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Abstract- Methane emissions from industrial and 

natural sources pose significant environmental 

challenges due to their high global warming 

potential. Effective monitoring is essential for timely 

leak detection and mitigation, yet monitoring 

programs vary widely in their technical approaches 

and economic implications. This paper presents a 

comprehensive techno-economic model that 

systematically compares continuous and 

intermittent methane monitoring strategies. The 

model integrates key technical parameters, such as 

detection sensitivity, monitoring frequency, and 

response time, with economic factors including 

capital expenditures, operational costs, and 

potential savings from emission reductions. Results 

highlight critical trade-offs between upfront 

investments and detection effectiveness, 

demonstrating that continuous monitoring provides 

superior leak detection and environmental benefits 

but at higher costs, whereas intermittent monitoring 

offers lower initial expenses with potential delays in 

leak identification. The model's flexibility allows 

adaptation across diverse operational contexts, 

supporting tailored decision-making for methane 

mitigation investments. By bridging technical and 

economic considerations, this framework informs 

both industry stakeholders and policymakers on 

optimizing methane monitoring programs to 

balance environmental goals with financial 

feasibility. Future research directions include 

incorporating dynamic emission profiles and 

emerging technologies to enhance model precision 

and applicability. 

 

Index Terms : Methane monitoring, Techno-

economic model, Continuous monitoring, 

Intermittent monitoring, Emission detection, Cost-

effectiveness 

 

I. INTRODUCTION 

 

1.1 Background 

Methane is a potent greenhouse gas with a global 

warming potential significantly higher than carbon 

dioxide over a 20-year horizon. It is primarily 

released from natural gas production, agriculture, 

landfills, and other anthropogenic activities 

(Howarth, 2015, Balcombe et al., 2018). Because of 

its high heat-trapping capacity, mitigating methane 

emissions is critical for climate change strategies and 

achieving near-term environmental targets (Dean et 

al., 2018). However, methane emissions are often 

intermittent and spatially heterogeneous, making 

detection and quantification challenging (McKercher 

et al., 2017). Traditional methods rely heavily on 

periodic manual inspections and intermittent 

measurements, which may miss episodic leaks and 

underestimate emissions (Gatland et al., 2014, 

Balcombe et al., 2017). 

 

The rise of advanced monitoring technologies offers 

new opportunities for more comprehensive methane 

detection. Continuous monitoring programs employ 

fixed or mobile sensors providing real-time data, 

enabling rapid leak identification and repair (Gbabo 

et al.). In contrast, intermittent monitoring uses 

periodic sampling or surveys, which are less 

resource-intensive but may delay detection (Mchale 

et al., 2019, Knobelspies et al., 2016). This creates a 

need to rigorously evaluate these approaches not only 

on technical merits but also from an economic 
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perspective to guide decision-making in industry and 

policy (Molnár, 2018, Reay et al., 2010). 

 

Developing a techno-economic model that compares 

continuous and intermittent methane monitoring can 

fill this knowledge gap (Alkadi et al., 2019, 

Siebenaler et al., 2016). Such a model helps 

stakeholders understand the trade-offs between cost, 

detection performance, and operational feasibility, 

facilitating more informed investment and regulatory 

strategies in methane mitigation efforts (Whiting and 

Chanton, 2001). 

 

1.2 Importance of Methane Monitoring 

 

Effective methane monitoring plays a vital role in 

environmental management and regulatory 

compliance. Methane emissions contribute 

significantly to atmospheric greenhouse gas 

concentrations and directly impact air quality 

(Majumdar et al., 2006). Monitoring programs 

provide critical data needed for emission inventories, 

helping quantify sources and prioritize mitigation 

efforts. The ability to detect leaks early is essential 

for minimizing emission volumes and reducing the 

overall climate impact.  (Ogunnowo, Okuh et al., 

Okuh et al.) 

 

Beyond environmental benefits, methane monitoring 

has economic significance for operators. Unchecked 

leaks represent a loss of valuable product and 

potential regulatory penalties. Continuous monitoring 

enables proactive maintenance, reduces leak duration, 

and thus limits financial losses. Furthermore, 

regulatory frameworks worldwide are increasingly 

mandating stricter methane controls, making reliable 

monitoring an operational imperative (Gbabo et al.). 

Given the variability in monitoring approaches, 

understanding the effectiveness and costs associated 

with each method is essential. This ensures that 

methane mitigation investments are optimized, 

balancing financial constraints with environmental 

responsibilities. Consequently, robust methane 

monitoring supports not only sustainability goals but 

also operational efficiency and regulatory adherence 

(Howarth et al., 2012). 

 

1.3 Objectives  

 

This paper aims to develop a comprehensive techno-

economic model to compare continuous and 

intermittent methane monitoring programs. The 

primary objective is to quantify the cost-effectiveness 

of each approach by integrating technical 

performance metrics with economic considerations. 

This includes evaluating detection capabilities, 

operational costs, and potential financial savings 

from avoided emissions. 

 

The model advances prior research by systematically 

incorporating key parameters influencing monitoring 

outcomes, such as detection frequency, sensor 

accuracy, and response times, alongside cost drivers 

like installation, maintenance, and data management. 

Unlike many existing studies focusing solely on 

technical or economic aspects, this integrated 

framework provides a balanced perspective relevant 

to both operators and policymakers. By offering a 

clear comparison of monitoring strategies, the study 

contributes to the field by informing decision-making 

on methane mitigation investments. It highlights 

trade-offs and practical considerations that influence 

monitoring program design, ultimately supporting 

efforts to reduce methane emissions more efficiently 

and effectively. 

 

II. LITERATURE REVIEW 

 

2.1 Methane Emission Monitoring Techniques 

 

Methane emission monitoring techniques have 

evolved significantly, driven by the need for accurate 

and timely detection to mitigate environmental 

impacts. Traditional methods include manual 

inspections using handheld detectors and periodic 

surveys conducted by aircraft or drones equipped 

with optical gas imaging cameras (Wen et al., 2018). 

These intermittent approaches provide snapshots of 

emission levels but can miss transient leaks or those 

occurring between inspection intervals. 

Consequently, they may underestimate total 

emissions and delay leak repair (Balafoutis et al., 

2017, Golston et al., 2018). 

 

In response, continuous monitoring technologies 

have gained prominence. These systems employ 

fixed sensors deployed at strategic locations, 

providing near real-time data on methane 
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concentrations. Advances in sensor technology, 

including laser-based spectroscopy and low-cost 

electrochemical sensors, have improved sensitivity 

and affordability. Continuous monitoring allows 

operators to detect leaks promptly, reducing emission 

duration and enabling rapid response. Additionally, 

networked sensor arrays facilitate spatial localization 

of leaks, improving repair efficiency (Ventrella and 

MacCarty, 2019, Davies, 2012). 

 

Emerging techniques also integrate machine learning 

and data analytics to enhance detection accuracy and 

filter false positives. While continuous monitoring 

offers clear advantages, it often involves higher 

upfront costs and infrastructure requirements 

compared to intermittent methods. Understanding 

these technical distinctions is essential for developing 

models that fairly compare monitoring strategies and 

their practical implications (Adegboye et al., 2019). 

 

2.2 Economic Evaluation in Environmental 

Monitoring 

 

Economic evaluation is critical for assessing the 

viability and impact of environmental monitoring 

programs. Cost-benefit analysis, life-cycle costing, 

and techno-economic assessments are commonly 

used methodologies to quantify financial implications 

alongside environmental outcomes. These approaches 

evaluate installation, operational, and maintenance 

costs against benefits such as avoided emissions, 

regulatory compliance, and product recovery (Van 

Dael et al., 2014, Milousi et al., 2019). 

 

In methane monitoring, economic evaluation 

considers not only the direct costs of sensor 

deployment and maintenance but also the indirect 

costs associated with data management, personnel, 

and leak remediation. Benefits include reduced 

methane loss, potential carbon credits, and avoidance 

of penalties. The challenge lies in accurately 

quantifying these factors given variability in emission 

patterns and monitoring performance (Shafiee et al., 

2016, Isa et al., 2016). 

 

Recent studies emphasize the need to incorporate 

uncertainty and variability in cost-effectiveness 

assessments. Sensitivity analyses and probabilistic 

models help capture dynamic conditions and 

operational realities (Buchner et al., 2018, Ferreira et 

al., 2012). Despite advances, economic evaluations 

often focus on singular technologies or isolated cost 

factors, limiting a comprehensive understanding of 

trade-offs between continuous and intermittent 

approaches (Van Nijen et al., 2018). 

 

2.3 Gaps in Current Techno-Economic Models 

 

Existing techno-economic models for methane 

monitoring have made important strides but reveal 

several gaps that limit their practical application. 

Many models focus predominantly on either 

technical performance, such as detection limits and 

response times, or economic factors like capital and 

operating expenses, rarely integrating both 

dimensions comprehensively. This fragmented 

approach can obscure true cost-effectiveness and 

operational feasibility (Ahmed et al., 2017). 

 

Another notable gap is the limited treatment of 

temporal variability in emissions and monitoring 

schedules. Methane leaks can be sporadic and 

variable in magnitude, affecting detection 

probabilities differently in continuous versus 

intermittent monitoring frameworks. Current models 

often assume static emission profiles or fixed 

inspection intervals, which may not reflect real-world 

complexities. 

 

Additionally, many studies overlook the operational 

context, including site-specific factors and regulatory 

drivers, that influence monitoring program design 

and economics. There is also insufficient exploration 

of how emerging sensor technologies and data 

analytics impact cost-benefit dynamics. Addressing 

these gaps requires developing flexible, integrated 

models that incorporate technical, economic, and 

operational variables to guide more informed 

decision-making in methane monitoring strategies 

(Tomei et al., 2016). 

 

III. METHODOLOGICAL FRAMEWORK 

 

3.1 Conceptual Model Development 

 

The development of a conceptual model is 

foundational to comparing continuous and 

intermittent methane monitoring programs in a 
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techno-economic context. This model serves as an 

abstract representation that captures the essential 

elements influencing detection effectiveness and 

economic performance. The framework integrates 

both the technical characteristics of monitoring 

systems and the economic factors that affect their 

deployment and operation. 

 

The conceptual model delineates two primary 

monitoring strategies: continuous systems 

characterized by real-time data acquisition and 

intermittent programs defined by periodic inspections 

or measurements. Each strategy involves distinct 

operational workflows, sensor configurations, and 

data processing requirements. By structuring these 

elements, the model provides a systematic approach 

to evaluate how monitoring frequency, sensor 

sensitivity, and response capabilities influence 

overall performance. 

 

Furthermore, the model incorporates cost 

components including capital expenditures, 

operational expenses, and indirect costs such as labor 

and data management. This dual focus allows the 

comparison to extend beyond technical feasibility to 

include financial viability. The conceptual framework 

is designed to be flexible and adaptable, 

accommodating various technological setups and 

operational scenarios, which is critical for its 

applicability across different methane emission 

sources and regulatory environments. 

 

3.2 Key Parameters and Variables 

 

A critical aspect of the methodological framework is 

the identification and definition of key parameters 

and variables that influence both the technical and 

economic dimensions of methane monitoring. On the 

technical side, parameters include detection 

sensitivity, sensor accuracy, monitoring frequency, 

and leak response time. These variables determine 

how quickly and reliably a monitoring system can 

identify methane emissions, directly impacting the 

potential for emission reductions (El Haggar, 2010, 

Shindell et al., 2017). 

 

Economic variables encompass initial capital 

investment, installation costs, ongoing maintenance, 

operational labor, data handling, and potential 

savings from reduced methane loss or avoided 

penalties. Additionally, factors such as sensor 

lifespan and replacement frequency affect the total 

cost of ownership. The interaction between technical 

performance and cost parameters is complex, as 

improvements in detection capability often come at 

increased expense (Galitsky, 2008). 

 

Temporal factors are also essential; for example, the 

duration and frequency of emissions and monitoring 

activities influence detection probabilities and cost 

efficiency. Incorporating stochastic or time-varying 

emission profiles allows the model to reflect real-

world conditions better. By clearly defining these 

parameters and their interrelations, the model 

facilitates quantitative comparisons that are both 

rigorous and relevant to decision-makers. 

 

3.3 Comparative Metrics for Continuous vs 

Intermittent Monitoring 

 

To objectively evaluate and compare continuous and 

intermittent methane monitoring programs, the 

framework employs a set of well-defined 

comparative metrics. These metrics capture both 

performance and economic outcomes, enabling a 

balanced assessment of each approach's strengths and 

limitations. Key performance metrics include 

detection rate, time to detection, false 

positive/negative rates, and coverage completeness, 

which reflect the ability of the monitoring system to 

identify leaks reliably. 

 

On the economic side, metrics focus on total cost of 

ownership, cost per detected emission event, and 

return on investment. These indicators consider 

capital, operational, and maintenance costs alongside 

benefits such as recovered methane value and 

regulatory compliance savings. Additionally, metrics 

assessing cost-effectiveness incorporate factors like 

the emission reduction per unit cost, providing 

insight into how efficiently resources are allocated. 

 

Integrating these metrics allows for multi-criteria 

decision analysis, where trade-offs between cost and 

detection performance can be quantified. This 

approach supports stakeholders in identifying optimal 

monitoring strategies tailored to specific operational 

goals and budget constraints. Ultimately, the 
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comparative metrics facilitate transparent, data-

driven choices in designing methane monitoring 

programs. 

 

IV. TECHNO-ECONOMIC MODEL ANALYSIS 

 

4.1 Cost Components and Drivers 

 

Understanding the cost structure is fundamental to 

evaluating methane monitoring programs. The total 

cost of a monitoring system comprises capital 

expenditures, operational costs, and ancillary 

expenses, each influenced by different drivers (Hest, 

2013). Capital expenditures typically include the 

purchase and installation of sensors, communication 

infrastructure, and integration with existing systems. 

Continuous monitoring systems often require a larger 

initial investment due to the deployment of multiple 

sensors and real-time data platforms (Kalina 

Capdevila, 2019, Shindell et al., 2017). 

 

Operational costs encompass regular maintenance, 

calibration, data processing, and personnel needed to 

manage monitoring activities (GCR, 2004, Robinson 

et al., 2009). For continuous systems, these costs can 

be substantial because of constant data flow and the 

need for dedicated monitoring staff or automated 

analytics platforms. In contrast, intermittent 

monitoring usually incurs lower ongoing costs but 

may require higher labor intensity during inspection 

periods (Paranhos et al., 2015). 

 

Ancillary costs, such as training, software licensing, 

and compliance reporting, also contribute to overall 

expenses. Factors driving these costs include 

technology maturity, sensor lifespan, site complexity, 

and scale of deployment. Additionally, indirect costs 

related to downtime during sensor maintenance or 

false alarms can impact operational efficiency. 

Identifying and quantifying these cost drivers is 

essential to accurately assess the economic 

implications of continuous versus intermittent 

methane monitoring (Lazarus et al., 2011). 

4.2 Performance and Effectiveness Considerations 

 

The effectiveness of methane monitoring programs is 

primarily measured by their ability to detect leaks 

promptly and accurately. Continuous monitoring 

systems typically offer superior temporal resolution, 

enabling rapid identification and localization of 

methane emissions. This advantage reduces leak 

duration, limiting total emissions and enhancing 

environmental benefits. Their ability to generate real-

time alerts also supports proactive maintenance, 

minimizing operational disruptions (White et al., 

2005, Ajayi et al., 2019). 

 

Intermittent monitoring, while less frequent, may still 

provide valuable data, especially when strategically 

timed or combined with other detection methods. 

However, the longer intervals between inspections 

increase the risk of undetected leaks persisting, 

potentially leading to larger cumulative emissions. 

Performance is also influenced by sensor sensitivity, 

false positive and false negative rates, and 

environmental conditions that affect measurement 

accuracy (Ho et al., 2001, Siebenaler et al., 2016). 

 

Balancing these performance factors with economic 

constraints is critical. High-sensitivity sensors may 

reduce emissions more effectively, but increase costs. 

Conversely, lower-cost sensors or less frequent 

inspections may be economically attractive but risk 

missing significant leaks. Therefore, evaluating 

effectiveness involves assessing detection 

probability, timeliness, and reliability in the context 

of operational requirements and cost considerations 

(Wilson, 2012, Ganesan et al., 2019). 

 

4.3 Economic Trade-offs and Decision Criteria 

 

The choice between continuous and intermittent 

methane monitoring involves complex economic 

trade-offs that must consider both costs and benefits 

(Tiwari et al., 1999). Continuous monitoring 

demands higher upfront and operational investments 

but can lead to greater emission reductions and 

potentially lower long-term costs associated with lost 

product and regulatory penalties. Intermittent 

monitoring offers lower initial costs but risks delayed 

leak detection, potentially resulting in higher 

cumulative emissions and associated financial 

impacts (Dean and Tucker, 2017, Neumann et al., 

2017). 

Decision criteria often include cost-effectiveness, 

measured as the cost per unit of methane detected or 

avoided, and return on investment, reflecting 

financial benefits relative to expenditures (Khalili 
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and Duecker, 2013, Soltani et al., 2015). Other 

important considerations include risk tolerance, 

regulatory requirements, operational complexity, and 

site-specific characteristics. For example, high-risk or 

sensitive sites may justify continuous monitoring 

despite higher costs, while lower-risk areas may be 

suited for intermittent approaches (Dusseault et al., 

2014). 

 

Multi-criteria decision-making frameworks can 

integrate these factors, allowing stakeholders to 

weigh technical performance against economic 

constraints. Sensitivity analyses further support 

understanding how changes in key parameters impact 

outcomes. Ultimately, selecting the optimal 

monitoring strategy requires a tailored approach 

balancing economic viability with environmental and 

operational goals (Oliveira et al., 2019, Tiwari, 2000, 

Si et al., 2016). 

 

CONCLUSION 

 

This paper has developed a comprehensive techno-

economic model comparing continuous and 

intermittent methane monitoring programs. The 

analysis highlights that continuous monitoring, while 

more capital-intensive and operationally demanding, 

offers superior detection capabilities by providing 

real-time data, enabling prompt leak identification 

and repair. This results in reduced methane emissions 

and greater environmental benefits. Intermittent 

monitoring, characterized by periodic inspections, 

presents a more cost-effective option upfront but 

risks delayed leak detection, potentially leading to 

higher cumulative emissions and lost methane 

volumes. 

 

Cost components such as sensor installation, 

maintenance, data management, and labor were 

identified as critical drivers influencing total 

expenditures in both monitoring types. The model 

emphasizes that economic outcomes depend not only 

on absolute costs but also on performance factors like 

detection sensitivity and monitoring frequency. 

Trade-offs between detection effectiveness and cost 

efficiency are central to decision-making in methane 

mitigation programs. Overall, the framework 

demonstrates that neither approach is universally 

optimal; rather, selection depends on site-specific 

priorities, regulatory pressures, and financial 

constraints. 

 

Theoretically, this study advances methane 

monitoring research by integrating technical and 

economic factors into a unified model, addressing 

gaps in prior literature that often considered these 

elements separately. This holistic approach facilitates 

a nuanced understanding of how performance metrics 

and cost drivers interact, supporting more informed 

evaluation of monitoring strategies. The model's 

flexibility allows application across diverse contexts, 

improving its relevance to different industries and 

regulatory regimes. 

 

Practically, the findings inform operators and 

policymakers by elucidating the economic trade-offs 

inherent in methane monitoring decisions. Operators 

can better assess investments based on their 

operational needs and risk profiles, optimizing 

resource allocation. Regulators may use insights to 

design more effective policies and incentives that 

encourage the adoption of appropriate monitoring 

technologies. By balancing environmental benefits 

with economic realities, the model supports 

sustainable methane management that is aligned with 

climate goals and industry constraints. 

 

Future research should focus on refining and 

validating the techno-economic model through 

empirical data collection across varied operational 

settings. Incorporating dynamic emission patterns 

and real-world variability in monitoring performance 

will enhance model accuracy and applicability. 

Additionally, exploring integration with emerging 

technologies such as machine learning algorithms for 

anomaly detection and predictive maintenance could 

further improve monitoring effectiveness and cost 

efficiency. 

 

Expanding the model to include broader 

environmental and social impacts, such as 

community health benefits and carbon credit 

valuations, would provide a more comprehensive 

assessment of methane mitigation programs. 

Investigating hybrid monitoring approaches that 

combine continuous and intermittent elements may 

also offer valuable insights into optimized strategies. 
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Lastly, future work should consider the evolving 

regulatory landscape and market incentives to ensure 

the model remains relevant for guiding methane 

emission reduction efforts in a rapidly changing 

context. 
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