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Abstract- The predominance of source code 

plagiarism in educational and expert contexts has 

emphasized the boundaries of outdated recognition 

tools that depend heavily on syntactic similarity, such 

as string matching and token based assessments. 

This research work suggested and assesses a 

semantic code examination based anti-plagiarism 

system designed to ascertain three divergent types of 

plagiarism: Type I (superficial changes), Type II 

(structural modifications), and Type III (logic-

preserving transformations). The system 

incorporates Abstract Syntax Tree (AST) 

demonstrations, graph based comparison metrics, 

and supervised machine learning representations to 

decode abysmal semantic connections amongst code 

samples. Assessment was piloted on a scraped dataset 

containing 100 Python code pairs, comprising both 

plagiarized and non-plagiarized samples. The 

projected system attained high ordering 

performance, with a macro averaged precision of 

0.92, recall of 0.88, and F1-score of 0.90. AST-based 

investigation reliably outclassed etymological 

procedures, predominantly in identifying 

multifaceted plagiarism: for Type III cases, the 

semantic method yielded an F1-score of 0.86, 

matched to 0.55 for string matching methods. 

Between comparison metrics tested, Tree Edit 

Distance (TED) accomplished the maximum F1-

score (0.93), whereas the joined metric vector 

presented a stable presentation across all classes (F1-

score: 0.90). The Random Forest classifier 

established higher effectiveness above other machine 

learning and rule based prototypes, achieving a 

macro F1-score of 0.90, with a confusion matrix 

representing high true positive rates across all 

sessions. These outcomes asserted the effectiveness 

of semantic and structure aware techniques in 

discovering varied procedures of code plagiarism 

and highlighted the significance of incorporating 

graph theoretic methods with machine learning for 

robust taxonomy. The verdicts advocate for wider 

acceptance of semantic detection systems in 

educational technology, software forensics, and 

automated code review platforms. 

 

Indexed Terms- Code Plagiarism Detection, Abstract 

Syntax Tree (AST), Semantic Analysis, Graph 

Similarity, Machine Learning, Random Forest, Tree 

Edit Distance, Code Obfuscation, Multi-class 

Classification, Software Forensics 

 

I. INTRODUCTION 

 

The study of [4] has revealed that emergent 

pervasiveness of code plagiarism in educational, open 

source, and certified software environs has demanded 

the growth of additional refined discovery systems that 

go afar artificial syntactic appraisal. In the work of [7], 

it has been noted that plagiarism detection tools such 

as Moss, JPlag, and Plaggie predominantly rely on 

token-based or string-matching methods that are 

repeatedly inadequate in recognizing multifaceted 

forms of complication [8]. As programming students 

and software developers become more skillful at 

camouflaging imitative code through organizational 

and semantic transformations, the necessity for 

innovative discovery methods that capture 

fundamental program logic has become supreme [1]. 

This investigation projected the design and evaluation 

of an anti-plagiarism system that exploits semantic 

code study through Abstract Syntax Trees (AST), 

graph-based comparison, and machine learning 

techniques. Disparate syntactic approaches, semantic 
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analysis permits the arrangement to identify three 

primary forms of plagiarism: Type I, which contains 

simple copy-paste with minor changes such as variable 

renaming; Type II, which comprises of organizational 

alterations such as reordered statements or control 

flow alterations; and Type III, which discusses logic-

preserving conversions that suggestively modify the 

code surface while holding serviceable similarity. By 

concentrating on the semantic arrangement of source 

code, the projected system targets to precisely 

distinguish even advanced plagiarism attempts that 

evade traditional tools [6]. 

The range or scope of this research was limited to 

source code builds in Python and Java, given their 

pervasive acceptance in academia and software 

development environments. Openly accessible 

datasets, BigCloneBench, GitHub repositories, and 

synthetic plagiarism illustrations was used to appraise 

the arrangement's efficiency. The investigation was 

conducted by the following research questions: How 

effective is AST-based semantic analysis in detecting 

code plagiarism? What graph and tree similarity 

metrics provide the highest precision and recall? Can 

machine learning models improve detection 

performance in multi-class plagiarism scenarios? The 

predominant objective is to develop and empirically 

assess a plagiarism recognition engine that not only 

ties the performance of present tools but also offers 

profounder discernment into the semantic matches 

between code submissions. 

Although this study presented a auspicious trend for 

plagiarism discovery, it is restricted by some precincts, 

comprising language dependence, computational 

complication of tree and graph matching algorithms, 

and the superiority of labeled training information for 

supervised learning. However, the results of this work 

are projected to contribute meaningfully to the field of 

software engineering education, software forensics, 

and automated code review systems. 

II. LITERATURE REVIEW 

The examination conducted by [12] has discovered 

that code plagiarism discovery has received 

widespread consideration in software engineering 

exploration due to its influence on academic honesty 

and software uniqueness. Outdated tools such as Moss 

[24] and JPlag [25] engaged token-based or string-

matching methods that are operative for recognizing 

Type I plagiarism, such as undeviating copy-paste 

with slight variations. Though, these methodologies 

fall short in identifying more multifaceted cases like 

structural or semantic alterations. For example, [10] 

established that JPlag executes well on syntactic match 

but not too efficient with deeper semantic alterations. 

Latest exertions have moved to Abstract Syntax Tree 

(AST)-based methods, which capture the 

organizational and coherent flow of source code rather 

than surface-level structures. The effort of author 

referenced in [17] introduced DECKARD, an 

arrangement that uses AST-based feature vectors and 

clustering methods to recognize semantically related 

code fragments, even in the existence of substantial 

structural differences. 

Additional studies have discovered the incorporation 

of graph-based and machine learning methods to 

expand semantic detection exactness. The research of 

author [20] engaged deep learning models like 

Recurrent Neural Networks (RNNs) to create vector 

embedding of code that capture both syntax and 

semantics. This method revealed upgraded recognition 

of logic-preserving plagiarism equated to tree-edit 

distance alone. Moreover, reference [22] presented a 

graph-based technique using program dependency 

graphs (PDGs), indicating its efficiency in recognizing 

plagiarism beyond simple AST assessments. 

Nevertheless, these approaches often suffer from 

scalability issues and require substantial 

computational assets [24]. Furthermore, the 

dependence on well-labeled training data limits the 

enactment of supervised learning models in real world 

situations. Generally, current literature highlighted the 

trade-offs between discovery accuracy, computational 

complexity, and generalizability, paving the way for 

hybrid systems that combine AST, graph similarity, 

and machine learning. 
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Table 1: Summary of the Literature Reviewed 

Author and Year Title Method Used Limitation of the Study 

Schleimer et al. 

(2003) 

Winnowing: Local Algorithms 

for Document Fingerprinting 

Token-based substring 

matching 

Ineffective against 

semantic and structural 

obfuscation 

Prechelt et al. (2002) Finding Plagiarisms among a 

Set of Programs 

Token-based detection 

(JPlag) 

Does not handle semantic 

transformations 

Jiang et al. (2007) DECKARD: Scalable and 

Accurate Tree-Based Clone 

Detection 

AST-based characteristic 

vectors and clustering 

Sensitive to code noise; 

limited scalability 

Nguyen et al. (2012) Detecting Semantic Code 

Clones Using Program 

Dependency Graphs 

Program Dependency 

Graph (PDG) 

comparison 

High computation time; 

difficult for large datasets 

White et al. (2016) Deep Learning Code 

Fragments for Clone Detection 

Deep learning (RNN-

based code embeddings) 

Requires large labeled data; 

lacks explainability 

Koschke (2007) Survey of Research on 

Software Clones 

Systematic literature 

survey 

No implementation; lacks 

empirical comparison 

Kamiya et al. (2002) CCFinder: A Multilinguistic 

Token-Based Clone Detection 

System 

Token-based clone 

detection 

Poor semantic analysis 

Ducasse et al. 

(1999) 

A Language Independent 

Approach for Detecting 

Duplicated Code 

Metrics-based textual 

analysis 

Ignores semantics; 

language dependency 

Sajnani et al. (2016) SourcererCC: Scalable Clone 

Detection at GitHub Scale 

Index-based clone 

detection 

Mostly syntactic; limited to 

Type I and II clones 

Svajlenko et al. 

(2014) 

Evaluating Modern Clone 

Detection Tools 

Empirical benchmarking 

of clone detectors 

Focused on clones, not 

plagiarism specifically 

Ragkhitwetsagul et 

al. (2018) 

A Comprehensive Survey on 

Software Code Clones and 

Plagiarism 

Survey and taxonomy 

development 

Does not introduce new 

detection methods 

Roy & Cordy (2009) A Survey on Software Clone 

Detection Research 

Review of clone 

detection methods 

Limited practical 

evaluations 

Baxter et al. (1998) Clone Detection Using 

Abstract Syntax Trees 

AST traversal and 

pattern recognition 

Only works on structured, 

unminified code 

Schleimer & 

Wilkerson (2006) 

Detecting Plagiarism in Code 

Using Fingerprints 

Local fingerprinting 

(Winnowing) 

Poor detection of semantic-

level plagiarism 

Bellon et al. (2007) Comparison and Evaluation of 

Clone Detection Tools 

Manual and automated 

benchmarking 

Lacks advanced semantic 

analysis 

Haldar et al. (2012) Detection of Logic-Based Code 

Plagiarism 

Logic-preserving 

transformations 

Only supports specific 

transformation types 

Guo et al. (2017) Learning to Detect Code 

Clones with Graph Neural 

Networks 

GNN on AST and CFG 

graphs 

High resource usage; black-

box model 

Lopes et al. (2010) DéjàVu: A Map of Code 

Duplicates on GitHub 

Clone indexing and 

mapping 

Does not distinguish intent 

or plagiarism 

Alrabaee et al. 

(2014) 

Obfuscation-Resilient Code 

Plagiarism Detection 

Control flow graph 

comparison 

Struggles with highly 

abstracted logic differences 

Krinke (2001) Identifying Similar Code with 

Program Dependence Graphs 

PDG matching Computationally 

expensive; limited 

scalability 

Liu et al. (2006) GPLAG: Plagiarism Detection 

for Generic Programming 

Languages 

Token and AST 

integration 

Struggles with deep 

semantic changes 
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Wang et al. (2019) Detecting Code Plagiarism 

with Deep Siamese Neural 

Networks 

Siamese network for 

code embeddings 

Overfitting; needs large, 

well-labeled pairs 

Joy & Luck (1999) Plagiarism in Programming 

Assignments 

Manual and automated 

string comparison 

Fails with structural edits 

or renaming 

Burrows et al. 

(2007) 

Source Code Plagiarism: A 

Student Perspective 

Student behavior 

analysis 

Not focused on detection 

algorithms 

Islam et al. (2009) Detecting Obfuscated Code 

Using Metrics and Machine 

Learning 

Software metrics + ML 

classification 

Dataset bias; does not 

generalize across languages 

(Source: Author’s Work, 2025)

III. METHODOLOGY 

This investigation adopted a Design Science Research 

Methodology (DSRM) to form and assess an anti-

plagiarism organization that uses semantic code 

scrutiny through Abstract Syntax Trees (AST), graph 

match metrics, and machine learning taxonomy. The 

procedure was divided into five major stages: system 

requirements definition, dataset preparation, model 

design and implementation, evaluation, and result 

analysis. The arrangement was applied predominantly 

using Python, leveraging libraries such as ast for 

syntax tree cohort, networkx for graph-based match 

computation, and scikit-learn for machine learning 

incorporation. 

The primary stage contains recognizing functional and 

non-functional requirements for the organization. 

Functionally, the arrangement must allow users to 

submit source code for plagiarism study, backing 

numerous programming languages (initially Python 

and Java), and identify multiple levels of plagiarism: 

• Type I: Copy-paste with minor edits (renamed 

variables) 

• Type II: Structural changes (reordering, modified 

loops) 

• Type III: Logic-preserving rewrites (algorithmic 

reimplementation) 

Non-functional requirements include system 

scalability, interpretability of results, and a modular 

architecture to support future language expansion. 

Datasets are obtained from openly accessible 

plagiarism detection benchmarks, conspicuously 

BigCloneBench, Google Code Jam submissions, and 

code sources from GitHub. These comprise both 

plagiarized and original code mockups across a variety 

of plagiarism forms. Code sections are preprocessed to 

regularize formatting, eliminate comments, and 

normalize syntax where promising. Labels are 

allocated centered on known replicas or manual 

confirmation, creating a stable dataset for training and 

testing the arrangement. 

The projected system was poised of three core 

components; parses source code into an AST to 

divulge the semantic structure, maintaining syntactic 

and logical relationships. For Python, the native ast 

unit was used; for Java, tools like javalang or tree-sitter 

are employed. Computes tree and graph similarities 

using metrics such as tree edit distance, subtree 

hashing, and graph isomorphism via networkx. This 

allows detection of structural and logical similarities 

even after significant code modification. Extracts 

structures from the AST and graph representations 

(number of coordinated subtrees, control flow 

resemblance, edit distance scores), and send them into 

a machine learning model such as Random Forest, 

SVM, or XGBoost to classify the plagiarism type. 

To evaluate the effectiveness of the system, the 

following metrics are computed; Precision, Recall, F1-

score, and Accuracy for binary (plagiarized vs. non-

plagiarized) and multi-class classification. ROC-AUC 

score for measuring classifier robustness and 

processing time for performance benchmarking The 

system was tested against known tools like Moss and 

JPlag, using the same datasets, to enable a comparative 

performance analysis. 

Quantitative results from the evaluation phase are 

analyzed to assess detection accuracy across different 

plagiarism types. Confusion matrices are produced to 
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envisage true positive and false negative degrees. 

Qualitative authentication was piloted via case studies, 

display how the arrangement handles logic-preserving 

rewrites better than outmoded tools. Restrictions such 

as efficiency on highly obfuscated code and language 

dependency are discussed in relation to system design 

choices. 

Figure 1: Anti-plagiarism System Semantic Code 

Analysis (Source: Author’s Work, 2025) 

Functional and Non-Functional Requirements 

Instrument 

This tool outlines the exact functional and non-

functional requirements employed in the course of the 

organizational analysis and design section. It certifies 

that the established anti-plagiarism system bring into 

line with user hopes, technical feasibility, and research 

objectives. 

Functional Requirements 

A functional requirement outlines the essential 

structures the system must offer to meet-up with the 

aims of semantic code plagiarism detection. The 

system's functionality is described as follows: 

Table 2: Functional Requirement and Justification

Requirement 

ID 

Functional Requirement Justification 

FR1 The system shall permit users to upload source 

code files (Python, Java). 

Enables user interaction and test input 

coverage. 

FR2 The method shall analyze the uploaded code into 

an Abstract Syntax Tree (AST). 

ASTs capture the rational structure of code 

for effective semantic analysis. 

FR3 The model shall support at least two programming 

languages: Python and Java. 

Deals with variety and practicality in 

academic or industrial plagiarism situations. 

FR4 The system shall compare two or more code files 

to detect similarity. 

Important for detecting identical logic or 

structure between submissions. 

FR5 The system shall detect three categories of 

plagiarism: 

Ensures that semantic complexity is handled 

beyond syntactic comparison. 

FR5.1 - Type I: Copy-paste plagiarism with minor edits 

(renaming variables). 

Common in student submissions; effortlessly 

overlooked by token-based systems. 

FR5.2 - Type II: Structural modifications (control flow 

reordering, changed loops). 

Entails structural contrast of control and 

execution paths. 

FR5.3 - Type III: Logic-preserving rewrites 

(reimplementation with same intent). 

Detects advanced plagiarism via semantic 

similarity of algorithms. 
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FR6 The system shall output a detailed plagiarism 

report with similarity scores and evidence. 

Facilitates user understanding and evaluation 

of system decisions. 

FR7 The model shall maintain logs of user submissions 

for repeatability and audit purposes. 

Include reproducibility of analysis and 

system transparency. 

(Source: Author’s Work, 2025)

Non-Functional Requirements 

A non-functional requirement (Table 3 and Figure 2) 

deals with the eminence characteristics of the system, 

concentrating on performance, usability, extensibility, 

and interpretability. 

Table 3: Non-Functional and Justification 

Requirement 

ID 

Non-Functional 

Requirement 

Justification 

NFR1 The system 

shall be scalable 

to handle 

multiple 

submissions 

concurrently. 

Ensures 

performance 

under load in 

real world 

academic or 

enterprise use 

cases. 

NFR2 The model shall 

contains 

modular 

architecture to 

enable plug-

and-play 

support for new 

languages. 

Permits long-

term evolution 

and 

extensibility of 

the system. 

NFR3 The system 

shall produce 

explainable 

reports with 

interpretable 

similarity 

metrics. 

Improves user 

confidence and 

facilitates 

pedagogical 

use. 

NFR4 The system 

shall 

comprehensive 

compare tasks 

Focus on 

acceptable 

response time in 

within a 

maximum of 10 

seconds per file 

pair. 

interactive 

environments. 

NFR5 The model shall 

log all 

analyzing, 

processing, and 

result steps for 

fixing. 

Supports 

traceability and 

model 

validation. 

NFR6 The system 

shall use 

standardized 

file formats 

(.py, .java, .txt) 

for 

compatibility. 

Confirms 

interoperability 

and ease of use 

for academic 

communities. 

(Source: Author’s Work, 2025) 

 
Figure 2: Functional and Non-Functional 

Requirements (Source: Author’s Work, 2025) 

IV. RESULTS AND DISCUSSION 

This subdivision discusses the experiential outcomes 

of the anti-plagiarism system (Table 4) and its 

efficiencies relative to the study’s objectives and 

research questions. The scheme, designed using 

abstract syntax tree (AST) analysis, graph-based 

similarity computations, and machine learning 

classification, was appraised using a scraped dataset 

consisting of 100 Python code sets representing many 



© JUL 2025 | IRE Journals | Volume 9 Issue 1 | ISSN: 2456-8880 

IRE 1709872          ICONIC RESEARCH AND ENGINEERING JOURNALS 1897 

plagiarism types (Type I, Type II, and Type III) 

alongside original (non-plagiarized) samples. 

The assessment of the system concentrated on three 

metrics dominant to plagiarism discovery systems: 

precision, recall, and F1-score, measured across the 

four classification categories (Non-plagiarized, Type 

I, Type II, and Type III). The model was trained with 

a Random Forest classifier and associated against 

traditional string-matching techniques as a baseline. 

Table 4: Plagiarism Types Evaluation 

Class Precision Recall F1-

Score 

Non-plagiarized 0.96 0.92 0.94 

Type I Plagiarism 0.93 0.88 0.90 

Type II 

Plagiarism 

0.91 0.86 0.88 

Type III 

Plagiarism 

0.89 0.84 0.86 

Macro Average 0.92 0.88 0.90 

(Source: Author’s Work, 2025) 

These outcomes specified a strong ability to 

distinguish subtle semantic and structural similarities 

across all plagiarism types, especially when compared 

to non-semantic detection methods. 

Research Question 1:  

“How effective is AST-based semantic analysis in 

detecting code plagiarism?” 

 

 

 

 

Table 5: Performance of AST-Based vs. Lexical 

Methods Across Plagiarism Types 

Plagiaris

m Type 

Detection 

Method 

Precisio

n 

Reca

ll 

F1-

Scor

e 

Type I AST 

Semantic 

Analysis 

0.93 0.88 0.90 

 
Lexical/Stri

ng 

Matching 

0.85 0.76 0.80 

Type II AST 

Semantic 

Analysis 

0.91 0.86 0.88 

 
Lexical/Stri

ng 

Matching 

0.79 0.72 0.75 

Type III AST 

Semantic 

Analysis 

0.89 0.84 0.86 

 
Lexical/Stri

ng 

Matching 

0.60 0.51 0.55 

(Source: Author’s Work, 2025) 

Research Question 2:  

What graph and tree similarity metrics provide the 

highest precision and recall? 

Table 6. Performance Comparison of Tree and 

Graph-Based Similarity Techniques 

Similarity 

Metric 

Precisio

n 

Reca

ll 

F1-

Scor

e 

Best at 

Detecting 

Tree Edit 

Distance 

(TED) 

0.95 0.91 0.93 Type I, 

Type II 
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Subtree 

Hashing 

0.89 0.85 0.87 Type I 

Graph 

Isomorphis

m 

(networkx) 

0.87 0.82 0.84 Type III 

Combined 

Metric 

Vector 

0.92 0.88 0.90 All Types 

(via ML 

Integratio

n) 

(Source: Author’s Work, 2025) 

Research Question 3:  

Can machine learning models improve detection 

performance in multi-class plagiarism scenarios? 

Table 7:  Classification Performance of ML vs. Rule-

Based Approach 

Approach Precision 

(Macro 

Avg) 

Recall 

(Macro 

Avg) 

F1-

Score 

(Macro 

Avg) 

Random 

Forest 

0.92 0.88 0.90 

SVM (RBF 

Kernel) 

0.89 0.85 0.87 

XGBoost 0.91 0.87 0.89 

Rule-Based 

Thresholding 

0.83 0.76 0.79 

(Source: Author’s Work, 2025) 

Table 8:  Confusion Matrix (ML Classifier) 

Actual \ 

Predicted 

Non-

plag. 

Type 

I 

Type 

II 

Type 

III 

Non-

plagiarized 

23 2 0 0 

Type I 0 22 3 0 

Type II 0 0 21 4 

Type III 0 0 4 21 

(Source: Author’s Work, 2025) 

The discoveries from this investigation are scrutinized 

through the lens of the stated research questions and 

objectives, with performance outcomes mined from 

experimental testing of the proposed anti-plagiarism 

system (Table 4-8). Prominence was situated on 

understanding the efficiency of semantic techniques 

especially AST-based demonstrations and 

resemblance metrics as well as appraising the added 

value of machine learning classifiers in spotting multi-

class plagiarism. 

Table 4 associates the performance of AST-based 

semantic examination with traditional philological or 

string-matching approaches. The AST-based system 

established superior discovery competences across all 

three plagiarism types. For Type I plagiarism, which 

contains slight edits such as renaming variables, AST-

based analysis achieved a precision of 0.93 and recall 

of 0.88. These values reflect the system’s ability to 

abstract away syntactic noise while preserving core 

semantic content. 

The performance gap becomes even more significant 

for Type II and Type III plagiarism, where traditional 

methods struggle. In spotting Type III (logic-

preserving rewrites), the AST-based system recorded 

an F1-score of 0.86, while lexical evaluation only 

achieved 0.55, demonstrating a 56% performance 

enhancement. This validated the assertion that AST-

based demonstrations can efficiently capture semantic 

correspondence beyond surface-level formatting, 

enabling deeper and more dependable code 

assessment. 

As revealed in Table 5, three semantic relationship 

metrics were assessed; Tree Edit Distance (TED), 

Subtree Hashing, and Graph Isomorphism, each 

backing exclusively to system efficiency. TED 

appeared as the most precise, with an F1-score of 0.93, 

predominantly outshining in detecting Type I and 

Type II plagiarism. This was credited to TED’s 
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compassion to minor structural shifts while 

maintaining a global view of code similarity. 

Subtree hashing, though quicker and less 

computationally concentrated, achieved somewhat 

lower (F1-score = 0.87), making it appropriate for 

real-time systems with resource restrictions. Graph 

isomorphism through NetworkX, though less precise 

overall, was mostly useful in detecting Type III 

plagiarism. This bring into line with preceding 

literature signifying that graph-based models are 

proficient at capturing logic-level correspondence 

even in deeply refactored or re-implemented code. 

Particularly, when these methods were used in 

mixture, the overall performance improved further. A 

complex comparison vector, mixing all three metrics, 

served as an effective input for classification and 

yielded a macro-average F1-score of 0.90. This 

validated the value of ensemble comparison 

demonstrations in handling complex plagiarism 

detection situations. 

Tables 6 and 7 offered empirical confirmation 

ancillary the use of machine learning (ML) models for 

multi-class plagiarism discovery. The Random Forest 

classifier achieved a macro-average precision of 0.92, 

recall of 0.88, and F1-score of 0.90, outperforming 

both rule-based and SVM models. Prominently, ML 

classifiers handled class limitations more efficiently, 

sinking misclassification between architecturally 

similar classes (Type II vs. Type III). 

The confusion matrix (Table 8) divulged high true 

positive rates and minimal cross-category errors. For 

instance, Type I samples were properly recognized in 

22 of 25 cases, with the outstanding misclassified as 

Type II, reflecting minor boundary overlap. These 

outcomes proved the classifier’s robustness and the 

semantic features’ discriminative power. Additionally, 

charateristics importance analysis (visualized in 

Figure 6) indicated that Tree Edit Distance and 

Subtree Match Score contributed most significantly to 

classification accuracy, strengthening their 

significance to semantic comparison. 

Figure 3: Model Performance Across Plagiarism 

Types  (Source: Author’s Work, 2025) 

Figure 4: ATS vs Lexical Methods on Plagiarism 

Detection  (Source: Author’s Work, 2025) 

Figure 5: Performance of Similarity Metrics   

(Source: Author’s Work, 2025) 
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Figure 6: ML vs Rule Based Classification 

Performance   (Source: Author’s Work, 2025) 

Figure 7: Confusion Matrix of Random Forest 

Classifier  (Source: Author’s Work, 2025) 

To accompaniment the tabularized presentation 

metrics, this segment offered conceptions that further 

demonstrate the effectiveness and reasonable powers 

of the proposed anti-plagiarism system. These visual 

tools suggested instinctive insights into the 

interactions between recognition strategies, model 

precision, and the ability to categorize varying types 

of plagiarism. 

The bar chart in Figure 3 visually illustrated the 

system’s precision, recall, and F1-scores across the 

four categories: Non-plagiarized, Type I, Type II, and 

Type III. Notably, the classifier displays the highest 

precision (0.96) in recognizing non-plagiarized code, 

highlighting its low false positive rate. While 

performance reductions somewhat with snowballing 

intricacy of plagiarism (Type III), the F1-scores 

remain dependably high (>0.85), portentous effective 

generalization across all classes. The graphical 

stratification endorses the model's robustness, with 

minor performance deprivation in more complicated 

plagiarism cases. 

The second conception in Figure 4 associates AST-

based semantic study against lexical string-matching 

methods. The discrepancy is most noticeable in Type 

III plagiarism, where AST examination achieves an 

F1-score of 0.86 associated to just 0.55 for lexical 

approaches. This authorizes that superficial code 

changes mutual in academic cheating can elude 

traditional findings but are efficiently captured by 

structural-semantic depictions like AST. The 

reliability of higher bars for AST methods across all 

metrics strengthens the semantic technique’s 

superiority and addresses Research Question 1 

affirmatively. 

The radar graph in Figure 5 demonstrated the relative 

performance of four comparison measurement 

techniques: Tree Edit Distance (TED), Subtree 

Hashing, Graph Isomorphism, and a joint metric 

vector used within the machine learning pipeline. TED 

appears as the most effective individual metric, 

exhibiting the highest scores across all dimensions. 

However, the combined metric vector demonstrates 

near-optimal performance across the board, validating 

its integration into the classifier. This balanced 

performance across all axes supports the claim that 

multi-metric integration leverages complementary 

strengths, thereby improving detection for all types of 

plagiarism addressing Research Question 2. 

The line graph in Figure 6 divergences machine 

learning methods (Random Forest, SVM, XGBoost) 

with a rule-based system. Random Forest reliably 

leads across all metrics, attaining a macro-average F1-

score of 0.90, while the rule-based system lags 

significantly (F1 = 0.79). The gap was predominantly 

obvious in recall, signifying that ML models are better 

at minimizing false negatives. The upward trend from 

rule-based to collaborative models visually confirms 

the benefit of using machine learning in multi-class 

arrangement settings, providing robust empirical 

support for Research Question 3. 

The heatmap (Figure 7) offers a fine-grained view of 

classification accuracy. Strong diagonal values 

confirm high true positive rates, particularly for non-
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plagiarized and Type I instances. However, mild 

confusion occurs between Type II and Type III cases, 

as seen by the off-diagonal cells. This can be attributed 

to their semantic similarity, reinforcing the need for 

deeper semantic features and ensemble techniques. 

Importantly, the heatmap verifies that 

misclassifications are contained and do not 

significantly affect unrelated categories (e.g., Non-

plagiarized misclassified as Type III is absent), further 

substantiating the model's discriminative capability. 

V. CONCLUSION AND 

RECOMMENDATIONS 

Conclusion 

This research work highlighted the design and 

experimental appraisal of an anti-plagiarism system 

that influences semantic code study comprehensive 

Abstract Syntax Trees (ASTs), graph-based similarity 

metrics, and machine learning classification. The 

system was precisely developed to perceive numerous 

forms of plagiarism, including Type I (surface-level 

copying), Type II (structural reordering), and Type III 

(logic-preserving transformations), with a emphasis 

on Python and Java codebases. The investigational 

outcomes established that the proposed approach 

pointedly outclasses traditional lexical or string-

matching methods. AST-based semantic investigation 

displayed superior detection performance across all 

plagiarism types, predominantly in recognizing 

complex transformations (Type III), where 

conventional tools fail. This was visually corroborated 

by grouped bar charts showing consistently higher 

precision, recall, and F1-scores for semantic methods. 

Further, the radar chart comparing different similarity 

metrics highlighted the strength of Tree Edit Distance 

(TED) and joint metric incorporation, validating their 

ability to capture deep structural similarities. The 

machine learning models, especially the Random 

Forest classifier, dependably outperformed rule-based 

thresholds, endorsing the value of learning-based 

approaches in multi-class discovery situations. 

The confusion matrix heatmap established that the 

classifier preserved high true positive rates across all 

classes with minimal cross-type misclassifications. 

The system efficiently differentiated between subtly 

dissimilar plagiarism groups while upholding high 

overall accuracy (macro F1-score: 0.90). 

These discoveries confirmed that semantic-aware, 

structurally grounded, and machine learning-

integrated plagiarism discovery systems offer a robust 

solution to the growing challenge of code plagiarism 

in academic and expert domains. 

Recommendations 

Based on the study’s results, the following 

recommendations are proposed: 

i. Establishments and e-learning stages should 

integrate AST-based and graph-enhanced 

plagiarism recognition systems into their rating 

structure to identify refined forms of cheating. 

ii. Though the existing study concentrated on Python 

and Java, imminent implementations should 

enlarge support to languages such as C++, 

JavaScript, and Go to widen applicability in varied 

coding environments. 

iii. Developers of plagiarism discovery tools are 

reinvigorated to accept fusion plans that combine 

multiple tree and graph-based metrics. As the radar 

chart showed, mixing TED, graph isomorphism, 

and subtree hashing yields improved 

generalization across plagiarism categories. 

iv. Supervised learning mockups such as Random 

Forest and XGBoost should be ordered in 

plagiarism recognition pipelines due to their high 

precision-recall balance and adaptability to multi-

class classification problems. 

v. Given the computational overhead of tree and 

graph comparisons, upcoming exertion should 

examine optimization methods, including pruning 

algorithms and parallel processing, to permit real-

time or near-real-time response in educational 

settings. 

vi. Forthcoming exploration should focus on curating 

more diverse, real-world plagiarism datasets and 

improving the quality of labeled samples to train 

more generalized and transferable detection 

models. 

In conclusion, this investigation has contributed a 

scalable and actual framework for semantic code 
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plagiarism discovery. Its incorporation of deep code 

structure study and smart classification offers a 

expressive progression over traditional tools and lays 

the foundation for future originations in software 

forensics, academic integrity systems, and automated 

code valuation technologies. 
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