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Abstract- The number of intelligent devices has 

increased at an unprecedented rate over the last ten 

years, and the spread of intelligent machines has 

increased dramatically in recent years. In order to 

guarantee constant communication amongst 

networked IoT devices, computer networks are 

essential. Unfortunately, the significant rise in the 

usage of smart devices has opened the door for 

significant unethical behavior within networks. The 

primary network danger under investigation in this 

study is the "Low Rate/Slow Denial of Service 

(LDoS) attack," which seriously jeopardizes the 

integrity of the internet. Due to the fact that these 

assaults do not produce large amounts of bandwidth 

or abrupt increases in network activity, identifying 

their source is quite difficult. This study investigates 

the use of machine learning to improve the detection. 

 

Indexed Terms— LDoS attack, DDoS attack, 

Anomaly detection, ML, RL, IDS, Hyper parameter 

optimization 

 

I. INTRODUCTION 

 

In today’s digital age, the rapid growth of technology 

demands robust security and privacy measures. The 

Internet of Things (IoT), while revolutionizing 

connectivity, introduces significant vulnerabilities. 

Many IoT devices lack fundamental security features, 

making them prime targets for cyberattacks—

particularly Denial-of-Service (DoS) and Distributed 

Denial-of-Service (DDoS) attacks. DoS attacks aim to 

disrupt a device or network’s availability by 

overwhelming it with traffic, thereby denying 

legitimate users access. When executed through 

botnets like Mirai using multiple compromised 

devices, these attacks become DDoS, posing a serious 

threat to critical internet infrastructure. For instance, a 

smart home with ten connected devices could 

unknowingly participate in a DDoS attack. This 

highlights the danger of unsecured IoT ecosystems. 

This study focuses on Low-Rate Denial-of-Service 

(LDoS) attacks—stealthy, targeted disruptions that 

degrade network performance while evading 

traditional detection mechanisms. 

 

1.1 Importance of the study 

Despite the implementation of numerous security 

strategies, modern networks remain vulnerable—

particularly to stealthy threats like Low-Rate Denial-

of-Service (LDoS) attacks. Traditional defenses often 

struggle to detect and mitigate these subtle intrusions, 

as they are designed to exploit system vulnerabilities 

gradually and covertly. Therefore, there is a growing 

need for security frameworks that can handle 

unpredictable network behavior and adapt to evolving 

attack vectors. LDoS attacks differ from traditional 

DDoS attacks by using low, continuous traffic patterns 

to gradually exhaust system resources. These attacks 

often target protocol-level weaknesses, making 

detection difficult and allowing the attacker to degrade 

system performance over time. Figure 1 illustrates a 

typical LDoS scenario. 

 

Machine learning, a subfield of artificial intelligence, 

enables systems to learn from data and make 

autonomous decisions without explicit programming. 

It has become a critical tool in cybersecurity, as shown 

in Figure 2, with applications ranging from intrusion 

detection to anomaly detection in complex network 

environments. 

.  

 
Figure 1. Low-rate DoS attack Scenario 
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Fig. 2 Applications of machine learning within the 

realm of cyber security 

 

Machine learning (ML) techniques play a vital role in 

identifying malicious traffic within Intrusion 

Detection Systems (IDS). These systems rely on ML 

classifiers—algorithms trained to recognize patterns in 

data—to categorize traffic and detect anomalies. In the 

context of IDS, classifiers are trained using datasets 

containing various attack types, enabling them to 

identify unusual behavior in real-time traffic. While 

traditional Denial-of-Service (DoS) attacks generate 

noticeable spikes in network activity, Low-Rate DoS 

(LDoS) attacks are more subtle. These attacks operate 

through intermittent bursts of low-rate traffic, making 

them harder to detect. Typically, LDoS bursts 

represent just 10–20% of normal traffic levels, 

effectively blending in with legitimate data streams. 

This stealthy approach not only complicates detection 

but also significantly degrades the victim's throughput 

over time. Given their prolonged and inconspicuous 

nature, LDoS attacks pose a serious challenge to 

current security measures. Thus, there is an urgent 

need to develop new, intelligent detection methods 

capable of identifying such attacks within dynamic 

and complex network environments. 

 

II. MACHINE LEARNING IN CYBER 

SECURITY 

 

Table 1 shows different types of ‘LDoS’ attacks and 

attack target. Method of exploiting an attack is 

specified for each type of attack. 

  

 

 

 

 

 

Table 1. Types of LDoS attacks 

 

 

III. METHODOLOGY: ML BASED 

DETECTION APPROACHES 

 

Among various defense strategies, machine learning-

based methods have shown strong potential in 

detecting Low-Rate Denial-of-Service (LDoS) attacks 

due to their adaptability in cybersecurity. These AI-

driven techniques are typically classified into two 

categories: signature-based and anomaly-based 

detection. The signature-based method matches 

incoming traffic with known attack signatures, while 

anomaly-based detection compares current traffic 

patterns against a model of normal behavior, flagging 

deviations as potential threats. 

 

LDoS detection techniques are further divided into 

two key approaches: feature-based detection, which 

analyzes specific traffic characteristics, and time-

frequency domain analysis, which studies traffic 

patterns across time and frequency to uncover hidden 

periodicities typical of LDoS attacks. 

S.No Attack 

type 

Target Method 

1 Slow 

read 

attack 

Servers Sending requests that are 

intentionally slow to read 

 

2 

 

RUDY 

HTTP/

H TTPs 

protocol 

s 

Send HTTP requests with very 

slow payload, keeping 

connections open for extended 

periods and consuming server 

resources over time. 

3 Slowlori

s 

HTTP 

server 

Send data slowly and consume 

server resources. 

4 HULK Web 

applicat

ions 

Send many HTTP GET/POST 

requests and keep the server 

busy. 

5 Apache 

killer 

Apache 

web 

servers 

Crafted HTTP GET request with 

long-range headers and a server 

consumes more memory. 

 

6 

Hash 

collision 

attack 

SSL/ 

TLS or 

DNS 

Exploits hash collision 

vulnerabilities in various 

protocols and sends crafted 

inputs that generate many hash 

collisions. 

 

7 

Applicat

io n 

layer 

protocol 

attacks 

TCP,U

DP or 

DNS 

Exploits vulnerabilities in the 

protocols. 
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Despite their effectiveness, current detection methods 

face several challenges: 

• A trade-off between detection accuracy and 

detection rate 

• High resource consumption 

• Elevated false positive and false negative rates 

• Lack of adaptability to evolving threats 

• Inefficiency in handling diverse and dynamic 

LDoS variants 

• High time complexity 

• Gaps between available datasets and emerging 

vulnerabilities 

• Risks of model overfitting or underfitting 

These limitations highlight the need for more robust, 

adaptive, and lightweight detection frameworks 

capable of addressing modern network threats. 

 

IV. RESULTS AND DISCUSSION 

 

Machine learning classifiers are frequently utilized in 

anomaly detection research, with dataset selection 

playing a critical role in model performance. In this 

study, the NSL-KDD dataset is employed due to its 

structured nature and relevance to network intrusion 

scenarios. This dataset includes 42 features, which are 

analyzed across three different types of DDoS attacks: 

TCP SYN, ICMP, and UDP floods. For each attack 

type, specific features were selected for training and 

evaluation. 

• TCP SYN Attack: Key features include service, 

src_bytes, wrong_fragment, count, 

num_compromised, srv_count, srv_serror_rate, 

and serror_rate. 

• ICMP Attack: Features extracted are duration, 

src_bytes, wrong_fragment, count, urgent, 

num_compromised, and srv_count. 

• UDP Attack: Selected features are service, 

src_bytes, dst_bytes, wrong_fragment, count, 

num_compromised, srv_count, 

dst_host_srv_count, and dst_host_diff_srv_rate. 

 

Key Observations from the Evaluation (based on 

Figure 3): 

1. Detection accuracy for TCP and ICMP attacks is 

near perfect, while UDP flood attacks show 

noticeably lower accuracy. 

2. False Positive Rate (FPR) remains a major concern 

in network anomaly detection systems, reflecting a 

trade-off between sensitivity and specificity. 

3. FPR is significantly higher for UDP-based attacks, 

suggesting these attack patterns are more easily 

confused with normal traffic due to overlapping 

feature behavior. 

 

These insights highlight the importance of feature 

selection and attack-type differentiation in improving 

DDoS detection models. Future work could aim to 

reduce FPR, particularly for protocols like UDP, by 

enhancing feature engineering or leveraging ensemble 

learning techniques. 

 

Table 3 illustrates the confusion matrix representation 

for the UDP flood attack. The false positive rate is high 

for LR, MLP, and DT. Three out of four classifiers 

produce high FPR. 

 

Table 3. Confusion matrix for UDP attack 

Confusion Matrix for LR: 

[[2852 2005] 

[ 319 2835]] 

Confusion Matrix for KNN: 

[[4046 811] 

[1237 1917]] 

Confusion Matrix for MLP: 

[[2674 2183] 

[ 51 3103 

Confusion Matrix for DT: 

[[3834 1023] 

[ 801 2353]] 

 

 
Fig. 3 Accuracy of models for different attack flows 

 

4.1 Detection of ‘DDoS attacks’ using NSL-KDD 

dataset (Reinforcement Learning) 

The NSL-KDD dataset comprises 42 features, which 

are utilized as the environment for training the 

reinforcement learning (RL) model. In this setup, each 

episode represents a complete interaction cycle from 

the initial state to a terminal state, capturing the agent’s 

actions and resulting feedback. Rewards are granted 

based on the agent’s predictions, while loss reflects the 

error between predicted and actual outcomes. 
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Figure 4 illustrates the model's performance over 

multiple episodes, highlighting trends in reward 

accumulation and loss reduction. As the number of 

episodes increases, the model achieves higher rewards 

and lower losses, indicating improved learning over 

time. 

 

Observation: In early stages (e.g., episode 2 or 5), the 

model exhibits high loss and low reward, signifying 

initial instability in learning. This gradually stabilizes 

with more training episodes, suggesting the RL agent 

effectively adapts through experience. 

 

 
Fig. 4 Performance of RL model in terms of reward 

& loss 

 

4.2 Multiclass classification of network traffic (SDN 

dataset) 

SDN-specific (generated) datasets have been used for 

multi- class classification of network traffic data. 

There are 23 features in the dataset. All the features 

were considered and grouped into numerical, 

categorical, discrete-numerical, and continuous. 

 

Figure 5 shows the protocol distribution statistics for 

malicious activity in the network. In the statistics, 

UDP attack flows are relatively high. When the 

statistics in Figure 5 and the performance in Figure 3 

are compared, identification of “DDoS attacks” 

exploited through UDP flood is challenging. 

 

 
Fig. 5 Performance of ML model based on epoch 

count & Loss 

 

V. CONCLUSION AND FUTURE SCOPE 

 

5.1 Conclusion 

This study explored the detection of slow Denial of 

Service (DoS) attacks using both traditional and 

machine learning-based methods. Several detection 

strategies—ranging from conventional techniques to 

deep learning and anomaly detection—were reviewed. 

A key challenge identified is the high false alarm rate 

associated with binary classification models. To 

overcome this, integrating reinforcement learning 

(RL) into hybrid systems shows strong potential for 

developing a more adaptive and robust Intrusion 

Detection and Prevention System (IDPS), capable of 

effectively identifying and mitigating a wider range of 

complex and evolving threats. 

 

5.2 Future Scope 

Detecting low-rate DoS (LDoS) attacks remains 

difficult due to their stealthy and gradual nature. 

Reinforcement Learning (RL) offers a promising 

solution, as it allows systems to learn and adapt based 

on feedback from dynamic environments. Future 

research should focus on: 

• Applying RL to LDoS detection, where the RL 

agent learns optimal strategies through reward-

based feedback, enabling better detection of subtle 

attack patterns. 

• Exploring external model parameters, which, 

though not learned during training, significantly 

impact the model’s generalization ability. Tuning 

these can improve detection accuracy. 

 

Developing hybrid models, by: 

• Investigating RL-based optimization of non-

learned variables. 
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• Combining RL with feature-based methods such as 

traffic flow analysis, protocol-specific monitoring, 

and resource usage tracking. 

 

Together, these future directions can enhance the 

system's resilience against increasingly dynamic and 

sophisticated network attacks. 
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