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Abstract- Electrical systems in large-scale refinery 

plants are critical for ensuring uninterrupted 

operation, safety, and productivity. However, due to 

the complexity and interdependence of these 

systems, traditional preventive maintenance 

strategies often fail to identify latent failures, 

optimize asset life cycles, or adapt to evolving 

operational demands. This study proposes a 

Reliability-Centered Maintenance (RCM) 

framework tailored to the specific needs of electrical 

infrastructure within high-risk industrial 

environments. The model integrates failure modes 

and effects analysis (FMEA), condition-based 

monitoring, and Bayesian risk modeling to assess 

component reliability, prioritize maintenance tasks, 

and reduce system downtime. A case study was 

conducted using operational data from a major 

petroleum refinery in the U.S. Gulf Coast region, 

involving 12 critical subsystems across three 

production units. The proposed RCM model was 

benchmarked against existing time-based 

maintenance (TBM) protocols. Results demonstrate 

that the RCM framework reduced unscheduled 

outages by 31%, improved mean time between 

failures (MTBF) by 22%, and achieved a 15% 

reduction in maintenance costs. The model also 

supported dynamic maintenance planning through 

probabilistic risk assessment and fault tree 

diagnostics. These findings underscore the value of 

implementing a structured, data-informed 

maintenance strategy that aligns system reliability 

with operational performance in refinery 

environments. 

 

Index Terms :Reliability-Centered Maintenance, 

electrical systems, refinery plant, failure modes and 

effects analysis, Bayesian risk modeling, condition-

based monitoring, maintenance optimization, 

industrial reliability. 

 

I. INTRODUCTION 

 

1.1 Background and Rationale 

 

Electrical systems are fundamental to the operation of 

large-scale refinery plants, providing the energy 

backbone that powers critical processes such as 

distillation, cracking, compression, and chemical 

treatment. In these high-demand environments, even 

brief power interruptions or equipment malfunctions 

can result in significant operational downtime, 

production losses, safety incidents, and 

environmental hazards. Traditional time-based 

maintenance (TBM) strategies often emphasize 

scheduled equipment inspections or replacements 

without adequately accounting for real-time system 

health or evolving operational stressors. 

Consequently, these approaches may lead to 

unnecessary maintenance actions, overlooked latent 

failures, or poorly timed interventions that 

compromise reliability and cost-efficiency [1]. 

 

In recent decades, the growing complexity of refinery 

operations, coupled with the increasing digitization 

and automation of electrical subsystems, has 

necessitated a paradigm shift toward more intelligent 

and adaptive maintenance methodologies. Reliability-

Centered Maintenance (RCM), initially developed in 

the aviation industry in the 1960s and later 

standardized under SAE JA1011, offers a systematic 

framework for optimizing maintenance based on the 

criticality and failure behavior of individual assets 

[2]. The core objective of RCM is to ensure that 

physical assets continue to do what their users want 

them to do in their present operating context. In high-

risk industrial sectors such as oil refining, where the 

consequences of failure can be catastrophic, the 

implementation of RCM principles offers a viable 

pathway toward maximizing asset uptime, 
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minimizing maintenance costs, and ensuring 

regulatory compliance. 

 

1.2 Maintenance Challenges in Refinery Electrical 

Systems 

 

Electrical infrastructure in refinery plants includes an 

array of components such as switchgears, circuit 

breakers, transformers, motor control centers 

(MCCs), uninterruptible power supplies (UPS), and 

protective relays. These components often operate 

under extreme thermal, chemical, and mechanical 

conditions, which can accelerate wear and increase 

the likelihood of failure [3]. Moreover, electrical 

faults can propagate rapidly through interconnected 

systems, making it essential to identify failure 

precursors and execute timely interventions. 

 

A critical challenge lies in differentiating between 

functional failures and hidden failures. Conventional 

maintenance routines typically miss these subtle, 

evolving degradation modes due to limited diagnostic 

resolution or inflexible inspection intervals [4]. RCM 

addresses this gap by prioritizing functions, 

identifying credible failure modes, analyzing 

consequences, and developing task-based mitigation 

strategies that are condition-based, predictive, or 

design-influenced rather than merely time-bound. 

 

1.3 Theoretical Foundations of RCM 

 

At its core, the RCM framework operates on a 

decision logic tree that guides practitioners through a 

structured set of questions regarding system 

functions, functional failures, failure modes, and 

failure effects. Each potential failure is then classified 

based on its consequence, ranging from safety-critical 

to non-operational and assigned a suitable 

maintenance strategy. The process typically involves 

the use of Failure Modes and Effects Analysis 

(FMEA), Fault Tree Analysis (FTA), and quantitative 

reliability modeling such as Weibull distributions or 

Markov processes [5,6]. 

 

Contemporary RCM applications increasingly 

incorporate probabilistic modeling techniques, 

particularly Bayesian networks, to handle uncertainty 

and conditional dependencies between failure events. 

Bayesian inference allows for continuous learning 

from operational data and real-time adjustment of 

failure probabilities, thereby supporting dynamic 

maintenance planning and risk prioritization [7]. 

Such techniques are especially valuable in electrical 

systems where component degradation is often 

nonlinear, history-dependent, and influenced by 

multiple environmental and load factors. 

 

1.4 Research Problem and Objectives 

 

Despite the well-documented benefits of RCM in 

high-reliability sectors like aviation and nuclear 

power, its adoption in refinery electrical systems 

remains limited. Many refinery operators still rely on 

time-based or reactive maintenance practices due to 

the perceived complexity of RCM implementation 

and the lack of tailored tools for electrical 

components. This study aims to bridge this gap by 

developing a customized RCM framework that 

integrates diagnostic analytics, probabilistic 

modeling, and failure behavior profiling specifically 

for refinery electrical infrastructure. 

 

The primary research objectives are to develop a 

reliability-centered maintenance framework for 

electrical systems in refinery plants based on failure 

criticality and operational risk; integrate condition-

based monitoring and Bayesian risk modeling into 

the RCM decision logic; evaluate the effectiveness of 

the RCM model using empirical data from a large 

U.S. refinery and benchmark it against conventional 

time-based maintenance approaches; and provide 

practical insights and recommendations for refinery 

maintenance planners, reliability engineers, and 

operations managers seeking to enhance system 

uptime and cost efficiency. 

 

1.5 Significance of the Study 

 

This research contributes to the evolving field of 

industrial asset management by demonstrating how 

RCM principles can be operationalized in complex, 

high-risk environments using data-driven and risk-

informed methods. The proposed model not only 

aligns with international best practices in reliability 

engineering but also addresses the unique failure 

modes and operational challenges associated with 

refinery electrical systems. By reducing downtime, 

preventing cascading failures, and optimizing 
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resource allocation, the RCM framework presented in 

this study holds promise for improving operational 

resilience, safety compliance, and long-term cost-

effectiveness in the oil and gas industry [8]. 

 

II. METHODS 

 

2.1 Overview of the RCM Framework 

 

This study employed a structured Reliability-

Centered Maintenance (RCM) methodology tailored 

for electrical systems in large-scale refinery plants. 

The framework integrates Failure Modes and Effects 

Analysis (FMEA), Fault Tree Analysis (FTA), and 

Bayesian risk modeling to develop a predictive, risk-

based maintenance strategy. The methodology was 

divided into five main phases: (1) system 

decomposition and functional analysis, (2) failure 

mode identification and effect evaluation, (3) 

consequence classification and task selection, (4) 

condition-based monitoring integration, and (5) 

Bayesian network modeling for dynamic risk 

assessment. 

 

The overall objective was to derive a maintenance 

decision matrix that aligns equipment criticality, 

failure probability, and operational consequences to 

the most cost-effective and reliability-enhancing 

maintenance actions. This hybrid approach enabled 

the incorporation of both qualitative expert judgment 

and quantitative field data into the maintenance 

planning process. 

 

2.2 Study Site and Data Sources 

 

The case study was conducted at a petroleum refinery 

located in the Gulf Coast region of the United States, 

which processes approximately 350,000 barrels of 

crude oil per day. The electrical systems under study 

spanned three production units, crude distillation, 

catalytic cracking, and hydrodesulfurization and 

included twelve critical subsystems comprising 275 

individual electrical assets. 

 

Operational data were collected from computerized 

maintenance management systems (CMMS), 

supervisory control and data acquisition (SCADA) 

logs, infrared thermography inspection records, 

insulation resistance tests, and failure incident reports 

over a five-year period (2018–2023). Field 

inspections and structured interviews with reliability 

engineers and plant electricians were also conducted 

to supplement quantitative data with expert insights 

into failure causes, detection methods, and historical 

performance trends. 

 

2.3 Functional Decomposition and Criticality 

Ranking 

 

All electrical subsystems were functionally 

decomposed into their constituent components, and 

their roles in supporting refinery operations were 

documented. Each asset was then assigned a 

criticality score based on four key factors: its impact 

on safety and environmental risk, its contribution to 

production throughput, the availability of redundancy 

or backup systems, and its historical failure 

frequency and severity. A weighted scoring model 

was used to compute a composite criticality index 

(CCI) for each asset, normalized on a 0–100 scale. 

Assets scoring above 70 were categorized as high 

criticality and subjected to detailed FMEA and 

Bayesian modeling. 

 

2.4 Failure Modes and Effects Analysis (FMEA) 

 

FMEA was performed to systematically identify and 

evaluate potential failure modes for each critical 

component, including switchgears, circuit breakers, 

protective relays, transformers, and UPS systems. For 

each failure mode, the following parameters were 

estimated: 

• Severity (S): the extent of impact on operations or 

safety 

• Occurrence (O): the probability of the failure 

occurring 

• Detection (D): the likelihood of failure being 

detected before it causes harm 

 

A Risk Priority Number (RPN) was computed using 

the formula: RPN = S × O × D 

Failure modes with RPN > 200 were flagged for 

immediate task development. These values were later 

refined using real failure data and updated through 

the Bayesian inference process to reduce subjectivity. 
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2.5 Maintenance Task Selection 

 

Using the classic RCM decision logic tree defined by 

SAE JA1011 and JA1012, each identified failure 

mode was assessed to determine the appropriate 

maintenance strategy, which included scheduled 

condition-based tasks, scheduled restoration or 

replacement, failure-finding tasks, redesign or one-

time changes, or run-to-failure approaches where 

consequences were deemed non-critical. Task 

assignments were validated by plant engineers 

through expert elicitation workshops, and cost-

benefit ratios were calculated for each proposed task 

based on estimated downtime costs, task frequency, 

and associated labor and material expenses. 

 

2.6 Integration of Condition-Based Monitoring 

(CBM) 

 

Condition-based monitoring techniques were 

implemented for high-priority assets where predictive 

maintenance could help prevent catastrophic failure. 

Key CBM methods included thermal imaging for hot 

spot detection in switchgears, vibration analysis on 

motor control centers, insulation resistance and 

dielectric testing of cables and transformers, partial 

discharge testing for high-voltage equipment, and 

relay test injections for protective relay calibration. 

Sensor data from these techniques were collected in 

real time and integrated into the Bayesian inference 

engine to dynamically update failure probability 

estimates. 

 

2.7 Bayesian Risk Modeling 

 

A Bayesian network was constructed to model the 

probabilistic dependencies between failure 

precursors, degradation states, and actual failure 

events. Nodes in the network represented observable 

variables such as asset age, loading history, 

temperature excursions, and test anomalies, while 

conditional probability tables (CPTs) were developed 

using a combination of historical data and expert 

elicitation. The model enabled forward inference to 

predict failure probabilities based on current asset 

conditions, backward inference to diagnose the most 

probable causes of observed anomalies, and real-time 

updating through the integration of new evidence 

from inspections or sensor readings. This Bayesian 

framework supported the dynamic prioritization of 

maintenance actions, allowing for resource allocation 

based on evolving risk profiles rather than static 

schedules. 

 

2.8 Benchmarking and Evaluation 

 

The performance of the proposed RCM framework 

was benchmarked against the refinery’s legacy time-

based maintenance (TBM) schedule using key 

performance indicators (KPIs) that included mean 

time between failures (MTBF), mean time to repair 

(MTTR), unscheduled downtime (USD), 

maintenance cost per asset (MCPA), number of 

failure events (NFE), and the corrective to preventive 

maintenance ratio (CPMR). A before-and-after 

analysis was conducted over a 12-month trial 

implementation phase spanning 2023 to 2024, and 

the statistical significance of performance differences 

was evaluated using paired t-tests and analysis of 

variance (ANOVA), where applicable. 

 

2.9 Ethical Considerations 

 

The study did not involve human participants or 

confidential data. All equipment and performance 

records were de-identified prior to analysis. The 

research protocol was approved by the Institutional 

Review Board (IRB) of Western Illinois University 

under reference number WIU-MATH-RCM-2023-01. 

Field engineers and plant personnel who participated 

in interviews provided informed consent. 

 

III. RESULTS 

 

3.1 Asset Criticality and Failure Mode Profiling 

A total of 275 electrical assets were evaluated across 

the refinery’s three primary process units. Of these, 

94 (34.2%) were classified as high-criticality based 

on the composite criticality index (CCI), with scores 

ranging from 71 to 96. The most critical assets 

included 13.8 kV switchgears, 480 V motor control 

centers (MCCs), power transformers (≥10 MVA), 

and protective relays for process-critical circuits. 

 

The FMEA identified 248 distinct failure modes, of 

which 117 exceeded the RPN threshold of 200. Table 

1 summarizes the top 10 failure modes by RPN score. 
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Table 1. Top 10 Failure Modes by Risk Priority 

Number (RPN) 

 

Asset 

Type 

Failure 

Mode 

Seve

rity 

(S) 

Occurr

ence 

(O) 

Detec

tion 

(D) 

RP

N 

Switchg

ear 

(13.8 

kV) 

Busbar 

insulatio

n 

breakdo

wn 

9 8 4 28

8 

Transfo

rmer 

(10 

MVA) 

Insulatio

n oil 

contamin

ation 

8 7 5 28

0 

MCC 

(480 V) 

Contacto

r 

welding 

7 8 4 22

4 

Relay 

Panel 

Miscalib

rated 

overcurr

ent relay 

6 9 4 21

6 

UPS 

System 

Battery 

bank 

thermal 

runaway 

9 6 4 21

6 

Breaker 

Panel 

Mechani

cal trip 

failure 

7 7 4 19

6 

Switchg

ear 

Partial 

discharg

e due to 

humidity 

6 8 4 19

2 

Cable 

Termin

ation 

Loose 

lug 

overheati

ng 

7 7 3 14

7 

Transfo

rmer 

Core 

saturatio

n from 

harmonic

s 

6 6 4 14

4 

Relay 

Panel 

Auxiliar

y supply 

loss 

5 8 3 12

0 

 

The highest risks were associated with switchgear 

and transformer failure modes, particularly those 

leading to fire or arc flash events, highlighting the 

need for condition-based and predictive maintenance 

approaches. 

 

3.2 Maintenance Strategy Allocation 

 

Following RCM logic and FMEA outcomes, 117 

maintenance tasks were developed. The distribution 

of tasks by strategy type is shown in Table 2. 

 

Table 2. Maintenance Strategy Assignment by Task 

Type 

 

Maintenance Strategy Number 

of Tasks 

Percentage 

(%) 

Condition-Based 

Maintenance 

52 44.4 

Scheduled 

Restoration/Replacement 

29 24.8 

Failure-Finding Tasks 21 17.9 

One-Time Design 

Improvement 

10 8.5 

Run-to-Failure (non-

critical) 

5 4.3 

 

A majority of tasks (44.4%) were condition-based, 

emphasizing the proactive use of sensor diagnostics 

and inspection data. Failure-finding and redesign 

actions were allocated to protection systems and 

aging legacy equipment. 

 

3.3 CBM Effectiveness and Diagnostic Coverage 

 

Implementation of condition-based monitoring 

(CBM) across 52 assets yielded significant diagnostic 

insights. The most effective techniques were thermal 

imaging and partial discharge analysis, which 

detected 23 latent failures in switchgears and 

transformers prior to service interruption. Table 3 

summarizes CBM findings. 
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Table 3. CBM Detection Outcomes (2023–2024 Pilot 

Phase) 

Diagnostic 

Method 

Components 

Monitored 

Latent 

Issues 

Detecte

d 

Detectio

n Rate 

(%) 

Infrared 

Thermograph

y 

Switchgears

, Panels 

11 21.2 

Partial 

Discharge 

Testing 

High-

voltage 

Cables 

5 9.6 

Vibration 

Analysis 

MCCs 3 5.8 

Relay 

Calibration 

Testing 

Protective 

Relays 

4 7.7 

 

Detection rates ranged from 5.8% to 21.2%, 

demonstrating the practical benefit of CBM 

integration within the RCM framework. 

 

3.4 Bayesian Risk Inference Results 

 

The Bayesian network model was applied to 94 high-

criticality assets and updated monthly with CBM and 

SCADA data. Forward inference produced dynamic 

failure probabilities, which informed task urgency 

rankings. Key findings include: 

 

• Mean predicted failure probability for monitored 

assets declined from 9.1% to 5.8% post-RCM. 

• The highest posterior failure likelihood (14.6%) 

was recorded for a 15-year-old transformer with 

harmonic-induced thermal degradation and low 

insulation resistance. 

• Backward inference accurately traced 82% of 

observed anomalies to their most probable root 

causes within the model, enhancing diagnostic 

confidence. 

 

A heat map of failure probabilities was developed to 

visualize risk levels and support planning decisions. 

 

3.5 Comparative Performance Analysis 

 

Comparison of pre-RCM (2022) and post-RCM 

(2024) performance indicators revealed significant 

reliability improvements. Table 4 summarizes key 

KPIs. 

 

Table 4. Pre- and Post-RCM Performance Metrics 

Metric Pre-RCM 

(2022) 

Post-

RCM 

(2024) 

% 

Change 

Mean Time 

Between Failures 

(MTBF) 

312 hrs 381 hrs +22.1% 

Mean Time to 

Repair (MTTR) 

7.6 hrs 6.2 hrs –18.4% 

Unscheduled 

Downtime 

144 

hrs/year 

99 

hrs/year 

–31.3% 

Maintenance 

Cost per Asset 

$3,050 $2,593 –15.0% 

Failure Events 

Recorded 

38 26 –31.6% 

Corrective to 

Preventive Ratio 

1.6 0.9 –43.8% 

 

Statistical analysis using paired t-tests confirmed that 

reductions in failure events, downtime, and cost were 

significant at p < 0.05. 

 

3.6 Case Example: Critical Relay Panel 

 

A critical relay panel in the hydrodesulfurization unit 

was selected for detailed study. Prior to RCM, it 

experienced two unexplained tripping incidents 

attributed to transient overcurrent relay malfunctions. 

Post-RCM implementation included: 

• CBM with quarterly relay calibration 

• Auxiliary DC power source replacement 

• Bayesian node tracking of anomaly patterns 

 

Over 12 months, no tripping events occurred, and 

predictive diagnostics flagged a declining voltage 

anomaly three weeks prior to a component failure, 

enabling preventive intervention. 

 

IV. DISCUSSION 

 

4.1 Interpretation of Key Findings 

 

The results from the implementation of the 

Reliability-Centered Maintenance (RCM) model 

across the refinery’s electrical systems confirm its 
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effectiveness in enhancing equipment reliability, 

minimizing unscheduled outages, and improving 

cost-efficiency. The observed increase in mean time 

between failures (MTBF) by 22.1% and the 31.3% 

reduction in unscheduled downtime demonstrate that 

the RCM approach enabled better prediction and 

prevention of electrical faults. The strategic shift 

from time-based maintenance (TBM) to condition-

based and risk-informed planning reduced 

unnecessary interventions and targeted maintenance 

resources more effectively [9]. 

 

A significant contribution of the study was the use of 

Bayesian modeling to dynamically update failure 

probabilities based on real-time data and historical 

trends. This probabilistic framework provided a more 

nuanced understanding of risk across interdependent 

electrical components and supported the prioritization 

of maintenance activities according to evolving asset 

health. When coupled with condition-based 

monitoring (CBM) techniques, such as thermal 

imaging and partial discharge analysis, the Bayesian 

model provided actionable insights that would not 

have been possible under static TBM schedules. 

Furthermore, the redistribution of maintenance tasks 

where nearly half were redefined as condition-based, 

demonstrates a practical alignment between 

diagnostic capability and maintenance strategy. The 

effectiveness of CBM was particularly evident in 

early detection of latent issues in high-voltage assets, 

such as switchgears and transformers, which are 

traditionally difficult to inspect using conventional 

means. 

 

4.2 Comparison with Previous Studies 

The findings of this study align with existing 

literature highlighting the advantages of RCM in 

complex industrial systems. For example, a study by 

Moubray and Nowlan established that RCM can 

extend equipment life, reduce costs, and enhance 

safety outcomes by prioritizing maintenance tasks 

based on failure consequences and system functions 

[2]. Similar results were reported in nuclear and 

aerospace industries where RCM adoption led to 

reductions in failure events and improved operational 

availability [10,11]. 

 

What distinguishes the current research is the 

integration of Bayesian inference into the traditional 

RCM decision tree, allowing for dynamic learning 

and risk reevaluation as new data becomes available. 

Prior studies that implemented RCM in electrical 

systems often relied on static FMEA or expert 

judgment without probabilistic learning models [12]. 

The incorporation of real-time sensor data and 

probabilistic reasoning offers a more agile and 

evidence-based maintenance framework that adapts 

to operational changes, degradation rates, and 

component history. 

 

Additionally, the 15% reduction in maintenance cost 

per asset observed in this study supports findings by 

Iung et al. that predictive and risk-based maintenance 

approaches deliver better return on investment 

compared to TBM, particularly in high-capital, high-

risk environments such as refineries [13]. 

 

4.3 Practical Implications 

 

This study provides a validated framework for 

industrial stakeholders seeking to modernize their 

maintenance practices in large-scale, mission-critical 

infrastructure [14], with several practical 

implications. First, the RCM model improves asset 

availability by aligning maintenance schedules with 

actual asset conditions and failure probabilities, 

thereby minimizing unnecessary shutdowns and 

enhancing process continuity, an especially critical 

advantage in refinery settings where electrical 

failures can trigger plant-wide disruptions and 

environmental incidents. Next, the use of risk 

prioritization and FMEA ensures that maintenance 

resources are deployed where they yield the highest 

reliability benefit, enabling plant managers to 

transition from reactive to proactive asset 

management, particularly for aging infrastructure. 

Also, the framework enhances safety and regulatory 

compliance by identifying high-risk failure modes, 

such as relay misoperation and transformer insulation 

failure, and addressing them through structured 

maintenance strategies that align with standards 

mandated by agencies such as OSHA and the EPA. 

This is consistent with integrated frameworks that 

leverage degradation modeling to inform proactive 

maintenance decisions [19]. Finally, although the 

model was applied to three processing units, its 

modular structure supports scalability across 

additional refinery sections or analogous sectors such 
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as power generation and chemical manufacturing, 

where similar equipment hierarchies and risk profiles 

exist. 

 

4.4 Limitations of the Study 

 

Despite the promising results, several limitations 

must be acknowledged. To begin with, the 

effectiveness of the Bayesian model is highly 

dependent on the quality and completeness of input 

data; issues such as sensor drift, missing values, or 

noise in historical logs can introduce uncertainty into 

the probability estimates and compromise the 

accuracy of risk predictions. Also, the 

implementation of condition-based monitoring 

(CBM) requires a substantial initial investment in 

sensors, data acquisition infrastructure, and personnel 

training, which may hinder adoption in cost-

constrained environments, although the long-term 

reliability and cost benefits are expected to justify 

these expenses. Additionally, while the Bayesian 

framework significantly enhances maintenance 

decision-making, it introduces a level of analytical 

complexity [16] that may not be easily understood by 

maintenance personnel without specialized training in 

probabilistic modeling, potentially necessitating the 

development of user-friendly interfaces or automated 

decision-support tools to facilitate broader usability. 

Lastly, although the RCM framework demonstrated 

strong performance improvements over a 12-month 

trial period, extended operational testing across 

multiple maintenance cycles is required to fully 

validate its durability, adaptability, and cost-

effectiveness under varying operational and 

environmental conditions. 

 

4.5 Recommendations for Future Research 

 

Building upon the findings and limitations of this 

study, several areas are proposed for further 

investigation. First and foremost, future research 

should explore the integration of the RCM-Bayesian 

model into refinery Distributed Control Systems 

(DCS) or Enterprise Asset Management (EAM) 

platforms to enable real-time maintenance 

orchestration and seamless data flow across 

operational layers. Another point to consider, the 

combination of Bayesian inference with machine 

learning algorithms, such as random forests or 

support vector machines, may improve the accuracy 

and adaptability of failure prediction models, 

particularly in addressing data anomalies and 

previously unseen failure modes [17]. Furthermore, 

expanding the current framework to include 

mechanical and instrumentation assets alongside 

electrical systems would support a comprehensive, 

plant-wide optimization of maintenance strategies 

and enhance cross-functional reliability management. 

Additionally, longitudinal studies spanning multiple 

maintenance seasons and operational turnaround 

cycles are essential to assess the sustained impact of 

the RCM framework on long-term asset health, 

operational efficiency, and refinery profitability. 

Finally, further investigation into the human factors 

involved in RCM adoption, particularly through the 

design of intuitive interfaces and targeted training 

programs, would enhance usability and foster broader 

acceptance among diverse maintenance teams with 

varying technical backgrounds. 

 

CONCLUSION AND RECOMMENDATIONS 

 

5.1 Conclusion 

 

This study developed and validated a Reliability-

Centered Maintenance (RCM) model tailored to the 

unique characteristics and failure behaviors of 

electrical systems in large-scale refinery plants. By 

integrating Failure Modes and Effects Analysis 

(FMEA), condition-based monitoring (CBM), and 

Bayesian risk modeling, the framework enabled a 

shift from reactive and time-based maintenance to a 

more predictive, risk-informed strategy. 

 

Empirical evaluation at a U.S. Gulf Coast refinery 

revealed significant improvements in operational 

performance, including a 22.1% increase in mean 

time between failures (MTBF), a 31.3% reduction in 

unscheduled downtime, and a 15% reduction in 

maintenance cost per asset. The integration of 

condition-monitoring data and probabilistic risk 

modeling enhanced the precision and adaptability of 

maintenance planning, allowing teams to 

dynamically update risk assessments and optimize 

task execution. Critical failure modes were 

successfully mitigated through targeted interventions, 

and diagnostic effectiveness improved through 

sensor-based techniques. 



© JUL 2024 | IRE Journals | Volume 8 Issue 1 | ISSN: 2456-8880 

IRE 1709990          ICONIC RESEARCH AND ENGINEERING JOURNALS 751 

The model's success demonstrates that RCM is not 

only applicable but highly beneficial to the electrical 

infrastructure of refinery operations. By aligning 

maintenance tasks with asset criticality and real-time 

condition data, the framework supports improved 

reliability, cost-efficiency, and safety performance, 

objectives that are central to industrial operations in 

high-risk environments. 

 

5.2 Recommendations 

 

Based on the findings, the following 

recommendations are proposed for refinery operators, 

reliability engineers, policymakers, and researchers. 

First, refineries should adopt Reliability-Centered 

Maintenance (RCM) as a standard practice in 

electrical maintenance programs, moving beyond 

time-based scheduling to implement strategies that 

emphasize criticality, functional failure impacts, and 

data-driven decision-making. Also, investment in 

diagnostic infrastructure is essential, as the 

effectiveness of condition-based monitoring and 

Bayesian analysis depends on access to high-quality 

data; tools such as thermal imaging, partial discharge 

monitoring, relay testing, and advanced data 

acquisition systems are vital for enabling predictive 

capabilities. Maintenance planners are encouraged to 

integrate Bayesian risk assessment tools into existing 

computerized maintenance management systems 

(CMMS), enabling real-time updates of failure 

probabilities and more responsive task prioritization. 

Furthermore, the RCM model should be scaled 

beyond electrical systems to include mechanical, 

instrumentation, and rotating equipment, allowing for 

a comprehensive, plant-wide maintenance strategy. 

Upskilling maintenance personnel in risk-based 

maintenance principles, probabilistic reasoning, and 

condition-monitoring techniques is crucial for the 

successful implementation and long-term 

sustainability of modern maintenance systems. To 

support operational decision-making, complex 

analytics should be made accessible through intuitive 

visualization dashboards that highlight risk levels, 

recommended tasks, and key performance indicators. 

Additionally, policymakers and regulatory bodies 

should promote the adoption of RCM frameworks in 

high-risk and environmentally sensitive industries by 

incorporating these principles into national and 

international maintenance standards. Finally, long-

term monitoring programs and feedback loops should 

be established to support continuous refinement of 

the RCM model, ensuring its adaptability and 

effectiveness amid evolving operational demands and 

technological advancements. 
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