Operations

(DevSecOps) has been illustrated, suggesting how

security, reliability, and delivery pace can be co-

© MAR 2021 | IRE Journals | Volume 4 Issue 9 | ISSN: 2456-8880

IRE 1709865 ICONIC RESEARCH AND ENGINEERING JOURNALS 363

improved using AI methods in these sectors [15,16].

Moreover, combining data with analytics can advance

system availability as other organizations deploy

traditional DevOps, thus supporting better integration

of the organization's broader set of digital

transformation goals [17]. Moreover, the use of

Robotic Process Automation (RPA) to augment

DevOps proficiency, by alleviating the manual test

case and build selection process, has been considered

to contribute to increased Continuous Integration and

Continuous Deployment (CI/CD) efficiency [18,19].

Generic ML models are not effective performers in

DevOps environments, as they struggle to learn how

to handle the heterogeneous software systems,

deployment pipelines, and organizational practices

[20]. In contrast, adaptive ML frameworks are being

developed that can learn from contextual factors such

as code change frequency, test suite complexity, and

team velocity [21,22]. Random forests (RF), decision

trees, and neural networks are predictive ML

algorithms that have been reported to classify risky

deployments and predict build durations with high

accuracy [23,24].

Despite these innovations, implementing ML in

DevOps comes with challenges. These include data

quality issues, model interpretability, and integration

difficulties with legacy tools [25,26]. Nevertheless,

deployment tools like Terraform and Google

Deployment Manager now support ML integration

through APIs and logs, further enhancing predictive

control over infrastructure provisioning [27,28].

This paper aims to develop a predictive outline that

enhances the management of DevOps practices by

leveraging machine learning models. It focuses on

improving key areas such as deployment automation,

anomaly detection, resource allocation, and system

reliability. The framework integrates predictive

analytics into the DevOps lifecycle, allowing real-time

insights and proactive decision-making. The paper

evaluates the efficiency of the proposed method using

presentation metrics drawn from CI/CD pipelines and

infrastructure logs. The key contributions include:

• Developed a predictive framework leveraging

machine learning models (RF, Extreme Gradient

Boosting (XGBoost), SVM to manage and forecast

DevOps outcomes using the HELENA2 dataset

proactively.

• Introduced an integrated feature engineering

strategy, combining rolling window-based

extraction and RFE to improve model efficiency

and relevance.

• Demonstrated practical evaluation and

interpretability by applying (SHapley Additive

exPlanations) SHAP for transparent model

explanation, identifying the most influential

DevOps metrics in real-world scenarios.

• Enabled data-driven decision-making for DevOps

teams by providing a scalable and interpretable

system to reduce build failures, optimize resource

allocation, and enhance continuous delivery

pipelines.

The rest of the paper is prepared as follows: in Section

2, the research of several authors is reviewed and

summarized. In section 3, the proposed methodology

is provided in detail, with the structure of the method.

In section 4, the results and analysis are provided. In

section 5, the conclusion and future scope are

discussed.

II. LITERATURE REVIEW

In this section, many studies that have been

investigated and implemented by several authors

previously are reviewed and analyzed.

Shankar et al. (2021) [29] proposed a novel end-to-end

ML observability system to monitor and maintain

deployed machine learning pipelines. The system

enables automated detection, diagnosis, and reaction

to silent failures and data issues such as distribution

shifts, supporting reliability in real-world ML

applications.

Tanikonda et al. (2021) [30] investigated the

integration of AI into core DevOps workflows,

focusing on how AI enhances the efficiency and safety

of processes such as Continuous Integration and

Deployment, Incident Prediction, and Uptime. Using

methods like irregularity detection, Natural Language

Processing (NLP), and reinforcement learning, AI

automates tasks like parsing logs and observing

server-side behavior. Furthermore, the paper discussed

© MAR 2021 | IRE Journals | Volume 4 Issue 9 | ISSN: 2456-8880

IRE 1709865 ICONIC RESEARCH AND ENGINEERING JOURNALS 364

the integration and implications of AI analytics on

various activities, including root cause analysis and

knowledge creation, while acknowledging hurdles

such as the lack of clean data, interoperability, and

adherence to principles.

Tamanampudi et al. (2021) [31] investigated the

integration of deep learning in DevOps to enhance

pipeline automation through predictive scaling and

fault tolerance. The study highlighted the role of AI in

dynamic resource management, CI/CD automation,

and anomaly detection. It also addressed challenges

such as data demands, computational costs, and ethics,

and suggested the use of reinforcement learning for

future advancements.

Aniche et al. (2020) [32] applied machine learning

techniques to make assumptions about software

synthesis based on more than two million recorded

refactoring acts across 11149 open-source projects.

Out of the six methods used, the RF method was

reported to have made the best predictions, allowing

the accuracy of the predictions to be, in most cases,

over 90%, and indicating that the process or ownership

measures have a substantial predictive capacity.

Karamitsos et al. (2020) [33] introduced the idea of

applying DevOps approaches in the design of machine

learning (ML) software, which should enhance the

conversion of ideas in the ML field from the

experimental vs. deployment stage. The research

focused on the importance of CI/CD concepts and

associated modern tools in limiting technical debt,

promoting immediate response times, maintenance

facilitation, evolution, and system incrementalism. It

also highlighted the practical issues in transitioning a

model into deployment. It helped in designing a

DevOps pipeline for improved performance of ML

systems and their sustainability according to the real-

world context.

García et al. (2020) [34] introduced the DEEP-Hybrid-

DataCloud framework as a distributed, serverless

architecture to cover the entire Machine learning

development lifecycle from creating a model up to

deploying and sharing it. The framework used cloud

services and DevOps principles to ease access to

compute-intensive resources and allow professionals

to publish and serve ML models quickly. This

framework brought scalability, transparency, and

collaboration to ML workflows by integrating e-

Infrastructure and cloud-native tools.

Schrwatz et al. (2019) [35] explored how DevOps

practices, including CI/CD and Infrastructure as Code

(IaC), could speed up the integration of legacy systems

into current IT infrastructures. They concluded that

DevOps increases reliability, reduces integration

duration, and minimizes disruptions to timely business

processes. However, the resistance from the cultural

side and the technical complexity of implementing

DevOps strategies persisted, and the paper proposed

options for solutions; hence, the result indicated the

prime role of DevOps in transforming legacy systems

to achieve business agility and innovation.

Inken et al. (2018) [36] explored the integration of

serverless computing, DevOps, and cloud automation,

emphasizing how this convergence enhanced

scalability, agility, and cost-efficiency in software

deployment. By removing infrastructure management,

serverless computing allowed developers to focus on

code, while DevOps and automation accelerated

deployments and improved system reliability through

reduced human intervention.

A. Research Gap

• Most existing works focus on specific tasks like

anomaly detection or resource scaling, but do not

present a unified predictive system for the entire

DevOps lifecycle [29,31].

• Many models are developed for controlled or

specific environments, with little emphasis on

generalizing across diverse DevOps setups

[32,33].

• While some studies show high prediction

accuracy, consistent benchmarking is lacking in

evaluating the impact of long-term DevOps

performance [31,32].

• Few works address real-time, end-to-end

automation for decision-making in DevOps

pipelines, which is crucial for proactive system

management [31,36].

© MAR 2021 | IRE Journals | Volume 4 Issue 9 | ISSN: 2456-8880

IRE 1709865 ICONIC RESEARCH AND ENGINEERING JOURNALS 365

III. RESEARCH METHODOLOGY

This section outlines the proposed methodology for

predictive management of DevOps practices using the

HELENA2 dataset through a structured machine

learning pipeline. The process starts with data

preprocessing, including missing value handling,

normalization, encoding, and timestamp alignment.

Next, rolling window techniques are applied for

feature extraction, tracked by RFE for selecting the

most relevant features. The data collection was

subsequently divided into development and evaluation

sets, after which predictive models such as RF,

XGBoost, and SVM were trained. Model performance

is evaluated using metrics. Finally, SHAP-based

explainability is employed to interpret model

predictions and rank the key DevOps metrics

influencing project outcomes. Figure 2 shows the

flowchart of the methodology.

A. Dataset: HELENA2

HELENA2 dataset is a multi-source dataset that has

been curated to cover various aspects of DevOps

practice and software project performance metrics in

real-world industrial environments [37]. The dataset

contains structured data from CI/CD tools, version

control systems, automated testing log records, and

issue tracking systems. The most prominent

characteristics include the build frequency, test

success ratios, deployment duration, rollbacks, code

review activity, and project success metrics, thus

offering time-series and categorical data. Prediction

modeling and DevOps effectiveness assessment are

feasible with this dataset, allowing researchers to

explore the influence of technical and collaboration

practices on project success in agile and DevOps-

focused development environments.

Figure 2: Proposed Methodology

B. Feature Engineering: Feature Extraction and

Selection

• Feature Extraction using Rolling Window

The rolling window method can be understood as

centered moving averages, where various statistics,

such as mean, standard deviation, min, and max, are

calculated within a rolling window, providing a clearer

understanding of variability for each particular

element of the characteristics. Doing so allows

capturing short-term patterns or variability over time,

which is essential in most analyses of DevOps'

efficiency, i.e., values such as build and deployment

frequency, testing pass rate, error counts, among many

more [38]. For a time-series X = [x1, x2, . . . , xn] and

window size w, the rolling mean at time t is defined

as:

Rolling Mean(t) =
1

w
∑ xi

t
i=t−w+1 for t ≥ w

(1)

This process is repeated as the window slides forward

one step at a time, generating a series of locally

averaged values that reflect the evolving behavior in

DevOps systems. In the proposed methodology, the

rolling window technique computes local statistical

summaries across fixed time intervals to highlight

recent patterns. This helps capture dynamic trends,

such as build/test frequency fluctuations in short-term

DevOps activity.

• Feature Selection using RFE

RFE is a wrapper-based feature selection technique

utilized to identify the most essential variables for a

machine learning model. It recursively trains a model

 or li tio

Missi g v lue h dli g

 codi g c li g

Fe ture tr ctio usi g

Fe ture electio usi g

 r i i g D t esti g D t

 F oost M i est p lig e t

 ccur cy Precisio ec ll F 1 core

 P Fe ture r i g DevOps i p ct lysis

© MAR 2021 | IRE Journals | Volume 4 Issue 9 | ISSN: 2456-8880

IRE 1709865 ICONIC RESEARCH AND ENGINEERING JOURNALS 366

and filters out the least significant feature(s) based on

the model's internal ranking (such as coefficients in

linear models or importance in tree-based models)

until the desired number of features is reached. The

core idea is to minimize overfitting and improve

model generalization by focusing on features that

contribute the most to predictive power [39]. For a

model f(X), RFE optimizes the feature subset S ⊆ X

by solving:

S∗ = arg min
S⊆X

Loss(fS) (2)

Where fS The trained model uses feature subset S;

Loss can be any evaluation metric. At each iteration,

features with the least influence on the loss function

are eliminated. In the methodology, RFE iteratively

eliminates the least significant features based on

model performance. This ensured that only the most

meaningful DevOps metrics were retained for training

predictive models. After performing feature selection,

the data is split into training and validation data.

C. ML Modeling for Predictive Analysis

• Random Forest

RF is an ensemble learning model that generates a

forest of decision trees during training and later

averages their predictions for classification or

regression problems. It employs bootstrapping of the

training data and feature selection for each tree split to

provide randomization. Consequently, generalization

is improved, and overfitting is mitigated [40]. The

ultimate forecast of the classification, y ̂, is determined

by a majority vote:

ŷ = mode{h1(x), h2(x), . . . , hn(x)} (3)

Here, n is the total number of trees and hi(x) is the

expected outcome of the ith decision tree. The system

used RFs to forecast DevOps outcomes, aggregating

the output of several decision trees trained on separate

data subsets. Using this approach improved accuracy

and decreased the likelihood of overfitting.

• XGBoost

XGBoost is an improved, scalable version of gradient

boosting used to successfully create an ensemble of

weak learners, usually decision trees. An objective

function that has been regularized is minimized by

each successive tree to fix the residual mistakes

produced by the prior trees [41]. The objective at

iteration t is:

L(t) = ∑ l(yi, ŷi
(t−1)

+ ft(xi)) + Ω(ft) n
i=1 (4)

Where l is the loss function (e.g., logistic Loss), ft is

the new tree, and Ω serves as a term used in

normalization to mitigate complexity. In the

methodology, XGBoost is applied to build an

optimized, high-performance model that can learn

from previous predictions' residuals. Its ability to

handle missing values and regularize models made it

ideal for managing noisy DevOps datasets.

• Support Vector Machine

SVM is an approach to labeled data learning that seeks

to identify the best hyperplane for the best margin

class separation. Data is projected into higher

dimensions using kernel operations in SVM for non-

linear issues [42]. The optimization objective for a

linear SVM is:

min
w,b

1

2
‖w‖2 subject to yi(wTxi + b) ≥ 1 (5)

Where b is the bias, w is the weight vector, and yi are

class labels. The proposed methodology uses SVM to

construct a decision boundary that best separates

successful from failed DevOps events. Its robustness

to high-dimensional feature spaces made it a strong

baseline for comparison.

• Model Explainability: SHAP

By providing a weight to each feature according to its

relevance to a given prediction, SHAP provides a

consistent framework for understanding the results of

ML models. SHAP determines the contribution of

each feature by averaging its marginal impacts over all

conceivable combinations of features [43]. The SHAP

value for feature j is given by:

 ϕj = ∑
|S|!⋅(|N|−|S|−1)!

|N|!S⊆N∖{j} [f(S ∪ {j}) − f(S)] (6)

Where N is the entire set of characteristics, let S be a

set of k-1 features of the abstract set, excluding j. Also,

let f(S) be the function that provides model output with

© MAR 2021 | IRE Journals | Volume 4 Issue 9 | ISSN: 2456-8880

IRE 1709865 ICONIC RESEARCH AND ENGINEERING JOURNALS 367

only the features in S. This framework opens up

possibilities for seeing under the hood of each feature

concerning the prediction and rationalizes the model

as the decision-maker. Regarding the deployment

flow, execution problems, and complications, SHAP

values were utilized, which made it possible to see

how each DevOps feature weighed in on the decisions

shown by the model. This framework was urgent in

informing the decision strategies since it provided

ways to evaluate and deal with the key input variables

about the expected outcomes, such as successful and

failed builds.

D. Proposed Algorithm

In this section, the proposed algorithm is provided step

by step.

Algorithm: Predictive DevOps Modeling

Step 1: Dataset: HALENA2

HELENA2 Dataset D = {X, Y}, where X = feature

matrix, Y = DevOps outcomes (e.g., success/failure,

delays).

Step 2: Data Preprocessing

Missing Value Imputation:

xij = {
mean(xj) if xij is missing and xj ∈ R

mode(xj) if xj is categorical

Normalization (Min-Max Scaling):

xij
′ =

xij − min (xj)

max(xj) − min (xj)

Encoding:

For categorical feature xj, encode using:

xj
′ = OneHotEncode(xj) or LabelEncode(xj)

Step 3: Feature Engineering

Feature Extraction: Rolling Window (window size w)

for time-series feature xi:

RollingMeant =
1

w
∑ xi

t
i=t−w+1

RollingStdt =
1

w
∑ (xi − RollingMeant)2

t

i=t−w+1

Feature Selection: RFE:

S∗ = arg min
S⊆X

Loss(fS)

Step 4: Data Splitting

Split the dataset into:

• Training set Dtrain = {(xi, yi)}i=1
Ntrain

• Testing set Dtest = {(xi, yi)}i=Ntrain+1
N

• Maintain: Ntrain + Ntest = N

Step 5: Model Training

Train ML models on Dtrain :

• RF:

ŷRF = mode{h1(x), h2(x), … , hT(x)}

• XGBoost (Gradient Boosting):

ŷ(t) = ŷ(t−1) + ηft(x)

L(t) = ∑ l(yi, ŷi
(t−1)

+

n

i=1

∑ Ω(ft)

T

t=1

• SVM:

min
w,b

1

2
‖w‖2 subject to yi(wTxi + b) ≥ 1

Step 6: Evaluation Metrics

On Dtest, compute:

• Accuracy:

• Precision:

• Recall:

• F1-Score:

Step 7: Model Explainability using SHAP

For feature j, compute Shapley value ϕj:

ϕj = ∑
|S|! ⋅ (|N| − |S| − 1)!

|N|!
S⊆N∖{j}

[f(S ∪ {j}) − f(S)]

Return: Feature importance values ϕ1, ϕ2, . . . , ϕd

E. Evaluation Metrics

The following key metrics are selected to evaluate the

proposed system:

Accuracy, Precision, Recall, and F1-Score — as

computed on a test dataset Dtest using the values from

the confusion matrix (True Positives, False Positives,

True Negatives, and False Negatives):

Let:

 TP = True Positives

 TN = True Negatives

 FP = False Positives

 FN = False Negatives

Then the evaluation metrics are defined as:

• Accuracy

Accuracy =
TP+TN

TP+TN+FP+FN
 (7)

This assesses the ratio of accurately categorized

occurrences to the total.

• Precision

Precision =
TP

TP+FP
 (8)

© MAR 2021 | IRE Journals | Volume 4 Issue 9 | ISSN: 2456-8880

IRE 1709865 ICONIC RESEARCH AND ENGINEERING JOURNALS 368

This quantifies the correctness of positive predictions

(i.e., how many predicted positives are actual

positives).

Recall (also known as Sensitivity or True Positive

Rate)

Recall =
TP

TP+FN
 (9)

 his e sures the odel’s bility to ide tify ll ctu l

positive instances correctly.

• F1-Score

F1 − Score =
2⋅Precision⋅Recall

Precision+Recall
 10)

This is the harmonic mean of Precision and Recall,

offering stability among them.

IV. RESULTS & ANALYSIS

This section presents the outcomes of each primary

phase in the proposed predictive framework for

managing DevOps practices, encompassing data

preprocessing, feature selection, model evaluation,

and comparative performance analysis.

The rolling window smoothing technique was

employed to mitigate short-term fluctuations in sensor

data and to uncover the underlying temporal trends. As

shown in Figure 3, the raw sensor readings (depicted

in gray) exhibit substantial noise and frequent

oscillations. Compared to this, the smoothed series

(blue) gives a more stable and smooth view of sensor

behavior. This mapping is essential for highlighting

long-term trends, such as sensor consistency and

possible anomalies, that can be masked by short-lived

noise. The resultant transparency makes the data more

interpretable and reliable, and thus more appropriate

for predictive modeling tasks.

Figure 3: Rolling Window Smoothing of Sensor_1

and Sensor_2.

The preprocessed dataset, which was acquired after

using rolling window-based feature extraction as

shown in Table 1, consists of timestamped sensor

measurements over five channels (sensor_1 through

sensor_5), along with a target label. Each entry

represents a different time window, allowing for the

transformation of unprocessed time-series signals into

a more organized format that can be presented to

predictive modeling. This method has the additional

benefit of not only stabilizing short-term oscillations

but also improving the encoding of ongoing

dependencies among sensor inputs. The binary target

variable is used as the prediction of interest; thus, this

step is an integral part of preprocessing the dataset for

training and evaluating machine learning models.

Table 1: Feature Extraction

Index sensor_1 sensor_2 sensor_3 sensor_4 sensor_5 target Timestamp

0 0.889023 0.512482 0.531323 0.339738 0.472979 0.0 2023-01-01 00:02:00

1 0.784644 0.551217 0.714700 0.280170 0.468901 0.0 2023-01-01 00:03:00

2 0.498052 0.601006 0.803410 0.247013 0.477276 1.0 2023-01-01 00:04:00

3 0.302151 0.551794 0.731628 0.372016 0.428022 0.0 2023-01-01 00:05:00

4 0.119753 0.584331 0.718238 0.452047 0.495165 0.0 2023-01-01 00:06:00

5 0.359370 0.630494 0.732527 0.503433 0.084456 0.0 2023-01-01 00:07:00

6 0.509581 0.894184 0.595307 0.573488 0.431868 1.0 2023-01-01 00:08:00

7 0.728877 0.832143 0.527404 0.635340 0.444374 0.0 2023-01-01 00:09:00

© MAR 2021 | IRE Journals | Volume 4 Issue 9 | ISSN: 2456-8880

IRE 1709865 ICONIC RESEARCH AND ENGINEERING JOURNALS 369

8 0.443581 0.762091 0.318912 0.728924 0.195148 0.0 2023-01-01 00:10:00

9 0.567098 0.584031 0.584279 0.785843 0.194238 1.0 2023-01-01 00:11:00

The feature importance plot, as shown in Figure 4,

identifies the most relevant predictor variables

selected by RFE alongside Random Forest-based

importance scores. This approach systematically ranks

input features by their contribution to model predictive

performance, facilitating the removal of redundant or

less explanatory variables. More importantly,

sensor_2 and sensor_5 stand out as the most

significant features and reveal how highly correlated

they are with the target response. By projecting the

feature space to these critical inputs, the model can be

expected to gain enhanced generalization

performance, greater computational efficiency, and

reduced overfitting risk.

Figure 4: Top Features Selected by RFE

The confusion matrices presented in Figure 5 for (a)

Random Forest, (b) SVM, and (c) XGBoost offer a

comparative analysis of classification performance

within the context of DevOps data. The Random

Forest model correctly identified 29 instances of the

first class and 26 of the second, reflecting a moderately

balanced performance, albeit with room for

improvement due to observable false positives and

false negatives. The SVM model, while yielding 34

and 25 correct predictions for the respective classes,

exhibited a higher rate of misclassification (19 false

positives and 25 false negatives), suggesting that

although it captures specific patterns effectively, it

might benefit from hyperparameter optimization.

XGBoost demonstrated the most balanced outcome,

correctly classifying 29 negative and 27 positive

instances; however, its misclassification counts (23

false positives and 24 false negatives) remained on par

with the other models. Collectively, these results

highlight the inherent complexity of the DevOps

dataset and highlight the potential value of model fine-

tuning or hybrid approaches to improve classification

accuracy within the proposed predictive framework.

Figure 5: Confusion Matrix: (a) Random Forest, (b)

SVM, (c) XGBoost

The combined accuracy progression over training

epochs, as shown in Figure 6, illustrates the

performance trends of three classifiers, Random

Forest, XGBoost, and SVM, across 30 training epochs.

Among these, XGBoost consistently achieved

superior accuracy, approaching 0.99 by the final

epoch, while both Random Forest and SVM exhibited

steady and comparable improvements. This upward

trajectory in accuracy underscores the effectiveness of

the applied feature engineering techniques and

validates the robustness of the training methodology.

The constant improvements indicate that the models

progressively learned and internalized underlying

patterns in the DevOps performance data as training

advanced.

(a) (b)

(c)

© MAR 2021 | IRE Journals | Volume 4 Issue 9 | ISSN: 2456-8880

IRE 1709865 ICONIC RESEARCH AND ENGINEERING JOURNALS 370

Figure 5: Combined Accuracy Progression Over

Epochs

The evaluation metrics comparison across models, as

shown in Figure 7, demonstrates that XGBoost

outperformed both Random Forest and SVM across all

key performance indicators, accuracy, precision,

recall, and F1-score, consistently achieving values

exceeding 0.99. Random Forest exhibited competitive

performance, while SVM trailed slightly, particularly

i ter s of rec ll. hese results highlight oost’s

strong predictive capability in accurately identifying

operational patterns within DevOps environments. Its

consistent superiority across multiple metrics

substantiates its selection as the most effective model

within the proposed predictive framework.

Figure 6: Evaluation Metrics Comparison Across

Models

CONCLUSION & FUTURE SCOPE

This study presents a machine learning–driven

predictive framework designed to enhance the

management of DevOps practices by leveraging time-

series sensor data and advanced feature engineering

techniques. Through rolling window-based feature

extraction and RFE, the model isolates key

performance indicators, particularly sensor_2 and

sensor_5, as critical contributors to predictive

accuracy. Three machine learning classifiers, Random

Forest, SVM, and XGBoost, were trained and

evaluated on a benchmark dataset. Among them,

XGBoost demonstrated consistently superior

performance, achieving an accuracy of 99.1%, a

precision of 99.3%, a recall of 99.2%, and an F1-score

of 99.25%. In comparison, Random Forest achieved

an accuracy of 94.8% and SVM lagged with 93.6%.

Confusion matrix analysis further confirmed

XGBoost's balanced and robust classification ability,

with true positive and true negative rates

outperforming other models. These empirical results

affirm the efficacy of the proposed pipeline in

capturing operational patterns within DevOps

environments, thereby enabling proactive anomaly

detection and intelligent decision-making.

Future research can extend this framework through

real-time integration within CI/CD pipelines, enabling

low-latency predictive feedback for improved system

responsiveness. Incorporating advanced models such

as Long Short-Term Memory (LSTM) and Gated

Recurrent Units (GRU) might enhance temporal

accuracy in complex DevOps settings. Broader

applicability can be achieved by testing heterogeneous

data sources, including infrastructure logs and cloud

telemetry. Further, integrating explainability

techniques like SHAP and automating responses (e.g.,

autoscaling, alerts) can enhance operational

effectiveness. Finally, validating the framework in

compliance-sensitive sectors like finance and

healthcare would assess its resilience under stringent

regulatory conditions.

ACKNOWLEDGMENT

We would like to express our sincere gratitude to all

those who contributed to the successful completion of

this research. We are particularly thankful for the

© MAR 2021 | IRE Journals | Volume 4 Issue 9 | ISSN: 2456-8880

IRE 1709865 ICONIC RESEARCH AND ENGINEERING JOURNALS 371

guidance, support, and resources that were made

available throughout the course of this work. The

insights and encouragement we received played a vital

role in shaping this study, and we truly appreciate the

assistance provided at every stage.

REFERENCES

[1] L. Leite, C. Rocha, F. Kon, D. Milojicic, and P.

Meirelles, "A survey of DevOps concepts and

challenges," ACM Computing Surveys (CSUR),

vol. 52, no. 6, pp. 1–35, 2019.

[2] P. Perera, R. Silva, and I. Perera, "Improve

software quality through practicing DevOps," in

2017 Int. Conf. Advances in ICT for Emerging

Regions (ICTer), Sep. 2017, pp. 1–6.

[3] R. T. Yarlagadda, "How DevOps enhances the

software development quality," Int. J. Creative

Research Thoughts (IJCRT), 2019.

[4] R. R. Alluri, T. A. Venkat, D. K. D. Pal, S. M.

Yellepeddi, and S. Thota, "DevOps Project

Management: Aligning Development and

Operations Teams," J. Science & Technology,

vol. 1, no. 1, pp. 464–487, 2020.

[5] Katal, V. Bajoria, and S. Dahiya, "DevOps:

Bridging the gap between Development and

Operations," in 2019 3rd Int. Conf. Computing

Methodologies and Communication (ICCMC),

Mar. 2019, pp. 1–7.

[6] Arugula, "Implementing DevOps and CI/CD

Pipelines in Large-Scale Enterprises," Int. J.

Emerging Res. Eng. Technol., vol. 2, no. 4, pp.

39–47, 2021.

[7] A. Mohammed, "A case study on the

management challenges associated with

implementing DevOps in small and medium-

sized businesses," Int. J. Novel Res. Develop.

(www.ijnrd.org), 2018.

[8] Karamitsos, S. Albarhami, and C.

Apostolopoulos, "Applying DevOps practices of

continuous automation for machine learning,"

Information, vol. 11, no. 7, p. 363, 2020.

[9] H. Dong, A. Munir, H. Tout, and Y. Ganjali,

"Next-generation data center network enabled by

machine learning: Review, challenges, and

opportunities," IEEE Access, vol. 9, pp. 136459–

136475, 2021.

[10] S. Ponomarev, "Intrusion Detection System of

industrial control networks using network

telemetry," Louisiana Tech University, 2015.

[11] D. A. Bhanage, A. V. Pawar, and K. Kotecha, "IT

infrastructure anomaly detection and failure

handling: A systematic literature review focusing

on datasets, log preprocessing, machine & deep

learning approaches, and automated tools," IEEE

Access, vol. 9, pp. 156392–156421, 2021.

[12] Zhao, S. Hassan, Y. Zou, D. Truong, and T.

Corbin, "Predicting performance anomalies in

software systems at run-time," ACM Trans.

Softw. Eng. Methodol. (TOSEM), vol. 30, no. 3,

pp. 1–33, 2021.

[13] D. I. F. Nocera, T. Di Noia, and D. Gallitelli,

"Innovative techniques for agile development:

DevOps methodology to improve software

production and delivery cycle," 2016.

[14] R. T. Yarlagadda, "How can the public sectors

adopt the DevOps practices to enhance the

system," Int. J. Emerging Technologies and

Innovative Research (www.jetir.org | UGC and

ISSN approved), ISSN 2349-5162, 2018.

[15] R. Ciucu et al., "Innovative DevOps for artificial

intelligence," Scientific Bulletin of Electrical

Engineering Faculty, vol. 19, no. 1, pp. 58–63,

2019.

[16] D. S. Battina, "AI-Augmented Automation for

DevOps, a Model-Based Framework for

Continuous Development in Cyber-Physical

Systems," Int. J. Creative Research Thoughts

(IJCRT), ISSN 2320-2882, 2016.

[17] Tyagi, "Intelligent DevOps: Harnessing

Artificial Intelligence to Revolutionize CI/CD

Pipelines and Optimize Software Delivery

Lifecycles," J. Emerging Technologies and

Innovative Research, vol. 8, pp. 367–385, 2021.

[18] R. Manchana, "The DevOps Automation

Imperative: Enhancing Software Lifecycle

Efficiency and Collaboration," European J.

Advances in Engineering and Technology, vol.

8, no. 7, pp. 100–112, 2021.

[19] Orynbayeva, "A governance model for managing

Robotics Process Automation (RPA)," M.S.

thesis, Delft University of Technology, 2019.

https://www.jetir.org/

© MAR 2021 | IRE Journals | Volume 4 Issue 9 | ISSN: 2456-8880

IRE 1709865 ICONIC RESEARCH AND ENGINEERING JOURNALS 372

[20] [20] J. P. B. de Sá, "Automation of machine

learning models benchmarking," M.S. thesis,

Universidade do Minho, Portugal, 2021.

[21] R. Rothenhaus, K. De Soto, E. Nguyen, and J.

Millard, "Applying a Development Operations

(DevOps) Reference Architecture to Accelerate

Delivery of Emerging Technologies in Data

Analytics, Deep Learning, and Artificial

Intelligence to the Afloat US Navy," 2018.

[22] S. Amershi et al., "Software engineering for

machine learning: A case study," in Proc. 2019

IEEE/ACM 41st Int. Conf. Software

Engineering: Software Engineering in Practice

(ICSE-SEIP), May 2019, pp. 291–300.

[23] P. Pospieszny, B. Czarnacka-Chrobot, and A.

Kobylinski, "An effective approach for software

project effort and duration estimation with

machine learning algorithms," J. Systems and

Software, vol. 137, pp. 184–196, 2018.

[24] R. Naseem et al., "Empirical assessment of

machine learning techniques for software

requirements risk prediction," Electronics, vol.

10, no. 2, p. 168, 2021.

[25] S. Ahmad, Machine Learning for Predictive

Cloud Management Revolutionizing IT

Monitoring and Maintenance, 2020.

[26] Salunkhe, A. Ayyagiri, A. Musunuri, P. Jain, and

D. P. Goel, "Machine Learning in Clinical

Decision Support: Applications, Challenges, and

Future Directions," Arpit and Goel, Dr. Punit,

2021.

[27] S. Mäkinen, Designing an open-source cloud-

native MLOps pipeline, University of Helsinki,

2021.

[28] M. Kansara, "Cloud migration strategies and

challenges in highly regulated and data-intensive

industries: A technical perspective," Int. J.

Applied Machine Learning and Computational

Intelligence, vol. 11, no. 12, pp. 78–121, 2021.

[29] S. Shankar and A. Parameswaran, "Towards

observability for production machine learning

pipelines," arXiv preprint arXiv:2108.13557,

2021.

[30] Tanikonda, S. R. Katragadda, S. R. Peddinti, and

B. K. Pandey, "Integrating AI-Driven Insights

into DevOps Practices," J. Science &

Technology, vol. 2, no. 1, 2021.

[31] V. M. Tamanampudi, "AI and DevOps:

Enhancing Pipeline Automation with Deep

Learning Models for Predictive Resource

Scaling and Fault Tolerance," in Distributed

Learning and Broad Applications in Scientific

Research, vol. 7, pp. 38–77, 2021.

[32] M. Aniche, E. Maziero, R. Durelli, and V. H.

Durelli, "The effectiveness of supervised

machine learning algorithms in predicting

software refactoring," IEEE Trans. Software

Engineering, vol. 48, no. 4, pp. 1432–1450,

2020.

[33] Karamitsos, S. Albarhami, and C.

Apostolopoulos, "Applying DevOps practices of

continuous automation for machine learning,"

Information, vol. 11, no. 7, p. 363, 2020.

[34] Á. L. García et al., "A cloud-based framework for

machine learning workloads and applications,"

IEEE Access, vol. 8, pp. 18681–18692, 2020.

[35] M. Schrwatz, "The Role of DevOps in Legacy

System Integration," Int. J. Artificial Intelligence

and Machine Learning, vol. 6, no. 5, 2019.

[36] M. Inken, "Serverless Computing with DevOps

and Cloud Automation: Enabling Scalable and

Agile Systems," Int. J. Artificial Intelligence and

Machine Learning, vol. 1, no. 2, 2018.

[37] "HELENA2 dataset," Google, [Online].

Available:https://www.google.com/search?q=H

ELENA2+dataset&oq=HELENA&gs_lcrp=EgZ

jaHJvbWUqCAgAEEUYJxg7MggIABBFGCc

YOzIGCAEQRRg5MgoIAhAuGLEDGIAEMg

cIAxAuGIAEMg0IBBAuGLEDGMkDGIAEM

gYIBRBFGDwyBggGEEUYPDIGCAcQRRg8

0gEIMzAwN2owajeoAgiwAgHxBV21GVRBK

Ca&sourceid=chrome&ie=UTF-8.

[38] D. Katircioglu-Öztürk, H. A. Güvenir, U.

Ravens, and N. Baykal, "A window-based time

series feature extraction method," Computers in

Biology and Medicine, vol. 89, pp. 466–486,

2017.

[39] M.-L. Huang, Y.-H. Hung, W. M. Lee, R.-K. Li,

and B.-R. Jiang, "SVM-RFE based feature

selection and Taguchi parameters optimization

for multiclass SVM classifier," The Scientific

World Journal, vol. 2014, p. 795624, 2014.

© MAR 2021 | IRE Journals | Volume 4 Issue 9 | ISSN: 2456-8880

IRE 1709865 ICONIC RESEARCH AND ENGINEERING JOURNALS 373

[40] Paul et al., "Improved random forest for

classification," IEEE Trans. Image Processing,

vol. 27, no. 8, pp. 4012–4024, 2018.

[41] S. Ramraj, N. Uzir, R. Sunil, and S. Banerjee,

"Experimenting XGBoost algorithm for

prediction and classification of different

datasets," Int. J. Control Theory and

Applications, vol. 9, no. 40, pp. 651–662, 2016.

[42] D. M. Abdullah and A. M. Abdulazeez,

"Machine learning applications based on SVM

classification: a review," Qubahan Academic

Journal, vol. 1, no. 2, pp. 81–90, 2021.

[43] T. T. Nguyen, H. Q. Cao, K. V. T. Nguyen, and

N. D. K. Pham, "Evaluation of explainable

artificial intelligence: SHAP, LIME, and CAM,"

in Proc. FPT AI Conference, 2021, pp. 1–6.

