
© MAY 2019 | IRE Journals | Volume 2 Issue 11 | ISSN: 2456-8880

IRE 1710020 ICONIC RESEARCH AND ENGINEERING JOURNALS 481

Enhancing Enterprise Software Reliability Using Retry

Queues and Message Persistence in Event-Driven Cloud

Environments

ESEOGHENE DANIEL ERIGHA1, EHIMAH OBUSE2, BABAWALE PATRICK OKARE3, ABEL

CHUKWUEMEKE UZOKA4, SAMUEL OWOADE5, NOAH AYANBODE6

 1Senior Software Engineer, Eroe ConsultingDubai, UAE
2Lead Software Engineer, Choco, Berlin, Germany

3Infor-Tech Limited Aberdeen, UK
4Polaris bank limited Asaba, Delta state, Nigeria

5Sammich Technologies, Nigeria
6Independent Researcher, Nigeria

Abstract- In an era where enterprise software

systems are increasingly deployed on cloud

platforms and built upon event-driven architectures,

ensuring consistent reliability across distributed

components becomes a critical concern. These

modern architectures promote scalability and

responsiveness through asynchronous

communication, but they also introduce new

complexities in handling transient failures, message

delivery guarantees, and fault tolerance. This

explores the role of retry queues and message

persistence as foundational mechanisms for

enhancing software reliability in such

environments. Retry queues enable services to

automatically attempt message processing again

after initial failures, using configurable strategies

such as exponential backoff, jitter, and maximum

retry limits. These mechanisms help prevent

message loss, reduce system downtime, and improve

end-to-end transaction success rates. When

integrated with dead-letter queues and observability

tools, retry queues offer not only recovery but also

insight into persistent system weaknesses and

transient bottlenecks. Message persistence further

strengthens reliability by ensuring that messages

are durably stored—often across distributed logs or

message brokers—until they are successfully

processed or safely discarded. Leveraging

technologies such as Apache Kafka, AWS SQS with

Dead-Letter Queues, and Azure Service Bus,

developers can implement various delivery

semantics (at-least-once, exactly-once, at-most-

once) suited to different application requirements.

Persistence protects against system crashes, network

partitions, and service restarts, thereby maintaining

data integrity and continuity across the system. This

synthesizes architectural best practices, cloud-native

tooling, and design patterns for implementing retry

logic and persistent messaging in microservice-

based systems. It also highlights real-world use

cases—including transactional processing,

notification systems, and event sourcing—

demonstrating how these reliability mechanisms can

be effectively employed. Finally, the discussion

explores future directions such as AI-assisted retry

strategies, serverless queue orchestration, and

cross-cloud persistence standards. In conclusion,

retry queues and message persistence are

indispensable tools for building fault-tolerant,

enterprise-grade, event-driven software in dynamic

cloud environments.

Index Terms : Enterprise, Software reliability, Retry

queues, Message persistence, Event-driven, Cloud

environments

I. INTRODUCTION

Enterprise software systems are increasingly

expected to deliver uninterrupted, reliable, and real-

time services across diverse, distributed

environments (Nwaimo et al., 2019; Evans-Uzosike

and Okatta, 2019). As digital transformation

initiatives accelerate, these systems are tasked with

© MAY 2019 | IRE Journals | Volume 2 Issue 11 | ISSN: 2456-8880

IRE 1710020 ICONIC RESEARCH AND ENGINEERING JOURNALS 482

integrating multiple services, handling vast volumes

of data, and supporting complex user interactions.

However, achieving high reliability within these

dynamic and interconnected systems remains a

persistent challenge (Ibitoye et al., 2017; Nwaimo et

al., 2019). Failures in communication, network

instability, partial service outages, and inconsistent

data propagation often lead to cascading system

disruptions. Traditional monolithic architectures,

while easier to reason about in terms of state, often

suffer from inflexible scalability and brittle failure

domains. As enterprises migrate toward

microservices and cloud-native architectures, the

scope for partial failure increases—making fault-

tolerant design a necessity rather than an optimization

(Awe and Akpan, 2017; Awe, 2017).

One of the most pressing issues in ensuring reliability

is handling the inevitable occurrence of transient

failures. These can occur due to temporary

unavailability of downstream services, message

queue congestion, or rate-limiting by external APIs.

If not properly addressed, these failures can result in

lost transactions, duplicated messages, or degraded

user experience (Ogundipe et al., 2019; Oni et al.,

2019). Thus, reliability in modern enterprise systems

must be achieved through deliberate architectural

choices and robust communication patterns that

anticipate and gracefully recover from such scenarios

(Otokiti and Akinbola, 2013; SHARMA et al., 2019).

To meet the demands of scalability and

responsiveness, many enterprises have embraced

event-driven architectures (EDAs) within cloud

environments. In contrast to traditional request-

response paradigms, EDAs decouple service

interactions through events, allowing producers and

consumers to operate independently (Ajonbadi et al.,

2016; Otokiti, 2018). Events are generated in

response to state changes or external triggers and

propagated through intermediaries such as message

brokers or streaming platforms.

Cloud providers now offer a suite of managed

services to support event-driven computing—such as

Amazon SNS/SQS, Azure Event Grid, and Google

Cloud Pub/Sub—which abstract infrastructure

complexity and provide native integration with other

cloud services. These systems enable applications to

react to business events asynchronously, thus

improving system throughput, reducing latency

bottlenecks, and supporting microservices scaling

(Ajonbadi et al., 2015; Otokiti, 2017). However,

while EDA offers architectural flexibility, it also

amplifies reliability concerns. In the absence of

tightly coupled workflows, the assurance of message

delivery, order, and idempotency becomes more

challenging. Services must be designed to handle

message replays, missed events, and system restarts

without compromising data consistency or business

integrity (Lawal et al., 2014; Otokiti, 2017).

In such asynchronous and distributed systems,

resilient communication mechanisms are

foundational to overall system reliability. Two core

strategies that contribute to this resilience are retry

queues and message persistence (Otokiti, 2012;

Lawal et al., 2014).

Retry queues provide an automated mechanism to re-

attempt failed operations, especially when failures are

transient. By implementing retry logic with features

such as exponential backoff, jitter, and maximum

attempt limits, systems can recover gracefully

without overwhelming dependent services.

Meanwhile, message persistence ensures that events

and messages are durably stored until they are safely

consumed, preventing data loss during system

failures or service outages.

Together, these mechanisms help address several

critical issues: eventual consistency, decoupled

service recovery, and fault isolation. Without such

patterns, services are more likely to silently fail,

propagate errors downstream, or introduce hard-to-

diagnose reliability issues. Thus, designing robust

message handling workflows is not merely a

technical enhancement—it is a fundamental

requirement for enterprise-grade software systems

operating in cloud-native contexts.

This aims to examine the role of retry queues and

message persistence in enhancing the reliability of

enterprise software systems built on event-driven

cloud architectures. It explores architectural

principles, cloud-native tools, and implementation

patterns that enable developers and architects to build

resilient asynchronous systems. Specific focus is

placed on the use of services such as Kafka,

© MAY 2019 | IRE Journals | Volume 2 Issue 11 | ISSN: 2456-8880

IRE 1710020 ICONIC RESEARCH AND ENGINEERING JOURNALS 483

RabbitMQ, AWS SQS, and Azure Service Bus to

demonstrate how retry mechanisms and durable

storage can be effectively implemented.

Furthermore, this identifies practical challenges, such

as handling poison messages, deduplication, and

managing stateful retries, while offering mitigation

strategies. By highlighting both theoretical constructs

and real-world implementation practices, the

discussion bridges the gap between conceptual

understanding and practical application. Ultimately,

this seeks to provide a roadmap for building fault-

tolerant, responsive, and scalable enterprise systems

capable of meeting the reliability expectations of

modern users and businesses.

II. METHODOLOGY

The PRISMA methodology was applied to

systematically review literature and practices related

to enhancing enterprise software reliability using

retry queues and message persistence within event-

driven cloud environments. This methodological

approach ensured transparency, replicability, and

rigor in identifying relevant evidence on fault-

tolerant architectures, asynchronous communication

patterns, and message durability mechanisms in

distributed systems.

A comprehensive search was conducted across

scholarly databases including IEEE Xplore, ACM

Digital Library, ScienceDirect, SpringerLink, and

Google Scholar. Search terms included combinations

such as “retry queues in cloud applications,”

“message persistence,” “event-driven architecture,”

“enterprise reliability,” “asynchronous fault

tolerance,” and “message durability in

microservices.” The search was augmented by

snowballing techniques to identify additional sources

through reference lists of key papers and technical

whitepapers from cloud providers like AWS, Azure,

and Google Cloud.

Inclusion criteria were defined to select publications

and technical reports focusing on the implementation

or evaluation of retry strategies, persistent message

storage, and resilience engineering in event-driven

cloud-native applications. Studies had to provide

insights into architecture-level design, middleware

configuration, or operational impact on reliability.

Exclusion criteria included articles limited to non-

cloud environments, synchronous-only systems, or

those lacking practical implementation relevance.

The study selection process followed a two-stage

screening approach. Initial screening involved

reviewing titles and abstracts for relevance, followed

by full-text reviews to confirm eligibility. Two

independent reviewers conducted the selection to

reduce bias, and any disagreements were resolved

through discussion. A structured data extraction

framework was used to capture publication metadata,

retry and persistence mechanisms used, system

reliability metrics, use cases, limitations, and

deployment environments.

Quality appraisal was performed using software

engineering evaluation checklists focusing on

methodological clarity, technical depth, empirical

validation, and industrial applicability. Thematic

synthesis was then employed to categorize extracted

data into core themes such as retry queue patterns,

message durability strategies (e.g., at-least-once and

exactly-once delivery), middleware tools (e.g.,

Kafka, RabbitMQ, SQS), and trade-offs between

latency, consistency, and fault tolerance.

By applying the PRISMA methodology, this review

provided a comprehensive and structured overview of

how retry queues and message persistence

mechanisms contribute to enhancing reliability in

enterprise-grade, event-driven cloud applications.

The findings offer valuable guidance for architects

and developers designing resilient distributed systems

in volatile cloud environments.

2.1 Event-Driven Architectures in the Cloud

Event-driven architecture (EDA) is a software design

paradigm wherein services or components

communicate by producing and responding to events,

rather than through direct synchronous calls. One of

the defining characteristics of event-driven systems is

loose coupling, which allows producers and

consumers of information to operate independently

(Akinbola and Otokiti, 2012; Amos et al., 2014).

This design reduces interdependencies between

services, enabling greater flexibility and scalability.

© MAY 2019 | IRE Journals | Volume 2 Issue 11 | ISSN: 2456-8880

IRE 1710020 ICONIC RESEARCH AND ENGINEERING JOURNALS 484

Unlike traditional monolithic or tightly-coupled

systems where service availability and response time

are closely linked, event-driven systems decouple

workflow execution. This separation allows different

parts of a system to evolve, scale, or fail

independently without affecting the whole.

Another defining characteristic is reactivity. Event-

driven systems are inherently responsive to external

stimuli, such as user actions, system status changes,

or real-world events. Reactivity enables systems to

act in near real-time, which is critical for applications

such as fraud detection, user notification systems, and

IoT telemetry processing. This paradigm also

supports asynchronous processing, allowing systems

to queue, prioritize, or delay tasks without blocking

upstream operations, thus improving throughput and

system responsiveness under varying loads.

An event-driven system generally comprises three

fundamental components: event producers, event

brokers, and event consumers. Event producers are

responsible for detecting and emitting events when

certain conditions are met. For instance, a user

clicking a "Buy" button in an e-commerce application

may trigger an "OrderPlaced" event. Event brokers

are middleware systems that accept, store, and route

events to one or more interested consumers. They

decouple producers from consumers, ensuring that

producers do not need to know the specifics of

downstream services. Brokers enable flexible

message routing, delivery guarantees, and event

persistence. Common event brokers include Apache

Kafka, RabbitMQ, and cloud-native solutions like

AWS SNS/SQS. Event consumers subscribe to

specific event types and perform business logic in

response (Ajonbadi et al., 2014). A single event can

be consumed by multiple independent consumers,

such as an order fulfillment service, a billing service,

and a notification service all responding to the same

"OrderPlaced" event.

This publish-subscribe or event-streaming model

supports extensibility and resilience, as new

consumers can be added with minimal change to

existing components.

Cloud platforms offer a range of managed event-

driven services to streamline the development and

deployment of distributed, event-based applications.

AWS SNS (Simple Notification Service) and AWS

SQS (Simple Queue Service) form a common pattern

in the Amazon Web Services ecosystem. SNS is a

high-throughput publish-subscribe messaging

service, while SQS is a message queuing service that

decouples microservices and supports reliable

message delivery with configurable retries and dead-

letter queues. Azure Event Grid is designed for

serverless event routing. It allows events from Azure

services, custom sources, or third-party systems to be

routed to event handlers such as Azure Functions,

Logic Apps, or even webhooks (Morar et al., 2017;

Rosenbaum, 2017). Event Grid provides low-latency,

scalable, and dynamic event delivery. Google Cloud

Pub/Sub is a globally distributed messaging service

that supports message durability, at-least-once

delivery, and asynchronous processing. It enables

real-time event ingestion and delivery at massive

scale and integrates seamlessly with other Google

Cloud services such as Cloud Functions and

Dataflow.

These cloud-native offerings abstract much of the

complexity of infrastructure provisioning, scaling,

and fault tolerance, enabling development teams to

focus on business logic and application integration.

Advantages; scalability, loose coupling and

asynchronous processing enable event-driven

systems to scale individual components

independently. Services can consume and process

events at their own pace, which is crucial for

applications with highly variable workloads. Fault

Isolation and Resilience, since services do not

directly invoke each other, failure in one component

does not necessarily affect others. Messages can be

retried, reprocessed, or routed to dead-letter queues

for analysis and recovery. Flexibility and

Extensibility, new consumers can be added to an

existing event stream without modifying the

producers. This allows rapid feature development and

facilitates integration with third-party systems.

Improved User Experience, reactivity supports real-

time processing and notifications, enhancing the

responsiveness and interactivity of applications.

Limitations; complexity in Debugging and Tracing,

the asynchronous and distributed nature of EDA

makes it challenging to trace the flow of events and

debug issues. Visibility and observability tools such

© MAY 2019 | IRE Journals | Volume 2 Issue 11 | ISSN: 2456-8880

IRE 1710020 ICONIC RESEARCH AND ENGINEERING JOURNALS 485

as distributed tracing (e.g., OpenTelemetry, AWS X-

Ray) become essential. Eventual Consistency, strong

consistency is difficult to maintain. Systems must be

designed to tolerate and resolve temporary

inconsistencies, which adds complexity to data

management and logic. Message Duplication and

Ordering, ensuring exactly-once processing and

maintaining event order across distributed consumers

can be challenging, especially in systems with high

throughput. Operational Overhead, although

managed services reduce infrastructure burdens,

developers must still manage retries, dead-letter

queues, idempotency, and data integrity concerns

(Garrison and Nova, 2017; Joshi et al., 2018).

Event-driven architectures represent a powerful

approach for building scalable and reactive enterprise

systems in cloud environments. While offering

significant benefits in decoupling and responsiveness,

they require careful planning around reliability,

observability, and data consistency. This sets the

stage for deeper exploration into patterns such as

retry queues and message persistence, which address

many of these operational challenges.

2.2 Retry Queues: Design and Implementation

Retry queues are essential components in building

reliable event-driven architectures, particularly in

cloud-native environments where asynchronous

communication between services is the norm. In

distributed systems, service calls may fail due to

transient issues such as network latency, timeouts,

service unavailability, or rate limiting. Retry queues

provide a systematic mechanism to handle these

failures without data loss, ensuring eventual

consistency and fault tolerance (Ganesan et al., 2017;

Mukwevho and Celik, 2018). Their design and

implementation require careful consideration of retry

logic, delay strategies, cloud integration, and failure

monitoring to avoid message flooding, duplication, or

cascading failures.

At their core, retry queues serve as buffers that

temporarily hold failed messages and attempt to

reprocess them after a delay. Unlike synchronous

retries that occur in-line and can block upstream

processes, asynchronous retry queues decouple

message handling from the main execution thread,

enabling retry logic to be executed out-of-band. This

non-blocking approach is particularly advantageous

in microservices architectures where services are

loosely coupled and resilience is critical. Retry

queues ensure that failed operations, such as database

writes or API calls, are not dropped or immediately

escalated, but instead reattempted intelligently over

time, increasing the likelihood of success in the face

of transient failures.

Key to effective retry queue design is the

implementation of retry policies, including

exponential backoff and jitter. Exponential backoff is

a strategy that progressively increases the delay

between retries, often doubling the wait time after

each failed attempt. This reduces system strain by

avoiding repeated retries in rapid succession,

especially under high-load or degraded conditions.

However, deterministic backoff intervals can lead to

synchronized retry spikes—known as "thundering

herds"—if multiple clients fail simultaneously. To

mitigate this, jitter is introduced: a random variation

in the delay interval. By combining exponential

backoff with full or partial jitter, systems can

distribute retry attempts more evenly over time,

reducing contention and improving overall system

stability (Park et al., 2017; Hussain et al., 2017;

Kristić et al., 2018).

Retry queues are most effective when integrated with

cloud-native messaging and queuing tools, which

offer built-in support for durability, scaling, and

failure handling. For example, Amazon Web Services

(AWS) provides native retry and dead-letter queue

(DLQ) functionalities in Amazon Simple Queue

Service (SQS). When a message fails to be processed

after a configurable number of attempts, it is

automatically moved to a DLQ for further inspection

or manual intervention. Azure Storage Queues and

Azure Service Bus offer similar capabilities,

including time-to-live (TTL), message visibility

timeout, and poison message handling (Cardin, 2016;

Jose, 2018). These platforms enable developers to

define retry intervals, maximum retry attempts, and

fallback actions directly within the queue

configuration, offloading operational complexity to

managed infrastructure. Additionally, these services

provide guarantees around at-least-once or exactly-

© MAY 2019 | IRE Journals | Volume 2 Issue 11 | ISSN: 2456-8880

IRE 1710020 ICONIC RESEARCH AND ENGINEERING JOURNALS 486

once delivery semantics, depending on the use case

and configuration.

Monitoring and handling failed retries are critical

aspects of maintaining the reliability and

observability of retry queue systems. Failed messages

that exceed retry limits or enter DLQs should be

logged, tagged, and correlated with system metrics

for root-cause analysis. Monitoring tools such as

AWS CloudWatch, Azure Monitor, or open-source

solutions like Prometheus and Grafana can be

configured to generate alerts based on retry failure

rates, DLQ growth, or processing latency. Integrating

retry queue metrics into dashboards provides

operations teams with visibility into system health

and enables proactive mitigation strategies.

Furthermore, message tracing and correlation IDs

help developers trace the lifecycle of a message

across services, aiding in debugging and system-wide

failure analysis (Baek et al., 2017; Wang et al.,

2018).

Retry queues are indispensable in designing robust

asynchronous systems, enabling cloud applications to

gracefully recover from transient failures and

maintain service continuity. Their effectiveness lies

in a well-thought-out implementation that includes

adaptive retry policies like exponential backoff with

jitter, seamless integration with cloud-native tools,

and strong monitoring and failure handling strategies.

By ensuring that failed operations are retried

responsibly and observable at every stage, retry

queues contribute significantly to the reliability, fault

tolerance, and resilience of modern event-driven

architectures (Shalev, 2018; Gunawi et al., 2018).

2.3 Message Persistence for Reliability and Recovery

In event-driven and asynchronous architectures,

message persistence plays a vital role in ensuring

system reliability, consistency, and recoverability.

Message persistence refers to the capability of a

messaging system to durably store messages so that

they are not lost in the event of application crashes,

network failures, or service restarts (Dobbelaere and

Esmaili, 2017; Narkhede et al., 2017). Without

persistence, transient faults could result in

irrecoverable data loss, violating business guarantees

and leading to inconsistent system behavior. As such,

persistence is foundational in designing resilient

cloud-native and enterprise-grade software systems.

The importance of message durability lies in its

ability to ensure event delivery even under failure

conditions. When a message is acknowledged as

"sent" or "received," it must be durably written to

disk or persistent storage so it can be retrieved later if

needed (Marcu et al., 2017; Shin et al., 2017). This is

particularly critical in domains such as finance,

healthcare, supply chain, and e-commerce, where lost

or duplicated messages can result in regulatory

violations, financial discrepancies, or customer

dissatisfaction.

Persistent messaging supports event replay, failure

recovery, and state reconstruction, allowing

downstream services to rebuild application state by

re-consuming events. This forms the backbone of

event sourcing, stream processing, and distributed

workflow orchestration.

Message persistence strategies must be aligned with

delivery semantics, which govern how many times a

message is delivered to consumers; At-least-once

delivery guarantees that a message will be delivered

one or more times. While it ensures that no messages

are lost, consumers must handle possible duplicates,

typically using idempotent operations. At-most-once

delivery guarantees that a message is delivered at

most once. This prioritizes performance and

simplicity but allows for the possibility of message

loss during failures. Exactly-once delivery is the most

complex and desirable but difficult to implement,

especially in distributed systems. It guarantees that

each message is delivered only once, requiring tight

coordination between message brokers and

consumers, often through transactional logs, message

IDs, and deduplication mechanisms.

Selecting the appropriate delivery model depends on

application needs. For example, order processing

systems may favor at-least-once semantics with

idempotent service logic, while real-time analytics

might prioritize throughput over strict delivery

guarantees.

Modern messaging systems offer built-in persistence

capabilities, with different implementations; Apache

© MAY 2019 | IRE Journals | Volume 2 Issue 11 | ISSN: 2456-8880

IRE 1710020 ICONIC RESEARCH AND ENGINEERING JOURNALS 487

Kafka stores all messages in durable, replicated logs

on disk. Kafka partitions provide configurable

retention policies based on time or size, supporting

message replay and stream processing. Kafka’s

distributed architecture and message offsets allow

consumers to read messages independently and at

their own pace, making it ideal for high-throughput,

durable systems (John and Liu, 2017; Raj, 2018).

RabbitMQ supports message durability by allowing

messages and queues to be marked as persistent.

When configured correctly, messages are written to

disk before being acknowledged. RabbitMQ also

offers dead-letter queues, retries, and message TTL

(time-to-live) settings, enhancing persistence and

fault tolerance.

Cloud-native platforms such as AWS SQS, Azure

Service Bus, and Google Pub/Sub manage

persistence as part of their service guarantees. These

platforms store messages durably in backend storage

and automatically replicate them across data centers.

They also provide visibility timeouts, retry policies,

and dead-letter queues for recovery and auditing.

Each system balances persistence with other

operational metrics like scalability, cost, and delivery

time. Engineers must configure storage behavior

explicitly to match their desired reliability levels.

Message persistence inherently introduces trade-offs.

Writing to disk, ensuring replication, and maintaining

logs across distributed nodes incur additional latency

and may limit throughput, especially under heavy

load or constrained I/O environments. Systems

prioritizing high throughput (e.g., telemetry data

ingestion) may opt for in-memory or non-durable

queues, sacrificing reliability for speed.

Conversely, systems requiring strong durability must

invest in redundant storage, acknowledgments, and

replication protocols, which can slow down message

propagation. Additionally, configuring persistence

for exactly-once semantics can increase complexity

and processing overhead, impacting application

performance.

Ultimately, architects must balance these trade-offs

based on application requirements—favoring high

reliability and durability for critical systems, and

minimal latency for performance-sensitive, low-

stakes workloads (Pflüger et al., 2016; Bahill and

Madni, 2017). Message persistence is essential to

building resilient, fault-tolerant, and auditable

software systems. By selecting appropriate storage

mechanisms and delivery semantics and

understanding the trade-offs, developers can design

messaging architectures that ensure both robustness

and responsiveness in cloud-native event-driven

applications.

2.4 Reliability Patterns and Best Practices

Ensuring high reliability in enterprise cloud

applications demands deliberate architectural

strategies and design patterns that mitigate failure,

enable recovery, and promote consistency in

distributed workflows. As systems increasingly rely

on asynchronous communication through event-

driven architectures, the complexity of maintaining

reliability grows (Theorin et al., 2017; Erik and

Emma, 2018). Core reliability patterns—including

circuit breakers, idempotency, deduplication, retry-

safe design, and observability—provide a foundation

for building fault-tolerant services that can withstand

transient and systemic disruptions as shown in figure

1. These patterns work in concert to achieve end-to-

end resilience, ensuring that operations are completed

successfully or fail gracefully without compromising

system integrity.

Circuit breakers are a key defensive mechanism in

cloud-native reliability architecture. Inspired by

electrical systems, a circuit breaker prevents

continuous retry attempts to a failing service, thereby

avoiding cascading failures. When the error rate for a

service crosses a threshold, the circuit "opens,"

blocking further calls for a specified period. This

protects both the failing service and the calling

service, allowing time for recovery or fallback

activation. Circuit breakers are particularly effective

in event-driven systems where a downstream service

might be overwhelmed by a surge of retry messages.

They are often used in combination with timeouts

and fallback responses to contain faults and maintain

responsiveness.

© MAY 2019 | IRE Journals | Volume 2 Issue 11 | ISSN: 2456-8880

IRE 1710020 ICONIC RESEARCH AND ENGINEERING JOURNALS 488

Figure 1: Reliability Patterns and Best Practices

Idempotency and deduplication are equally vital for

reliability in asynchronous systems. Idempotency

ensures that repeated processing of the same message

yields the same result, which is essential in

environments where retries are common and delivery

guarantees like "at-least-once" may lead to duplicate

events. Deduplication strategies complement

idempotency by detecting and eliminating redundant

messages before processing. This can be achieved

through mechanisms like unique message identifiers,

sequence tokens, or cache-based lookup tables.

Together, idempotency and deduplication ensure data

integrity, prevent over-processing, and enable safe

reprocessing of failed messages without side effects.

Designing idempotent consumers and retry-safe

workflows is a best practice for building resilient

services. Idempotent consumers treat each incoming

message as potentially repeated and ensure that their

side effects—such as database updates, email

notifications, or third-party API calls—are executed

only once. This requires implementing checks for

message uniqueness, such as writing a processed-

event ID into a database or using distributed locks.

Retry-safe workflows extend this principle to multi-

step operations, where compensating transactions,

state management, or distributed sagas are used to

coordinate complex sequences.

Reliability is further enhanced by combining retry

mechanisms with persistent message storage to

ensure that messages are never lost, even if services

crash or restart (Jha et al., 2017; Liu et al., 2018).

This involves using durable message queues and

event stores that support at-least-once delivery and

transactional write operations. For instance, services

may push messages to Kafka or RabbitMQ, which

persist them on disk until they are acknowledged as

successfully processed. Combining retries with

durable queues ensures that transient faults (e.g.,

network errors or temporary unavailability) do not

result in lost data. It also allows for robust failover

scenarios where messages can be re-consumed from

the log or dead-letter queue after system recovery.

Effective failure analysis, logging, and observability

strategies are critical to identifying and mitigating

reliability issues. Distributed systems require

centralized logging to correlate events and errors

across multiple services. Structured logging—with

metadata such as correlation IDs, tenant IDs, and

error codes—enables real-time tracking and post-

mortem analysis. Observability tools like

Prometheus, Grafana, Datadog, and OpenTelemetry

offer insights into service health, latency, retry rates,

and failure patterns. Alerts can be configured to

trigger when thresholds are exceeded, allowing for

proactive remediation. Tracing systems help visualize

end-to-end request flows and isolate bottlenecks or

cascading failures, especially important in event-

driven chains involving multiple asynchronous

services.

Achieving high reliability in cloud-native, event-

driven systems requires a comprehensive application

of architectural patterns and operational best

practices. Circuit breakers, idempotent consumers,

and deduplication protect systems from repeated

failures and unintended side effects. Combining retry

mechanisms with persistent messaging guarantees

durability and facilitates recovery. Finally, rigorous

logging, observability, and failure analysis practices

ensure that systems remain transparent, diagnosable,

and continuously improvable. These patterns

collectively build a foundation for resilient,

enterprise-grade software in dynamic cloud

environments.

2.5 Use Cases and Implementation Scenarios

Event-driven architectures (EDAs) are central to the

design of modern, scalable, and resilient cloud-native

systems. Leveraging asynchronous communication,

event brokers, and durable messaging, EDAs enable

modular services to collaborate without tight

coupling. In practical deployments, this architectural

pattern supports a variety of mission-critical and real-

© MAY 2019 | IRE Journals | Volume 2 Issue 11 | ISSN: 2456-8880

IRE 1710020 ICONIC RESEARCH AND ENGINEERING JOURNALS 489

time applications across domains (Petrenko, 2017;

Thomas et al., 2018). This explores four core

implementation scenarios that exemplify the utility of

event-driven systems: order processing, event

sourcing, notification systems, and workflow

orchestration.

Order processing systems are among the most

prevalent use cases for event-driven architecture. In

traditional monolithic applications, order fulfillment

was typically handled through synchronous, tightly

coupled steps—inventory checks, payment

authorization, and shipping logistics—all occurring

in sequence. This design, while straightforward,

becomes brittle and unscalable as demand grows or

third-party integrations are introduced.

By adopting an event-driven model, each stage in the

order pipeline is decoupled and triggered via events.

For instance, placing an order emits an OrderCreated

event, which is consumed by inventory and payment

services. Once payment is confirmed, another event

(PaymentSuccessful) is published, triggering the

shipping module. This reactive chain of operations

enhances reliability and allows for parallel execution,

retries, and independent scaling of services. Message

brokers like Apache Kafka, RabbitMQ, or cloud-

managed queues (e.g., AWS SQS) are instrumental in

facilitating this communication, while durable

message storage ensures that no transaction is lost.

Event sourcing is a pattern where state changes are

recorded as a sequence of immutable events rather

than as mutable snapshots. This approach aligns

seamlessly with event-driven architectures, allowing

services to reconstruct the current state by replaying

historical events.

For example, a banking application may store a

ledger of AccountCredited and AccountDebited

events instead of maintaining a single account

balance field. This history provides a full audit trail

for compliance, debugging, or rollback purposes.

Systems like Apache Kafka support this pattern

through durable, ordered logs, enabling services to

consume events from any point in time. Event

sourcing also enables temporal queries and

reproducibility, critical in regulated domains such as

finance and healthcare.

Event persistence is central to this model. Exactly-

once delivery, event immutability, and idempotent

consumers ensure data consistency and traceability.

Cloud-native databases like Amazon DynamoDB

Streams, EventBridge, or Azure Event Hubs further

facilitate event-sourced systems with integration

support and serverless triggers.

Real-time user notification systems and webhook

dispatchers benefit significantly from event-driven

design. When a triggering event—such as password

reset, file upload, or purchase completion—occurs,

the system can emit an event that is picked up by a

notification service. This service may then send an

email, push notification, or SMS based on user

preferences.

Webhook systems often deliver messages to third-

party URLs when specific events occur. Using event

queues, the system can manage retries, handle rate-

limiting, and isolate failures. Persistent queues ensure

webhook messages are not lost during transmission

or third-party outages. Tools like AWS SNS, Azure

Logic Apps, and Google Cloud Tasks offer managed

solutions for implementing reliable notification

pipelines with retry policies, dead-letter queues, and

exponential backoff strategies.

In microservices architectures, workflow

orchestration enables coordination of multiple

services to complete a business process (Oberhauser

and Stigler, 2017; Gallipeau and Kudrle, 2018).

Event-driven systems can facilitate both

choreography (decentralized) and orchestration

(centralized control) models.

In choreography, each microservice emits events

upon completing its task, triggering the next step.

This method promotes autonomy but may lead to

emergent complexity. In contrast, orchestration uses

a central orchestrator (e.g., AWS Step Functions,

Temporal, or Camunda) to manage the flow

explicitly, invoking services in a predefined sequence

and responding to their completion events.

Resilient orchestration depends heavily on message

persistence, event replay, and failure recovery

mechanisms. Event logs ensure workflows can

resume from the last known state, while retry queues

© MAY 2019 | IRE Journals | Volume 2 Issue 11 | ISSN: 2456-8880

IRE 1710020 ICONIC RESEARCH AND ENGINEERING JOURNALS 490

allow reprocessing in case of service disruptions.

Observability and tracing (e.g., OpenTelemetry,

Jaeger) further aid in monitoring workflow health and

diagnosing issues.

Event-driven architectures provide a robust

foundation for implementing scalable, reliable

systems across a wide spectrum of use cases. From

transaction processing and event sourcing to real-

time notifications and service orchestration, the use

of persistent messaging and event brokers ensures

that critical operations remain fault-tolerant and

maintainable in modern cloud environments.

2.6 Challenges and Mitigation Strategies

Event-driven architectures offer unparalleled

flexibility, scalability, and resilience in cloud-native

enterprise systems. However, these benefits come

with a range of operational challenges, especially

when dealing with asynchronous communication,

retry mechanisms, and persistent messaging.

Effective use of retry queues and durable event logs

requires a careful balance between reliability and

complexity as shown in figure 2 (Debski et al., 2017;

Beyer et al., 2018). This explores four major

challenges—poison messages, stateful retries, retry

tuning, and security integrity—and outlines

mitigation strategies essential for robust system

design.

One of the most common reliability challenges in

message-driven systems is the poison message

problem. Poison messages are events that repeatedly

fail processing due to schema mismatches,

malformed payloads, or unhandled edge cases in the

consuming service. Continuous retries of these

messages can lead to resource exhaustion, increased

latency, and degraded system performance.

To mitigate this, systems should implement dead-

letter queues (DLQs) to isolate and store such

problematic messages after a configurable number of

failed attempts. Cloud services like AWS SQS, Azure

Service Bus, and Google Pub/Sub support DLQs

natively, enabling developers to inspect, debug, and

correct messages without halting the system.

Additionally, message validation at the producer

level, coupled with schema enforcement (e.g., using

Apache Avro or Protobuf), can prevent malformed

events from entering the system.

Figure 2: Challenges and Mitigation Strategies

Replay errors—which occur when previously

successful messages are mistakenly reprocessed—

can also affect system integrity. Idempotency

controls (e.g., using message IDs, deduplication

tokens, or unique transaction identifiers) are critical

in ensuring repeat delivery does not result in

duplicated or inconsistent state transitions.

Retrying failed operations in a distributed

architecture introduces complexity, particularly when

state management spans multiple services. Stateless

retries can lead to inconsistent outcomes when

compensating transactions or multi-step workflows

are involved.

One mitigation strategy is to externalize state

management using a saga pattern or a workflow

engine like Temporal, AWS Step Functions, or

Netflix Conductor. These orchestrators track state

transitions and outcomes of each retryable task,

enabling compensation logic or rollback actions in

the event of persistent failure. This approach ensures

retry mechanisms are transactionally aware and

preserves data integrity across boundaries.

For scenarios requiring partial retries (e.g., after a

network timeout during downstream service

interaction), consider implementing checkpointing

within consumers (Vivian et al., 2016; Ramakrishnan

et al., 2017). This allows services to resume

processing from the last confirmed successful stage,

© MAY 2019 | IRE Journals | Volume 2 Issue 11 | ISSN: 2456-8880

IRE 1710020 ICONIC RESEARCH AND ENGINEERING JOURNALS 491

minimizing redundant operations and the likelihood

of side effects.

Retry mechanisms must strike a balance between

persistency and responsiveness. Excessive retry

attempts can flood message queues, consume

compute resources, and delay fresh messages.

Conversely, overly aggressive failure handling may

prematurely discard messages that could succeed on a

subsequent attempt.

To achieve this balance, systems should implement

exponential backoff with jitter—a randomized delay

strategy that reduces retry collisions and avoids retry

storms. This technique is supported in most

messaging frameworks (e.g., AWS SDK retry logic,

Apache Kafka retry policies). Furthermore,

developers should define maximum retry limits,

beyond which messages are redirected to a DLQ or

flagged for manual intervention.

Rate limiting and circuit breaker patterns can also

safeguard service availability. By pausing retries

temporarily when a dependent service is

overwhelmed or failing consistently, the system

avoids self-amplifying failures and allows for

recovery windows without overloading downstream

components.

Retrying messages across service boundaries

introduces vulnerabilities in security and data

integrity. Each retry is a potential vector for

unauthorized access, man-in-the-middle attacks, or

message tampering, especially in multi-tenant or

internet-facing systems.

Mitigation begins with end-to-end encryption—using

protocols such as TLS for transport and JWT or

OAuth2 for identity assertion. Messages should be

digitally signed or hashed (e.g., using HMAC) to

ensure tamper-proof delivery, and all services should

verify these signatures before processing.

Additionally, sensitive data should be masked or

encrypted at rest in queues and logs, ensuring that

replayed or persisted messages do not expose

personal or proprietary information. Role-based

access controls (RBAC) and audit logging should be

enforced for all queue interactions, retry executions,

and message inspections, ensuring traceability and

compliance.

Retry queues and message persistence enhance the

fault tolerance of event-driven systems, but they also

introduce new risks that require deliberate

management. By isolating poison messages,

orchestrating stateful retries, tuning retry strategies,

and securing message flows, organizations can build

robust cloud-native systems that gracefully recover

from failures while maintaining high responsiveness

and integrity.

2.7 Future Research Directions

As cloud-native architectures mature, new challenges

and opportunities emerge for advancing software

reliability. Future research in retry queues and

message persistence within event-driven

environments is poised to leverage emerging

technologies such as artificial intelligence, serverless

computing, and observability integration (Nurkiewicz

and Christensen, 2016; Gupta et al., 2017).

Moreover, evolving cloud interoperability demands

standardized approaches for message durability and

fault recovery across heterogeneous platforms as

shown in figure 3. Together, these research directions

aim to create intelligent, resilient, and adaptive

systems that can proactively mitigate failures,

optimize message processing, and ensure service

continuity.

One promising direction is the use of AI-assisted

retry decision-making and queue management.

Current retry strategies often rely on static policies

such as exponential backoff or fixed retry limits,

which may not adapt well to dynamic workloads or

context-specific failure modes. AI and machine

learning models offer the potential to make data-

driven retry decisions based on historical success

rates, real-time service health, and contextual

attributes such as message type, user behavior, or

time of day. For instance, reinforcement learning

agents could be trained to determine optimal retry

timing, routing retries to healthier replicas, or

prioritizing critical messages under constrained

system conditions. Such AI-assisted queues could

also auto-adjust retry intervals, detect retry loops, or

© MAY 2019 | IRE Journals | Volume 2 Issue 11 | ISSN: 2456-8880

IRE 1710020 ICONIC RESEARCH AND ENGINEERING JOURNALS 492

predict downstream congestion, reducing both

latency and resource waste.

Another area of future exploration involves serverless

event-driven patterns with advanced reliability

guarantees. While serverless platforms (e.g., AWS

Lambda, Azure Functions) offer inherent scalability

and event abstraction, their ephemeral nature and

limited execution time present challenges for

handling retries and persistence. Research is needed

into hybrid models that combine ephemeral compute

with durable execution contexts—such as using

stateful services like AWS Step Functions or Durable

Functions—to coordinate retries, persist state across

failures, and ensure transactional consistency. Further

innovation may include integrating retry semantics

directly into serverless runtimes, enabling developers

to declaratively define retry logic, backoff policies,

and dead-letter handling without external

orchestration.

Figure 3: Future Research Directions

A third key research frontier lies in integration with

observability platforms for predictive reliability.

Currently, most retry and persistence mechanisms

operate reactively, responding to failures after they

occur. Future systems could benefit from

observability-driven intelligence, where telemetry

data—collected via tools like OpenTelemetry,

Prometheus, or Grafana—is analyzed in real time to

anticipate failures and preemptively adjust system

behavior. For example, if latency spikes or error rates

are detected in downstream services, the retry

subsystem could delay retries or reroute them to

alternate queues or regions. Predictive reliability

models may leverage time-series forecasting,

anomaly detection, or unsupervised learning to

identify emerging failure patterns, helping system

operators and self-healing mechanisms intervene

before widespread service degradation occurs.

Finally, as multi-cloud and hybrid deployments

become more prevalent, there is a growing need for

evolving standards for cross-cloud message durability

and reprocessing. Each cloud platform currently

implements its own retry logic, message persistence

guarantees, and delivery semantics, which

complicates interoperability and consistent failure

handling across environments. Future research should

focus on developing cross-cloud abstractions and

standards for reliable messaging—potentially

building on existing initiatives such as CloudEvents,

CNCF projects like Knative, or open messaging

protocols like AMQP and MQTT (Kaur et al., 2017;

Blair, 2018). Standardized metadata formats for

message retries, failure states, and idempotency

tracking could enable seamless failover, auditing, and

reprocessing across providers. Additionally,

standardized APIs for durable retry stores could

facilitate portability of message queues and recovery

workflows across cloud boundaries.

The future of reliable cloud-native systems hinges on

intelligent, adaptive, and interoperable retry and

persistence strategies. AI-powered decision-making,

serverless reliability patterns, predictive observability

integration, and cross-cloud standardization offer rich

avenues for advancing the state of the art. Research

in these domains will enable the next generation of

event-driven systems to not only survive failures but

to anticipate, adapt to, and recover from them with

minimal human intervention—paving the way for

more autonomous, robust, and intelligent enterprise

applications (Laboy and Fannon, 2016; Leitao et al.,

2016; Hukerikar and Engelmann, 2017).

CONCLUSION

Retry queues and message persistence are

foundational components in architecting reliable,

fault-tolerant, event-driven systems in modern cloud

environments. Together, they enable applications to

gracefully recover from transient failures, maintain

continuity during service interruptions, and uphold

data integrity across distributed components. Retry

queues automate the reprocessing of failed operations

using configurable logic—such as backoff strategies

© MAY 2019 | IRE Journals | Volume 2 Issue 11 | ISSN: 2456-8880

IRE 1710020 ICONIC RESEARCH AND ENGINEERING JOURNALS 493

and retry limits—while message persistence ensures

that critical events are durably stored until they are

successfully processed or explicitly discarded. These

mechanisms significantly reduce the risk of data loss,

operational downtime, and cascading failures in

asynchronous workflows.

For enterprise-grade cloud systems, the implications

are profound. As businesses increasingly rely on

microservices, serverless functions, and event-driven

architectures to support real-time operations and

elastic scaling, robust failure-handling patterns

become essential. The use of dead-letter queues,

durable messaging backends (e.g., Kafka, RabbitMQ,

AWS SQS), and orchestrated retry strategies ensures

that critical transactions—such as order fulfillment,

payment processing, and notification delivery—can

proceed reliably even amid infrastructure faults or

application bugs. These patterns support continuous

availability, facilitate rapid incident resolution, and

strengthen system observability through traceable

error-handling paths.

Ultimately, the thoughtful integration of retry queues

and message persistence exemplifies the shift from

reactive to proactive reliability engineering in cloud

software design. Rather than assuming perfect

connectivity or instant processing, systems are

deliberately architected with resilience, redundancy,

and recovery in mind. This paradigm not only

improves uptime and customer trust but also aligns

with DevOps and Site Reliability Engineering (SRE)

best practices. As event-driven ecosystems grow

more complex, future work will extend these

concepts through AI-augmented retries, decentralized

queues, and intelligent routing mechanisms. In

conclusion, building fault-tolerant event-driven

software depends not just on scaling efficiently but

on handling failure predictably—where retry queues

and persistence serve as critical enablers of enterprise

resilience.

REFERENCES

[1] Ajonbadi Adeniyi, H., AboabaMojeed-Sanni, B.

and Otokiti, B.O., 2015. Sustaining competitive

advantage in medium-sized enterprises (MEs)

through employee social interaction and helping

behaviours. Journal of Small Business and

Entrepreneurship, 3(2), pp.1-16.

[2] Ajonbadi, H.A., Lawal, A.A., Badmus, D.A.

and Otokiti, B.O., 2014. Financial control and

organisational performance of the Nigerian

small and medium enterprises (SMEs): A

catalyst for economic growth. American Journal

of Business, Economics and Management, 2(2),

pp.135-143.

[3] Ajonbadi, H.A., Otokiti, B.O. and Adebayo, P.,

2016. The efficacy of planning on

organisational performance in the Nigeria

SMEs. European Journal of Business and

Management, 24(3), pp.25-47.

[4] Akinbola, O.A. and Otokiti, B.O., 2012. Effects

of lease options as a source of finance on

profitability performance of small and medium

enterprises (SMEs) in Lagos State,

Nigeria. International Journal of Economic

Development Research and Investment, 3(3),

pp.70-76.

[5] Amos, A.O., Adeniyi, A.O. and Oluwatosin,

O.B., 2014. Market based capabilities and

results: inference for telecommunication service

businesses in Nigeria. European Scientific

Journal, 10(7).

[6] Awe, E.T. and Akpan, U.U., 2017. Cytological

study of Allium cepa and Allium sativum.

[7] Awe, E.T., 2017. Hybridization of snout mouth

deformed and normal mouth African catfish

Clarias gariepinus. Animal Research

International, 14(3), pp.2804-2808.

[8] Baek, H., Srivastava, A. and Van der Merwe, J.,

2017, May. Cloudsight: A tenant-oriented

transparency framework for cross-layer cloud

troubleshooting. In 2017 17th IEEE/ACM

International Symposium on Cluster, Cloud and

Grid Computing (CCGRID) (pp. 268-273).

IEEE.

[9] Bahill, A.T. and Madni, A.M., 2017. Tradeoff

decisions in system design (pp. p-476). Cham:

Springer International Publishing.

[10] Beyer, B., Murphy, N.R., Rensin, D.K.,

Kawahara, K. and Thorne, S., 2018. The site

reliability workbook: practical ways to

implement SRE. " O'Reilly Media, Inc.".

[11] Blair, G., 2018, July. Complex distributed

systems: The need for fresh perspectives.

In 2018 IEEE 38th International Conference on

© MAY 2019 | IRE Journals | Volume 2 Issue 11 | ISSN: 2456-8880

IRE 1710020 ICONIC RESEARCH AND ENGINEERING JOURNALS 494

Distributed Computing Systems (ICDCS) (pp.

1410-1421). IEEE.

[12] Cardin, C., 2016. Design of a horizontally

scalable backend application for online games.

[13] Debski, A., Szczepanik, B., Malawski, M.,

Spahr, S. and Muthig, D., 2017. A scalable,

reactive architecture for cloud

applications. IEEE Software, 35(2), pp.62-71.

[14] Dobbelaere, P. and Esmaili, K.S., 2017, June.

Kafka versus RabbitMQ: A comparative study

of two industry reference publish/subscribe

implementations: Industry Paper.

In Proceedings of the 11th ACM international

conference on distributed and event-based

systems (pp. 227-238).

[15] Erik, S. and Emma, L., 2018. Real-Time

Analytics with Event-Driven Architectures:

Powering Next-Gen Business

Intelligence. International Journal of Trend in

Scientific Research and Development, 2(4),

pp.3097-3111.

[16] Evans-Uzosike, I.O. & Okatta, C.G., 2019.

Strategic Human Resource Management:

Trends, Theories, and Practical Implications.

Iconic Research and Engineering Journals, 3(4),

pp.264-270.

[17] Gallipeau, D. and Kudrle, S., 2018.

Microservices: Building blocks to new

workflows and virtualization. SMPTE Motion

Imaging Journal, 127(4), pp.21-31.

[18] Ganesan, A., Alagappan, R., Arpaci-Dusseau,

A.C. and Arpaci-Dusseau, R.H., 2017.

Redundancy does not imply fault tolerance:

Analysis of distributed storage reactions to file-

system faults. ACM Transactions on Storage

(TOS), 13(3), pp.1-33.

[19] Garrison, J. and Nova, K., 2017. Cloud native

infrastructure: patterns for scalable

infrastructure and applications in a dynamic

environment. " O'Reilly Media, Inc.".

[20] Gunawi, H.S., Suminto, R.O., Sears, R.,

Golliher, C., Sundararaman, S., Lin, X., Emami,

T., Sheng, W., Bidokhti, N., McCaffrey, C. and

Srinivasan, D., 2018. Fail-slow at scale:

Evidence of hardware performance faults in

large production systems. ACM Transactions on

Storage (TOS), 14(3), pp.1-26.

[21] Gupta, N., Prakash, A. and Tripathi, R., 2017.

Adaptive beaconing in mobility aware

clustering based MAC protocol for safety

message dissemination in VANET. Wireless

Communications and Mobile

Computing, 2017(1), p.1246172.

[22] Hukerikar, S. and Engelmann, C., 2017.

Resilience design patterns: A structured

approach to resilience at extreme scale. arXiv

preprint arXiv:1708.07422.

[23] Hussain, F., Anpalagan, A. and Vannithamby,

R., 2017. Medium access control techniques in

M2M communication: survey and critical

review. Transactions on Emerging

Telecommunications Technologies, 28(1),

p.e2869.

[24] Ibitoye, B.A., AbdulWahab, R. and Mustapha,

S.D., 2017. Estimation of drivers’ critical gap

acceptance and follow-up time at four–legged

unsignalized intersection. CARD International

Journal of Science and Advanced Innovative

Research, 1(1), pp.98-107.

[25] Jha, S., Formicola, V., Di Martino, C., Dalton,

M., Kramer, W.T., Kalbarczyk, Z. and Iyer,

R.K., 2017. Resiliency of hpc interconnects: A

case study of interconnect failures and recovery

in blue waters. IEEE Transactions on

Dependable and Secure Computing, 15(6),

pp.915-930.

[26] John, V. and Liu, X., 2017. A survey of

distributed message broker queues. arXiv

preprint arXiv:1704.00411.

[27] Jose, J., 2018. Internet of things. Khanna

Publishing House.

[28] Joshi, A., Nagarajan, V., Cintra, M. and Viglas,

S., 2018, June. Dhtm: Durable hardware

transactional memory. In 2018 ACM/IEEE 45th

Annual International Symposium on Computer

Architecture (ISCA) (pp. 452-465). IEEE.

[29] Kaur, K., Sharma, D.S. and Kahlon, D.K.S.,

2017. Interoperability and portability

approaches in inter-connected clouds: A

review. ACM Computing Surveys

(CSUR), 50(4), pp.1-40.

[30] Kristić, A., Ožegović, J. and Kedžo, I., 2018.

Design and Modeling of Self‐Adapting MAC

(SaMAC) Protocol with Inconstant Contention

Loss Probabilities. Wireless communications

and mobile computing, 2018(1), p.6375317.

[31] Laboy, M. and Fannon, D., 2016. Resilience

theory and praxis: a critical framework for

© MAY 2019 | IRE Journals | Volume 2 Issue 11 | ISSN: 2456-8880

IRE 1710020 ICONIC RESEARCH AND ENGINEERING JOURNALS 495

architecture. Enquiry The ARCC Journal for

Architectural Research, 13(1).

[32] Lawal, A.A., Ajonbadi, H.A. and Otokiti, B.O.,

2014. Leadership and organisational

performance in the Nigeria small and medium

enterprises (SMEs). American Journal of

Business, Economics and Management, 2(5),

p.121.

[33] Lawal, A.A., Ajonbadi, H.A. and Otokiti, B.O.,

2014. Strategic importance of the Nigerian

small and medium enterprises (SMES): Myth or

reality. American Journal of Business,

Economics and Management, 2(4), pp.94-104.

[34] Leitao, P., Karnouskos, S., Ribeiro, L., Lee, J.,

Strasser, T. and Colombo, A.W., 2016. Smart

agents in industrial cyber–physical

systems. Proceedings of the IEEE, 104(5),

pp.1086-1101.

[35] Liu, J., Shen, H. and Narman, H.S., 2018.

Popularity-aware multi-failure resilient and

cost-effective replication for high data durability

in cloud storage. IEEE Transactions on Parallel

and Distributed Systems, 30(10), pp.2355-2369.

[36] Marcu, O.C., Costan, A., Antoniu, G., Pérez-

Hernández, M.S., Tudoran, R., Bortoli, S. and

Nicolae, B., 2017, December. Towards a unified

storage and ingestion architecture for stream

processing. In 2017 IEEE International

Conference on Big Data (Big Data) (pp. 2402-

2407). IEEE.

[37] Morar, M., Kumar, A., Abbott, M., Gautam,

G.K., Corbould, J. and Bhambhani, A.,

2017. Robust Cloud Integration with Azure.

Packt Publishing Ltd.

[38] Mukwevho, M.A. and Celik, T., 2018. Toward a

smart cloud: A review of fault-tolerance

methods in cloud systems. IEEE Transactions

on Services Computing, 14(2), pp.589-605.

[39] Narkhede, N., Shapira, G. and Palino, T.,

2017. Kafka: the definitive guide: real-time data

and stream processing at scale. " O'Reilly

Media, Inc.".

[40] Nurkiewicz, T. and Christensen, B.,

2016. Reactive programming with RxJava:

creating asynchronous, event-based

applications. " O'Reilly Media, Inc.".

[41] Nwaimo, C.S., Oluoha, O.M. & Oyedokun, O.,

2019. Big Data Analytics: Technologies,

Applications, and Future Prospects. Iconic

Research and Engineering Journals, 2(11),

pp.411-419.

[42] Oberhauser, R. and Stigler, S., 2017.

Microflows: enabling agile business process

modeling to orchestrate semantically-annotated

microservices. In Seventh International

Symposium on Business Modeling and Software

Design (BMSD 2017), Volume 1 (pp. 19-28).

[43] Ogundipe, F., Sampson, E., Bakare, O.I.,

Oketola, O. and Folorunso, A., 2019. Digital

Transformation and its Role in Advancing the

Sustainable Development Goals

(SDGs). transformation, 19, p.48.

[44] Oni, O., Adeshina, Y.T., Iloeje, K.F. and

Olatunji, O.O., ARTIFICIAL INTELLIGENCE

MODEL FAIRNESS AUDITOR FOR LOAN

SYSTEMS. Journal ID, 8993, p.1162.

[45] Otokiti, B.O. and Akinbola, O.A., 2013. Effects

of lease options on the organizational growth of

small and medium enterprise (SME’s) in Lagos

State, Nigeria. Asian Journal of Business and

Management Sciences, 3(4), pp.1-12.

[46] Otokiti, B.O., 2012. Mode of entry of

multinational corporation and their

performance in the Nigeria market (Doctoral

dissertation, Covenant University).

[47] Otokiti, B.O., 2017. A study of management

practices and organisational performance of

selected MNCs in emerging market-A Case of

Nigeria. International Journal of Business and

Management Invention, 6(6), pp.1-7.

[48] Otokiti, B.O., 2018. Business regulation and

control in Nigeria. Book of readings in honour

of Professor SO Otokiti, 1(2), pp.201-215.

[49] Park, P., Ergen, S.C., Fischione, C., Lu, C. and

Johansson, K.H., 2017. Wireless network design

for control systems: A survey. IEEE

Communications Surveys & Tutorials, 20(2),

pp.978-1013.

[50] Petrenko, A., 2017. Distributed Software

Development Tools for Distributed Scientific

Applications. Recent Progress in Parallel and

Distributed Computing, p.69.

[51] Pflüger, D., Mehl, M., Valentin, J., Lindner, F.,

Pfander, D., Wagner, S., Graziotin, D. and

Wang, Y., 2016, November. The scalability-

efficiency/maintainability-portability trade-off

in simulation software engineering: Examples

and a preliminary systematic literature review.

© MAY 2019 | IRE Journals | Volume 2 Issue 11 | ISSN: 2456-8880

IRE 1710020 ICONIC RESEARCH AND ENGINEERING JOURNALS 496

In 2016 Fourth International Workshop on

Software Engineering for High Performance

Computing in Computational Science and

Engineering (SE-HPCCSE) (pp. 26-34). IEEE.

[52] Raj, P., 2018. The Hadoop ecosystem

technologies and tools. In Advances in

computers (Vol. 109, pp. 279-320). Elsevier.

[53] Ramakrishnan, R., Sridharan, B., Douceur, J.R.,

Kasturi, P., Krishnamachari-Sampath, B.,

Krishnamoorthy, K., Li, P., Manu, M.,

Michaylov, S., Ramos, R. and Sharman, N.,

2017, May. Azure data lake store: a hyperscale

distributed file service for big data analytics.

In Proceedings of the 2017 ACM International

Conference on Management of Data (pp. 51-

63).

[54] Rosenbaum, S., 2017. Serverless computing in

Azure with. NET. Packt Publishing Ltd.

[55] Shalev, N., 2018. Improving system security

and reliability with OS help. Research Thesis.

[56] SHARMA, A., ADEKUNLE, B.I.,

OGEAWUCHI, J.C., ABAYOMI, A.A. and

ONIFADE, O., 2019. IoT-enabled Predictive

Maintenance for Mechanical Systems:

Innovations in Real-time Monitoring and

Operational Excellence.

[57] Shin, S., Tirukkovalluri, S.K., Tuck, J. and

Solihin, Y., 2017, October. Proteus: A flexible

and fast software supported hardware logging

approach for nvm. In Proceedings of the 50th

Annual IEEE/ACM International Symposium on

Microarchitecture (pp. 178-190).

[58] Theorin, A., Bengtsson, K., Provost, J., Lieder,

M., Johnsson, C., Lundholm, T. and Lennartson,

B., 2017. An event-driven manufacturing

information system architecture for Industry

4.0. International journal of production

research, 55(5), pp.1297-1311.

[59] Thomas, G.A., Botha, R.A. and Greunen, D.V.,

2018. A Virtual-Community-Centric

Architecture to Support Coordination in a Large

Scale Distributed Environment: A Case Study

of the South African Public Sector.

[60] Vivian, J., Rao, A., Nothaft, F.A., Ketchum, C.,

Armstrong, J., Novak, A., Pfeil, J., Narkizian, J.,

Deran, A.D., Musselman-Brown, A. and

Schmidt, H., 2016. Rapid and efficient analysis

of 20,000 RNA-seq samples with Toil. bioRxiv,

p.062497.

[61] Wang, Q., Hassan, W.U., Bates, A. and Gunter,

C., 2018, February. Fear and logging in the

internet of things. In Network and Distributed

Systems Symposium.

