
© JUL 2025 | IRE Journals | Volume 9 Issue 1 | ISSN: 2456-8880

IRE 1709885 ICONIC RESEARCH AND ENGINEERING JOURNALS 1316

Enhancing Database Management System Performance
Using Data Mining Techniques

RAJEEV MAHESHWARI1, RAJEEV KAUSHIK2
1, 2Deptt. of Computer Science & Engineering, R.D Engineering College Ghaziabad Uttar Pradesh India

Abstract- Cloud computing has gained significant

traction due to its cost-effectiveness, scalability, and

flexible pay-as-you-go model—trends further

accelerated by the proliferation of IoT devices. As a

result, many organizations now leverage Database-

as-a-Service (DBaaS) for database deployment,

enjoying benefits such as high availability,

automated scaling, failover support, and reduced

administrative overhead. This paper enhances the

performance of shared cloud databases under mixed

transactional and analytical workloads through two

complementary strategies: Business intelligence and

decision support systems often execute complex

queries with multiple joins and aggregations. To

minimize repeated computations, a scalable tree-

mining algorithm is employed to identify frequently

occurring sub-expressions from historical query

plans. These are materialized as views, significantly

lowering query execution costs. Web applications

like e-commerce and online banking experience

region-specific, time-dependent access patterns. To

address this, a predictive model based on Parzen

window estimation is used to identify time-varying

working sets. A novel cache replacement strategy is

then proposed, prioritizing blocks based on predicted

reuse. Experimental evaluations demonstrate that

the proposed methods significantly improve cache hit

rates and overall performance compared to existing

solutions.

I. INTRODUCTION

Today, data warehouses—also known as decision

support systems—play a critical role in business and

corporate decision-making. Unlike transactional

databases, which store real-time operational data, data

warehouses archive historical information for

analytical purposes. As new data is continuously

added and existing data updated, these warehouses

grow significantly in size. They are typically much

larger than transactional systems due to their focus on

supporting complex, data-intensive queries.

Analytical applications often issue ad hoc and

resource-heavy queries involving large-scale data

access, multiple joins, and extensive aggregations.

These OLAP (Online Analytical Processing) queries

are far more complex than standard OLTP (Online

Transaction Processing) operations. Several adaptive

cache replacement algorithms, such as ARC, CAR,

and LIRS, improve performance by using historical

data and reuse distance rather than simple recency, as

in LRU. These algorithms adjust dynamically to

access patterns using self-tuning parameters. For

example, CAR uses two clocks to distinguish between

short-term and long-term utility and adapts using

evicted page history. Other techniques, like sequential

pattern mining, clustering, and frequency-size-based

heuristics, have also been explored to enhance cache

and database performance.

In materialized view selection, various strategies have

been proposed to improve query response time and

reduce maintenance costs. Techniques include

clustering similar queries (CBDMVS), association

rule mining (ARMMVVM), greedy algorithms, and

optimization-based methods like particle swarm and

game theory. Some works focused on selecting views

based on storage constraints, while others used

AND/OR graphs to model query plans. Recent efforts

also integrate cost models, data cubes, and heuristic

search algorithms to identify optimal or near-optimal

view sets. Reviews of these methods highlight gaps

and suggest future research directions to refine view

selection in cloud and big data environments.

Traditional cache management algorithms like Least

Recently Used (LRU) are effective for general

workloads but have limitations under specific access

patterns. LRU prioritizes recency, which can cause

inefficiencies, especially in scan-heavy or mixed

workloads. It often fails to distinguish between

frequently accessed and rarely used data, leading to

cache pollution. Approximations such as CLOCK and

© JUL 2025 | IRE Journals | Volume 9 Issue 1 | ISSN: 2456-8880

IRE 1709885 ICONIC RESEARCH AND ENGINEERING JOURNALS 1317

DUELING CLOCK attempt to mitigate these issues

but still inherit core weaknesses. The Touch Count

approach, by inserting blocks mid-list, shows better

adaptability in such scenarios.

1.1 Frequency-Based Cache Management

Least Frequently Used (LFU) retains blocks based on

access count but struggles with stale data occupying

cache space due to outdated usage patterns. To

improve LFU's adaptability, several enhanced

techniques have been proposed. Frequency-Based

Replacement (FBR) integrates reference counting for

better locality tracking. The Multi-Queue (MQ)

system classifies blocks into different queues based on

usage frequency. 2Q and LIRS algorithms further

refine this idea, keeping only consistently accessed

blocks, thereby reducing short-term frequency bias.

1.2 Recency-Frequency Hybrid Policies

To combine the strengths of LRU and LFU, LRU-K

considers the last K references for eviction decisions,

capturing both frequency and recency. LRFU (Lately

Referenced and Frequently Used) uses a Combined

Recency-Frequency (CRF) score to estimate future

block access likelihood. While effective, LRFU may

falter with cyclical access patterns. CLOCK-Pro

improves CLOCK by integrating LIRS-style decisions

without preset parameters, offering strong

performance across diverse workloads.

1.3 Adaptive Cache Management

Adaptive algorithms leverage eviction history to

respond dynamically to changing patterns. ARC

(Adaptive Replacement Cache) and its variants, such

as CAR and CART, merge recency and frequency

using a self-adjusting parameter. ARC manages two

main lists—short-term (T1) and long-term (T2)—and

their respective ghost lists (B1, B2) to continuously

rebalance priorities. CAR introduces dual CLOCK

structures to track both short- and long-term utility.

These strategies outperform static methods by

automatically adjusting to workload behavior,

addressing key LRU shortcomings.

II. RESEARCH METHODOLOGY

In data warehouses supporting business intelligence

systems, materialized views are widely used to

enhance the performance of complex decision support

queries. These queries often involve expensive

operations such as joins across large tables and heavy

aggregations (e.g., SUM, AVG, COUNT,

VARIANCE, STDDEV, MAX, MIN). As these

queries are typically executed over massive historical

datasets to detect trends, the computational cost can be

significant.

Creating materialized views helps reduce this burden

by precomputing and storing intermediate results.

However, when dealing with workloads containing

millions of queries, generating and maintaining

materialized views becomes costly. Therefore, it is

essential to select a minimal set of materialized views

that can maximize performance benefits for the most

demanding queries.

1. Component-Level Materialization:

Unlike conventional methods that generate

materialized views for entire queries, the proposed

approach creates views based on frequently recurring

query components and subqueries.

2. Plan-Based Analysis:

Instead of analyzing raw query text, we extract

frequent subcomponents by studying execution plans

from past query workloads, offering a more accurate

representation of query behavior.

3. Efficient Tree Mining Algorithm:

We introduce a specialized tree mining algorithm

designed to operate on execution plan trees. This

method incorporates advanced pruning techniques to

reduce search space and manage large-scale query

workloads effectively.

Through extensive experiments using standard

benchmarks, real-world, and synthetic datasets, we

demonstrate that our approach identifies a richer set of

candidate subqueries compared to state-of-the-art and

traditional techniques, leading to better materialization

strategies.

© JUL 2025 | IRE Journals | Volume 9 Issue 1 | ISSN: 2456-8880

IRE 1709885 ICONIC RESEARCH AND ENGINEERING JOURNALS 1318

Fig. 1: Performance comparison on OLTP trace

III. RESULTS ANALYSIS

The Adaptive LRLFU algorithm consistently delivers

the highest hit ratios across diverse workloads,

particularly excelling in scenarios with periodic or

irregular access patterns. Although its advantage is

less pronounced in random workloads, it still

outperforms leading algorithms such as ARC, CAR,

LIRS, and CART. It demonstrates strong resilience to

unpredictable access patterns and benefits

significantly from larger buffer caches.

In workloads dominated by a fixed working set,

Predictive LRLFU offers similar performance, but

Adaptive LRLFU generally remains more effective.

As cache size grows beyond the working set,

performance differences between algorithms

diminish; however, Adaptive LRLFU continues to

utilize memory more efficiently, especially in limited

cache environments.

CONCLUSION

This work introduces two innovative buffer

management algorithms—Predictive LRLFU (PR-

LRLFU) and Adaptive LRLFU (AD-LRLFU)—which

leverage access pattern periodicity to enhance cache

replacement. Evaluated on both synthetic and real-

world workloads, they consistently surpass traditional

methods such as LRU, LIRS, ARC, and CAR,

especially in scenarios with small cache sizes or

recurring access trends. Their predictive and adaptive

features enable robust performance across diverse

workloads, making them ideal for shared cloud

databases.

Additionally, the PR-ACF algorithm is proposed for

flash-based systems. It reduces write operations by

selectively evicting clean pages using a probability-

driven model. By dividing the cache into HOT and

COLD zones and targeting only cold, clean pages for

eviction, PR-ACF achieves superior hit ratios, fewer

write operations, and faster runtimes compared to

existing flash caching techniques when tested on

Flash-DBSim.

REFERENCES

[1] Chou, Hong-Tai, and David J. DeWitt. ”An

evaluation of buffer management strategies for

relational database systems.” Algorithmica 1.1-4

(1986): 311-336.

[2] Robinson, John T., and Murthy V. Devarakonda.

Data cache management using frequency-based

replacement. Vol. 18. No. 1. ACM, 1990.

[3] O’neil, Elizabeth J., Patrick E. O’neil, and

Gerhard Weikum. ”The LRU-K page

replacement algorithm for database disk

buffering.” ACM SIGMOD Record 22.2 (1993):

297-306.

[4] Cherkasova, Ludmila. Improving WWW proxies

performance with greedy-dual- size-frequency

caching policy. Hewlett-Packard Laboratories,

1998.

[5] Kim, Jong Min, et al. ”A low-overhead high-

performance unified buffer manage- ment

scheme that exploits sequential and looping

references.” Proceedings of the 4th conference

on Symposium on Operating System Design &

Implementation- Volume 4. USENIX

Association, 2000.

[6] Lee, Donghee, et al. ”LRFU: A spectrum of

policies that subsumes the least re- cently used

and least frequently used policies.” IEEE

transactions on Computers 50.12 (2001): 1352-

1361.

[7] Jiang, Song, and Xiaodong Zhang. ”LIRS: an

efficient low inter-reference recency set

replacement policy to improve buffer cache

performance.” ACM SIGMET- RICS

Performance Evaluation Review 30.1 (2002): 31-

42.

[8] Megiddo, Nimrod, and Dharmendra S. Modha.

© JUL 2025 | IRE Journals | Volume 9 Issue 1 | ISSN: 2456-8880

IRE 1709885 ICONIC RESEARCH AND ENGINEERING JOURNALS 1319

”ARC: A Self-Tuning, Low Over- head

Replacement Cache.” FAST. Vol. 3. No. 2003.

2003.163

[9] Bansal, Sorav, and Dharmendra S. Modha.

”CAR: Clock with Adaptive Replace- ment.”

FAST. Vol. 4. 2004.

[10] Jiang, Song, and Xiaodong Zhang. ”Making LRU

friendly to weak locality work- loads: A novel

replacement algorithm to improve buffer cache

performance.” IEEE Transactions on Computers

54.8 (2005): 939-952.

[11] Jiang, Song, Feng Chen, and Xiaodong Zhang.

”CLOCK-Pro: An Effective Im- provement of the

CLOCK Replacement.” USENIX Annual

Technical Conference, General Track. 2005.

[12] He, Zhen, Richard Lai, and Alonso Marquez.

”On using cache conscious cluster- ing for

improving OODBMS performance.” Information

and Software Technology 48.11 (2006): 1073-

1082.

[13] Chiang, I. Robert, Paulo B. Goes, and Zhongju

Zhang. ”Periodic cache replace- ment policy for

dynamic content at application server.” Decision

Support Systems 43.2 (2007): 336-348.

[14] Wan, Shenggang, et al. ”An adaptive cache

management using dual LRU stacks to improve

buffer cache performance.” Performance,

Computing and Communi- cations Conference,

2008. IPCCC 2008. IEEE International. IEEE,

2008.

[15] Saurabh Chauhan, Dharamveer Singh, Atul

Kumar Singh (2022) “Artificial Intelligence In

The Military: An Overview Of The Capabilities,

Applications, And Challenges”, Journal of

Survey in Fisheries Sciences, Vol 9 (2) pp 984-

991. https://doi.org/10.53555/sfs.v9i2.2911

[16] Kiran, Dharamveer Singh, Nitin Goyal, (2023)

“Analysis Of How Digital Marketing Affect By

Voice Search”, Journal of Survey in Fisheries

Sciences, Vol. 30 (2) 407-412.

https://doi.org/10.53555/sfs.v10i3.2890

[17] Yukti Tyagi, Dharamveer Singh, Ramander

Singh, Sudhir Dawra (2024) “Analysis Of The

Most Recent Trojans On The Android Operating

System”, Educational Administration: Theory

and Practice, Vol. 30(2) 1320-1327.

https://doi.org/10.53555/kuey.v30i2.6846

[18] Shivanee Singh, Dharamveer Singh, Ravindra

Chauhan (2023) “Manufacturing Industry: A

Sustainability Perspective On Cloud And Edge

Computing”, Journal of Survey in Fisheries

Sciences, pp 1592-1598.

https://doi.org/10.53555/sfs.v10i2.2889

