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Abstract- In order to prove the existence and 

uniqueness of optimum control for linear delay 

systems with distributed delays in state and control, 

the paper builds on the work of [6]. It is 

demonstrated that the optimal control is distinct 

and, assuming the system is reasonably 

controllable, takes the following form: 


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Index Terms : optimal control, linear Delays, 

Distributed delays, Null controllability. 

 

I. INTRODUCTION 

 

The study of optimal control by the control theorist is 

fast becoming fundamental as it presents the best 

amongst alternatives. As a result, the state of control 

theory is now presented in a comprehensive and 

thoughtful manner. 

 

 Presenting a systematic approach to the optimal 

control of linear systems with dispersed state and 

control delays is the aim of this work. 

 

There are many definitions of optimal control 

derivable from controllability that is highly depends 

on the class of systems we are dealing with. 

However, it should be stressed that the result is 

achieved in minimum time. In the same view, the 

problem reaching the origin in time t, corresponds to 

null controllability. E.N. Chukwu [3] resolved the 

linear Neutral Functional systems time most 

effectively problem without delay in the control 

provided by 

 

)(),(),( tBuxtLxtD
dt

d
tt +=  

 

where the target is an ongoing function in an n-

dimensional Euclidean space, and the parameter set is 

in an m-dimensional unit cube. 

 

This study provides essential and acceptable 

circumstances for optimal control to exist and be 

unique. However, in some cases stability of the 

systems under study have been established as in [2] 

and [7]. 

 

In a related work, Onwuatn [6] studied the system; 
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and resolved the problem of optimal control of 

discrete systems in which he showed that, the degree 

to which a system can be controlled, then it is 

sufficient for it to be optimally controllable. 

 

Eke and Nse [1] also diagnosed the ideal neutral 

control of the system with a non-linear base given by  

 

)()(),(),(( tutBtxAxtD
dt

d
t +=  

 

They employ the method of the maximum principle 

of Pontryagin to be able to obtain the term of the 

most effect control. It is demonstrated that whenever 

the ideal control is present, then it is unique and bang 

- bang. Klamka [5] investigate the system, 


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stustdsHtxtAtx  and gave 

conditions for its relative controllability. Here in 
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system [5], the delays are distributed. He showed that 

the system is relative controllable using square 

integrable controls if and if rank ;),( 10 nttW =  

where ),( 10 ttW  is the controllability grammian. 

 

II. MATERIALS AND METHODS 

 

Notations and Preliminaries 

In this study, we consider the linear delay system 

given by  


−

++=

0

)(),([),()(
h

t stustdsHxtLtx   

     

 (1.1)  

,)( nEtx =  ,)( mEtu =  where 

 


= −

+−=
0

0

),(),()(),(
k h

kkt txtAWtxAxtL   

                 

(1.2) 

 

Satisfied almost everywhere on ],[ 10 tt . As mn,  be 

integers that are positive, ),( +−=E be the 

actual line. 
nE is the n-dimensional Euclidean space 

with the The Euclidean norm is represented as  ; In 

E, j might be any interval. The typical Lebesque 

region of squared integrable functions (corresponding 

class of) from 
nEJ →  be represented by 

)],,([),( 1012

nn EttLEJL  which denotes the 

region of integrable variables from ),( 102 ttL  to 

mNnE n ,  will be employed for gathering all 

mn matrices with an appropriate norm. let 

0h be given. For a function 
nEthtx →− ],[: 0  

and ],,[ 10 ttt  we use the symbol tx  to represent 

the variables on [ 0,h− ] defined by 

)()( stxsxt +=  for ].0,[ hS −  The symbol 

)],0,([ nEhCC −=  represents the region of 

continuous variables mapping the interval [ ],0,h−  

0h  into 
nE . Likewise, for variables, 

,],[: 10

nEthtU →−  ],,[ 10 ttt  we use tu  to 

represent the variable on [-h,0]  defined by 

)()( stusu +=  for ]0,[ hS −  . ;)( Ctx   

);],,([ 102

mEttLu  ),( tL  is continuous in t and 

linear in ;  

 

),( stH is an mn  matrix-valued variable that can 

be quantified in ),( st . We'll presume that 

),( stH is of bounded-variation in S on [-h, 0] for 

each ];,[ 10 ttt  

 

).,],,([)( 101 mNnttLtA   The control-sets of 

interest in the follow-up are 

),,],,([ 102 mNnttLB =  U )],,([ 102

mEttL  a 

bounded, finite segment of B that has zero inside of it 

with relation to B. If X and Y are linear spaces and 

YXT →: is a mapping, We'll make use of the 

symbols D(T), R(T) and N(T) represents the null 

spaces, domain, and range of T respectively. 

 

Definition 1.1: At time t, the full stale of system (1.1) 

is provided by 

 },),({)( tt Uxtxtz =     (1.3) 

 

Definition 1.2: System (1.1) is relatively controllable 

on [ 10 ,tt ] if for every initial complete state z( 0t ) and 

every ,1

nEx  there exists a control BU  such 

the system (1.1)'s equivalent path matches 

11)( xtx =  whenever 00 )( xtx =  

 

Definition 1.3: System (1.1) is said to be relatively 

null controllable if in definition (1.2), the response 

)(tx  is achieved by the system 0)( 1 =tx  

 

Definition 1.4: If System (1.1) is included in the 

permissible controls, it is considered optimally 

controllable BU  , there exists a UU  such 

that the path of system (1.1) matches 11)( xtx =  in 

minimum time. 
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The solution of system (1.1) is of the form 

 
−

++=

t

t h

dsUstdXHtXttXuttx

0

0

100 )](),()[,()0(),(),,,( 
 

   (1.4) 

where 0);,(),( −++  hstXsX   

     

 (1.5) 

and ),( stX is the fundamental matrix solution of 

),( txtLx =     (1.6) 

 

satisfying )),(,(
),(

sXtL
dt

stdX
t =    (1.7) 

 

at most everywhere in (t,s) and  

=),( stX  (1.8) 

 

Now, we specify the mn  matrix of system 

controllability (1.1) by 

  




−−−−=
− −

1

0

0 0

1110 )],(),()][,(),([),(

t

t h h

T dssHdstXssHdstXttW 
 (1.9) 

where 

=),( stH       (1.10) 

 

and the matrix transpose is indicated by T. 

Definition 1.5: The set of Reachable ),( 01 ttR  of 

system (1.1) is a subset of E
n

 given by  

),( 01 ttR  






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

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−

1

0

0
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t

t h
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         (1.11) 

 

Definition 1.6: It is claimed that System (1.1) is 

appropriate in 
nE on ],[ 10 tt  

 if 
−

=−−

0

1 0)],(),([
h

T ssHdstXC    (1.12) 

at most everywhere, ],,[ 10 ttt   
nEc  implies 

that .0=c  

 

Definition 1.7: The attainable set )(tA  of system 

(1.1) is given by  UuutxtA = );,()(  and is the 

collection of all potential system solutions. The 

optimal control problem seeks to identify an 

acceptable control U* so that the outcome 

),,( utx   of a certain system reaches a goal point 

in the shortest amount of time 
t . This is the best 

control and 
t  the optimal time. The optimal 

question can thus be answered: 
u  is an optimal 

control if there exist  

 0),(),(: 1inf = utGxtAtt  for 1tt   and 

 0),(),(:min = utGxtAUu  for some 

1tt  . Let )(tz be a continuous target of the general 

control system given by system (1.1), if there exists 

an admissible control Uu and a time 0t  for 

which ),(),( 1 tzutx =  then there exists an optimal 

control,  that is the solution hits the target in 

minimum time. 

 

III.  RESULTS 

III.  

Here we state one proposition and one theorem for 

the relative controllability of system (1.1) 

Proposition 2.1: The following statements are 

equivalent 

(i) ),( 10 ttW  is non-singular for each 01 tt   

(ii) System (1.1) is proper in 
nE for each interval 

],[ 10 tt  

(iii) At each interval, System (1.1) is 

comparatively controlled
 

],[ 10 tt  

 

Proof: )()( iii   

Let 

  
− −

−−−−=
1

0

0 0

1110 .),(),()][,(),([),(

t

t h h

T dssHdstXssHdstXttW 

 Define the operator .)],,([: 102

nn EEttLK →  

  
− −

−−−−=
1

0

0 0

11 )()],(),()][,(),([)(

t

t h h

dussHdstXssHdstXuK         (2.1)  

 

From one Hilbert space to another, K is a continuous 

linear operator. Thus 
 EkR )(  is a proportional 

subspace and the relation is satisfied by its 
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orthogonal complement )())(( ' = kNkR   

      

     (2.2) 

 

where 
k  is the adjoint of K. By the non – 

singularity of ),( 10 ttW , The operator which is 

symmetric =TKK  ),( 10 ttW is positive definite, 

thus }}0{)({ ' =kR                               (2.3) 

 

for any 
nEc ,  2Lu ;    kuc,  = 

  uck ,  

 kuc,  = 

 
−

−−
1

0

0

1 )()],(),([

t

t h

dussHdstXc   

     (2.4) 

 
−

−−=
1

0

1

0

0

1 )()],(),([

t

t h

t

t

T dussHdstXC   

     (2.5) 

Thus k is given by 


−

−−→

0

101 ],[);,(),([
1

h

t

t

T ttssHdstXCC 

 

)( kN  is therefore the set of all such 
nEc  such 

that 

 0)],(),([ 1

0

=−−
−

ssHdstXC
h

T   (2.6) 

 

at most points in ].,[ 10 tt  since }}0{)({ =kN , 

These c are all corresponding to zero; that is 0=c . 

This establishes properness of system (1.1). 

)()( iiiii →  

 

We now demonstrate that, if system (1.1) is correct, it 

can be reasonably controlled at each 

interval ],[ 10 tt Let 
nEc , if system (1.1) is proper, 

then 0)],(),([ 1

0

=−−
−

ssHdstXC
h

T   at most 

which implies 0=c  

 

Thus, 

 
−

=−−
1

0

0

1

T 0)()],(),([C

t

t h

dussHdstX   

For 2Lu . Consequently, the sole vector 

perpendicular to the set  

 

 
−

−−=
1

0

0

2101 };)()],(),([{),(

t

t h

LudussdHstXttR 

     (2.7) 

 

is the zero vector. Hence ,0),( 01 =ttR that is, 

.),( 01

nEttR =  this indicates that the system is 

somewhat manageable on Euclidean terms ],[ 01 tt  

)()( iiii   

 

We now demonstrate that the controllability 

grammian, if the system is sufficiently controllable 

),( 10 ttWW =  is non – singular 

 

Assume for the purposes of this contradiction that W 

is singular. Then, an n-vector v exists such that 

.0=TvWU  Then  

  =−−
−

1

0

0)],(),([

2
0

1

t

t h

dssHdstXv   

                   (2.8) 

This implies that  

0)],(),([

2
0

1 =−−
−

 dssHdstXv
h

 at most 

everywhere. Hence 

0)],(),([ 1

0

=−−
−

ssHdstXv
h

 ,atmost 

everywhere for ],[ 10 ttt . The properness 

assumption is violated in this case because 0v . 

This completes the proof. 
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Theorem 2.1 

If and only if system (1.1) is reasonably controllable 

int0 ),( 10 ttR  for each 
01 tt  . 

 

Proof: 

),( 10 ttR  is a convex, closed subset of
nE . 

Consequently, a point on the border of
 

),( 10 ttR  

suggests the presence of a support plane   of 

),( 10 ttR  through 1y . That is 0)( 1 − yyCT
 for 

each ),( 10 ttRy  where 0c  is an outward 

normal to  . If u, is the control that goes with 1y , 

we have 

   
− −

−−−
1

0

1

0

0 0

11 )()],(),([)()],(),,([

t

t h

t

t h

TT dussHdstXCdussHdstXC 

 

                                                          (2.9) 

 

For each Uu . This last inequality holds if and 

only if 

   
− −

−−−−
1

0

1

0

0 0

111 )()],(),([)()],(),([

t

t h

t

t h

TT dussHdstXCdussHdstXC 
 

 
−

−−=
1

0

0

1 )()],(),(

t

t h

T dussHdstXC   (2.10) 

and  


−

−−=

0

1 )()],(),(sgn[)(
h

ussHdstXtU   

     (2.11) 

 

As 1y is on the boundary. Given that we've always 

);,(0 10 ttR  If zero weren't located inside 

),,( 10 ttR  then it is on the boundary. Therefore, 

based on the previous logic, this suggests that  

 
−

−−=
1

0

0

1 )()],(),([0

t

t h

T dussHdstXC     (2.12) 

So that 
−

=−−

0

1 0),(),(
h

T ssHdstXC    at 

most everywhere on ],[ 10 ttt  

By its own definition, this indicates that a system is 

improper, since 0c . 

 

Hence, if int0   ),,( 10 ttR  then 


−

=−−

0

1 0),(),(
h

T ssHdstXC   

 

at most everywhere on ],[ 10 ttt  would imply 

0=c proving properness of system (1.1), We 

determine the system's relative controllability (1.1) 

for every interval. 

 

3.1OPTIMALITY CONDITION OF THE SYSTEM 

 

Now, we go back to our initial objective of striking a 

constantly moving target )(tz  in least time. 

Consider the trajectory of the system (1.1) given by  


−

−+=

0

0101 ),(),([))0(,,(),,,(
h

dsussHdsttXuttx   

Or equivalently )()()( txtZtW −=  (3.1) 

 

Then reaching )(tZ  at time t corresponds to 

)0,()()()( tRtWtxtZ −  

We now show that if 
u is the optimal control with 

time 
t  the optimal time, then  

 

 
− −

 −−=

0 0

0 )0,()(),()[,()0()0,()(
h h

tRttudsutHdsstXtXtZ 
 

                                                                         (3.2) 

 

That is )( tu  is on the border of the reachable set 

that is limited. 

 

Theorem 3.1 

Let )(tu
 be the optimal control with 

t  the 

minimum time, then )0,()(   tRtu , the 

boundary of )0,( tR  

 

Proof: 

Assume 
u is used to hit )(t in time 

t , then  
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)0,()(),()[,()0()0,()(
1

0

0

0



−

 −−−   tRtUdutHdsstXtXtZ

t

t h



                                                                 (3.3) 

Assume )( tu  is not on the boundary then  

int)( tu  ),0,( tR   .0t  Hence there exists a 

ball )),(( rtuB 
 of radius r, about )( tu  such that 

)0,()),((   tRrtuB  because )0,( tR is a 

continuous function of t, there exists a 0d  such 

that )0,()),((   tRrtuB  for 
 − ttt  .  

Therefore )0,()(   tRtu  for tt − . This 

contradicts the optimality of 
t , hence 

)0,()(   tRtu  

 

Theorem 3.2 

If 
u be an optimal control transferring system (1.1) 

from )0(x to )( tZ  in minimum time, 
t , then 

there exists a non-zero function 
nEC  such that 

}),(sgn{)( HstXCtu T −=    (3.4) 

Proof: 

Define HstXty ),()( −−   

 
−

 −−−=
1

0

0

0

),()[,()0()0,()()(

t

t h

dutHdsstXtXtZtu 
 (3.5)  

That is, 
 −=

1

0

)(),()(

t

t

dHustXtu   





 −=

t

t

dHustXH

0

)(),(   

From theorem (3.1), )( tu  is on the boundary 

)0,(  tR  of constrained reachable set. The 

supporting hyper plane theorem (see Hermes and 

Lasalle[4]) then implies the existence of a non trivial 

hyperplane with outward normal c (say) supporting 

)0,(  tR  at ).( tu  In otherwords,  

 

yctuC TT  )(  for all )0,(  tRy  

That is 





−− 

t

t

T

t

t

T dHustXCdHustXC

0

1

0

)(),()(),( 

 for all Uu  

 

Rearranging gives 

0)]()([),(

0

−





t

t

T duuHstXC   

This can happen only if 

}),(sgn{ HstXCu T −=                (3.6)  

 

CONCLUSION 

 

Consider the Simple Harmonic Oscillator given by 

);(tuxx =+   1u   (4.1) 

The principal matrix solution of (4.1) above is 










−
=

CostS

SCost
tX

int

int
)(   (4.2) 

From which we infer that 

=− )(1 tX  






 −

CostS

SCost

int

int
  (4.3) 

 

We can easily verify by the Kalman Rank condition 

that the system is controllable, that is rank 

2),( == nABB  

 

Also, the eigenvalues are i  indicating non – 

negative real parts. Hence, by Brunday [10], the 

solution is uniformly asymptotically stable. This 

solution goes to zero as →t . Given that the 

system can be controlled, there exists an optimal 

control )(tu
 that drives the solution to the origin in 

finite time t. this optimal control is of the form of 

Hermes and Lasalle in [4] 

 

That is )),(sgn( tYCT
 where 

( )21)( CCtYCT =   








− CostS

SCost

int

int









1

0
  (4.4) 

 +++= ttSinCCCostCSC ));()((int 2

2

2

121
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=+= )]sgn[sin()(sgn( ttYCT
 

  (4.5) 

 

This illustrate that the Simple Harmonic Oscillator 

can optimally be controlled. 

 

CONCLUSION 

 

In conclusion, we have shown that a linear delay 

system with distributed delays in state and control 

can be relatively controlled if the system is proper 

and the controllability grammian is non-singular. We 

also show that a necessary condition for existence of 

the optimal control is that it must be on the boundary 

of the reachable set. We proceeded by showing the 

form of the optimal control for the system in 

question. Finally, we join Chukwu in [3] and 

Onwuata in [6] can get the conclusion that optimal 

control is distinct and BangBang if a system is 

reasonably controllable. 
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