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Abstract- The contemporary all-weather satellites 

observations of Earth’s surface phenomena (ESP) 

are characterized by relatively sparse time series 

data that discourage their utilization in building 

efficient machine learning (ML) models for 

exploratory and predictive purposes. Additionally, 

data-poor areas usually have difficulties in meeting 

the multiple predictor variables requirement of 

building appropriate multivariate ML regression 

models. We utilized a relatively sparse sea surface 

salinity (SSS) dataset from the Soil Moisture Active 

Passive Mission (SMAP) satellite for this study. We 

determined the accuracy and variability of the 

relatively sparse SSS data. We built ML 

autoregressive integrated moving average (ARIMA) 

models; determined and validated the best model for 

modelling and forecasting ESP using the relatively 

sparse data as a case study. We show root mean 

squared differences, RMSDs (0.1279 and 0.1162 

psu) for the modelling and forecasting data 

accuracy respectively. We show a standard 

deviation, SD (0.2528 psu) for the interannual SSS 

variability (iSSSv). We show the modelling accuracy 

with an R-squared, R2 (0.8345 psu) and its 

validation with a mean absolute percentage error, 

MAPE (0.7779%) for the best model. We show the 

best variant of the traditional SSS forecasts (“Lo”) 

accuracy with root mean squared error, RMSE 

(0.5435 psu) and its validation with MAPE 

(1.5038%) for the best model. The results suggest 

relatively high modelling and prediction accuracy. 

The results imply that relatively sparse satellite time 

series data of at least 60 epochs can be integrated 

with a ML ARIMA model for modelling and 

forecasting variations in any ESP, regardless of the 

location.  

 

Indexed Terms- Earth’s Surface Phenomenon, Sea 

Surface Salinity, Machine Learning Arima, 

VariationsModelling, Time Series Forecasting 

 

I. INTRODUCTION 

 

Measurable physical, chemical and biological 

variables involved in the Earth’s surface processes 

are generally considered as ESP, which are 

characterized by both spatial and temporal variations. 

The magnitude and frequency of such variations are 

usually driven by two or more relevant factors. In the 

case of variations in sea surface salinity (SSS) on a 

global spatial scale, evaporation, precipitation, river 

outflow, and melting ice are among the principal 

drivers (Dinnat et al., 2019). However, changes in 

SSS on a local spatial scale in the tropics, particularly 

along the Nigerian coastal zone have been 

innovatively linked to three physical oceanographic 

predictors, wind speed (WS), high wind speed 

(HWS), and sea level anomaly (SLA) in a recent 

study (Ajibola-James, 2023; Ajibola-James & Okeke, 

2025). The risks of positive anomaly in ESP, 

including SSS in terms of upstream seawater 

intrusion induced by rising sea level (Zhou, 2011) 

and/or high tides have been linked to human and 

environmental health issues (CGIARCSA, 2016; 

Trung et al., 2016; Sneath, 2023; Ajibola-James, 

2023). Since 1970s, both in situ and optical remote 

sensing approaches have been utilized for mapping 

and modelling spatial and/or temporal variations in 

ESP, particularly SSS using statistical methods 
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(Khorram, 1982; Qing et al., 2013).  A few studies 

have integrated optical satellite SSS data (derived via 

indirect measurement) with machine learning (ML) 

methods to monitor and predict salt water intrusion to 

upstream (Nguyen et al., 2018); and estuary (Jiang et 

al., 2024). Contemporary radar satellite SSS data 

(derived via direct measurement) have also been 

integrated with machine learning (ML) methods due 

to the relative advantages of such synergism 

(Ajibola-James, 2023; Ajibola-James & Okeke, 

2025). The all-weather capability of such radar 

satellite has helped to eliminate the problem of 

temporal data sparsity imposed on such optical SSS 

observation by cloud cover effects. 

 

ML is a subset of artificial intelligence, and a method 

of data analysis that involves building systems 

(models and algorithms) that can learn from data 

without being explicitly programmed, identifying 

patterns, and making decisions with minimal human 

intervention (Ajibola-James, 2023). To make the 

model selection process simpler for forecasting, ML 

entails a variety of strategies for identifying patterns 

and relationships in the data (Chan-Lau, 2017). A 

notable advantage of ML models and algorithms is 

their increasing ability to handle the time component 

of relatively large amounts of data (complex 

structured, semistructured and unstructured datasets 

with several characteristics, including volume, 

velocity, veracity, value and validity) in predictive 

studies. A time series is a sequence of data collected 

over a specific period of time. The time scale 

component of a data series may be either every 

minute or hourly or daily or monthly or yearly. When 

only one of the time scales is involved, it is regarded 

as a single seasonality. Any situation involving 

datasets with more than one of the time scales, for 

example, hourly and daily or hourly, daily and 

monthly or daily, monthly, and yearly, is called 

multiple seasonality. Time series forecasting has 

become a significant part of ML since there are many 

prediction problems with time components (Ajibola-

James, 2023). 

 

In the parlance of ML, particular when it comes to 

ESP modelling, multivariate models are usually 

preferred to univariate models. The reasons for this 

preference are not far-fetched. Generally, the latter 

offer explicit information on the specific predictors in 

terms of their identity and relative contributions to 

the predictive power of such models. Additionally, 

the latter that fall in the category of sub-set selector 

models could help to alleviate the negative effects 

suffered by their predictive power and interpretability 

when improving fit by including a large number of 

independent variables. However, the increasing 

difficulties in meeting the multiple predictor 

variables requirement of building such multivariate 

(data-intensive) ML regression models; and accessing 

appropriate in situ data for such model validation in 

data-poor areas (such as tropical coasts including 

Africa) have been discouraging the exploitation of 

such ML models for modelling and prediction of 

ESP, particularly SSS till date. One of the most 

widely used ML methods for time series forecasting 

that has reasonably helped to overcome this barrier is 

ML ARIMA. In the applications of the ARIMA 

model, a widely used approach is known as the Box–

Jenkins principle, which consists of three iterative 

steps, namely, model identification, parameter 

estimation, and diagnostic checking phases (Box & 

Jenkins, 1970). A relative advantage of a typical ML 

ARIMA model for time series modelling and 

prediction is that it does not require predictor 

(independent) variables to fit new (predicted) values. 

Thus, the amount of data input, data processing time, 

and computer hardware required for implementing it 

are relatively low (Ajibola-James, 2023). These are 

part of the motivations for its wide adoption, 

particularly in modelling and forecasting of health, 

financial and economic data (Renato, 2013; Zhirui & 

Hongbing, 2018; Nayak & Narayan, 2019; Khan & 

Gunwant, 2024; Yu et al., 2025). 

 

The tropical coasts, particularly the Nigerian coastal 

zone, have been traditionally undersampled using 

appropriate in situ methods and are understudied 

using remote sensing techniques (Ajibola-James, 

2023). More than often, such data-poor areas have 

difficulties meeting the multiple predictor variable 

requirement of building appropriate multivariate ML 

regression models. Despite the relative advantages of 

using ML ARIMA for modelling ESP, our 

knowledge of its accuracy in fitting new values when 

built with relatively sparse time series satellite data is 

still limited, particularly in such data-poor areas. 

Consequently, the objectives of this paper are to (i) 

determine the accuracy of relatively sparse SSS data 
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(Jan. 2016-Dec. 2020; and Jan.-Dec. 2021) for the 

study area; (ii) determine the interannual variability 

of such SSS data (Jan. 2016-Dec. 2020); and (iii) 

determine and validate a relatively accurate ML 

ARIMA model (Jan. 2016-Dec. 2020) and its SSS 

forecasts for 12 months (Jan.-Dec. 2021) as a case 

study for ESP. 

 

II. STUDY AREA 

 

The location adopted for this experimental study was 

the Nigerian coastal zone, which comprises the 

immediate maritime area (IMA) and the contiguous 

Exclusive Economic Zone (EEZ) and reaches 

approximately 200 nautical miles (370 km) offshore 

of the Nigerian continental shelf; this zone should not 

extend beyond the limits of approximately 350 

nautical miles in accordance with the provisions of 

Article 76(8) of the 1982 United Nations Convention 

on the Law of the Sea (UNCLOS) (United Nations, 

undated). The IMA was established for the purpose 

of this study. The offset ranged from 58-100 km 

between the shoreline and the edge of the observation 

points in the contiguous EEZ (Figure 1). To 

significantly reduce the effect of the error associated 

with satellite SSS data acquisitions close to land 

masses on the data accuracy, as observed by Boutin 

et al. (2016), the IMA was excluded from the study 

area. The study area was restricted to 278 data 

observation points in the contiguous EEZ of 

 

 
Figure 1: Map of the Study Area showing the 278 

Points (in red) of SMAP Satellite SSS Data 

Observations (January 2016-December 2021). 

 

Source: Anyikwa & Martinez (2012) and 

Modification: Authors (2024) 

 

 

approximately 295,027.4 km2 (Figure 1). In the area, 

the mean monthly rainfall ranges from approximately 

28 mm in January to approximately 374 mm in 

September (Zabbey et al., 2019). Several rivers, 

including the Niger, Forcados, Nun, Ase, Imo, Warri, 

Bonny, and Sombreiro Rivers, discharge freshwater 

to the coastal region of Nigeria. Given the actual 

evaporation of 1,000 mm per annum, a total runoff of 

1,700–2,000 mm, and an additional flow of 50–60 

km3 calculated for the water balance of the Niger 

system, a total of 250 km3 per year eventually 

discharges into the Gulf of Guinea (Golitzen et al., 

2005; Ajibola-James, 2023). 

 

III. MATERIALS AND METHODS 

 

A. Satellite Observations and Map 

 

The monthly SMAP satellite SSS and the Uncertainty 

time series datasets utilized for this particular study 

were retrieved from NASA's SMAP online repository 

managed by NASA’s Joint Propulsion Laboratory, 

JPL (JPL, 2020) in network Common Data Form-4 

(netCDF-4) file format. The characteristics of the 

cleaned datasets analysed for the study are presented 

in Table 1. The base map of the study area was 

sourced from Anyikwa & Martinez (2012) and 

modified as appropriate (Figure 1). 

 

Table 1: Feature Datasets utilized for the Study 
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B. Data Preparation 

 

The appropriate data preparation tasks (data 

extraction, cleaning and selection) were implemented 

using scripted procedures. The dataset was 

automatically extracted from the netCDF-4 file into 

comma-separated Microsoft (MS) Excel (.csv) file by 

executing a python 3.10.2 script in Spyder IDE 

(Integrated Development Environment) 5.2.2 

software. The data cleaning involved rigorous 

supervised-automatic deletion of the observation 

records with null values (redundant empty records 

that have no relevance to the study area, which might 

be created in the process of the data file 

transformation) and outliers induced by radio 

frequency interference (RFI) and land contamination 

in the dataset stored in the .csv file. This was 

achieved through appropriate tasks. First, automatic 

deletion of null values by executing a python script 

with libraries pandas, numpy, csv and xarray in the 

IDE. Second, visual identification and verification of 

outliers by overlaying each of the monthly SSS 

observations in the .csv files on the Google Earth Pro 

online to ascertain their proximity to land and 

tendency for land contamination. Third, automatic 

deletion of the predetermined outliers by using their 

concatenated location coordinates as criteria for 

executing a python script with the same libraries and 

IDE that was utilized in (a) above. A total of 278 

appropriate satellite observation points, which 

constitute the study area (Figure 1) were selected for 

analysis in this stud by executing a python script in 

the IDE. The points were imported and merged with 

the base map using the overlay function in ArcMap 

10.4.1 (Ajibola-James, 2023). 

 

C. Data Accuracy and Variability 

 

The accuracy of the satellite SSS datasets for the 

modelling and validation were computed in MS 

Excel software by using the SSS Uncertainty datasets 

(the difference between in situ SSS and satellite SSS) 

(Table 1). To compute the accuracy of the modelling 

data, the SSS uncertainty data of 16680 observation 

points were uploaded to column A in Excel to 

produce the formula A2:A16681 for computing the 

sum square (SUMSQ) in cell C2, which was given by 

the formula SUMSQ (A2:A16681). The mean 

squared difference (MSD) given by formula 

=(C2/16680) was computed in cell D2, while the 

RMSD was finally computed by using formula 

=SQRT(D2). The same procedure was replicated for 

computing the accuracy of the forecasting data using 

3336 observation points.  

 

The interannual variability of the SSS data was 

determined by utilizing the MLmetrics library to 

compute the SD, a universal measure of variability in 

R 4.1.3/R-studio 2022.02.3-492 software. After the 

mean annual SSS values for 2016 to 2020 were 

uploaded to the software by running data_obs_sss <- 

read.csv(file.choose(), header = TRUE, 

stringsAsFactors = FALSE), the dataframe produced 

(Table 2) by running data_sss <- data_obs_sss[, 

c("year", "sss")] was vectorized by running 

sss_2016_2020 <- data_sss$sss. The SD was finally 

computed by running sd (sss_2016_2020). 

 

Table 2: Dataframe for Computing Interannual 

Variability in SSS 

 

Year SSS 

2016 33.15872 

2017 33.12886 

2018 32.79823 

2019 32.55897 

2020 33.02366 

 

D. Autoregressive Integrated Moving Average Model 

and Algorithm 

 

The ML ARIMA models and algorithms were built 

primarily with the forecast library 8.17.0 in R 

4.1.3/R-studio 2022.02.3-492 software. The 

modelling SSS data was characterised by 60 monthly 

epochs (Jan. 2016-Dec. 2020), which was utilized for 

training the ML ARIMA models to forecast 

variations in SSS for 12 months ahead. Other 

complimentary libraries, such as tseries and 
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MLmetrics, were also used in this process. Model 

fitting and selection were achieved with the 

auto.arima() function. The function helped to 

determine the best model for given input data based 

on relevant model evaluation criteria. At the 

inception of the ML modelling task, the dataframe, 

df, containing the 60 monthly epochs of the SSS data 

was transformed from "function" to “time series” to 

satisfy one of the basic assumptions of the ARIMA 

model.  

 

Appropriate visual and metric approaches were 

leveraged to assess the stationarity of the time series 

data. The former involved the inspection of 

autocorrelation function (ACF) and partial 

autocorrelation function (PACF) plot patterns (Fattah 

et al., 2018; Hyndman & Athanasopoulos, 2021), 

while the latter involved hypothesis testing using 

augmented Dickey-Fuller (ADF) test metrics 

(Cheung & Lai, 1995; Ajibola-James, 2023). The 

following hypotheses and decision rules were 

adopted for the ADF test: 

 

H0: Nonstationary 

H1: Stationary 

 

where H0 is the null hypothesis and H1 is the 

alternative hypothesis. 

 

If the p value is ≤ 0.05, H0 is rejected to support H1. 

 

Given that the computed p value = 0.1769, which is > 

0.05, H0 of Nonstationary was accepted to reject H1 

of Stationary. To achieve “stationarity”, another basic 

assumption of the ARIMA model, first-order 

differencing was applied to the data. The ADF test 

metric was repeated to reassess the output of the 

differenced data. Given that the computed p value = 

0.01, which is < 0.05, H0 of Nonstationary was 

rejected to accept H1 of Stationary. The best ARIMA 

model together with the most appropriate parameters 

were identified using the auto.arima function; and 

determined with the allied Akaike information 

criterion (AIC) minimization. The residual of the best 

ML ARIMA model was also assessed for randomness 

with the Ljung-Box test based on the following 

hypotheses and decision rule: 

 

 

H0: No white noise  

H1: White noise  

If the p value is ≥ 0.05, H0 is rejected (Hyndman & 

Khandakar, 2008). 

 

Given that the computed p value = 0.4522, which is > 

0.05, H0 of Nonstationary (No white noise) was 

rejected to accept H1 of Stationary (White noise). The 

best ARIMA model characterised by White noise was 

used as input for building the user-defined ML 

ARIMA model to forecast SSS 12-months ahead 

(Jan.-Dec. 2021). The traditional variants of the SSS 

forecasts (Jan.-Dec. 2021) by the best ARIMA model 

are characterised by “Forecast”, “Lo 95”, and “Hi 

95”. The graph of the three variants of the SSS 

forecast values by the model was generated in the 

Excel. 

 

E. Determination and Validation of ARIMA Model 

Accuracy for Modelling and Forecasting SSS 

 

The accuracy of the built ML ARIMA model for 

modelling variations in SSS was computed by using 

the R2 performance metric, which represents the 

amount of variation explained by the ML model. The 

forecasting accuracy was determined with the RMSE, 

a measure of accuracy that reveals the magnitude of 

the difference between the predicted and observed 

values. The validation of the modelling and 

forecasting accuracy of the best ML model in relation 

to error estimation, which is also known as residual 

variation, was also computed in terms of MAPE, a 

good measure of the absolute percentage difference 

between predicted and observed values. In general, 

the greater the R2 value is, the greater the amount of 

variation explained by the ML model. Conversely, 

lower values of MAPE and RMSE indicate relatively 

good accuracy of forecasts made by the model. In 

terms of the interpretation of the error metrics in real-

world applications, the MAPE seems to be the most 

versatile because it is usually computed in percentage 

(%) units. In addition, what should be considered an 

acceptable accuracy level seems to be properly 

documented for the MAPE. In this regard, a MAPE 

less than 10% is considered to indicate “high 

prediction accuracy” (Lewis, 1982; Ajibola-James, 

2023). It should be underscored that the true test of 

an ML time series model’s performance is in 

accurately forecasting new values. This is usually 
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determined by the value of its performance metrics in 

forecasting new target values that are not included in 

the model’s training datasets. 

 

IV. RESULTS AND DISCUSSION 

 

A. Data Accuracy 

 

The accuracies of the relatively sparse SSS data over 

a geographical area of approximately 6.5° × 4.5° in 

terms of the RMSD are 0.1279 psu and 0.1162 psu 

for the modelling dataset and forecasting dataset, 

respectively. The two RMSD values show a 

relatively high level of accuracy exceeding the 

SMAP missions’ accuracy requirement of 0.2 psu by 

substantial margins of approximately 36.05% and 

41.90%, respectively. It should be noted that 

relatively high accuracy was achieved by the rigorous 

supervised automatic data cleaning approach, which 

primarily involved deletion of the outliers induced by 

RFI and land contamination in the satellite dataset. 

This implies that the data preparation technique can 

reasonably affect the accuracy of the input dataset in 

a modelling and predictive study. 

 

B. Interannual Variability 

 

The interannual variability in the SSS data in terms of 

the SD shows 0.2528 psu. This suggests that the 

iSSSv is relatively stable (predictable) given that it is 

approximately 74.72% less than 1 SD. This result 

shows that the dataset could be considered a viable 

input for the ARIMA model. However, to achieve the 

most appropriate level of “stationarity”, a basic 

assumption of the ARIMA model, the first-order 

differencing was applied to the data as earlier 

mentioned in section 3.4. This implies that the order 

of differences that would be taken in a given input 

data for ML ARIMA modelling is a function of the 

SD value. Consequently, data variability assessment 

using the SD value should be considered an essential 

aspect of exploratory data analysis (EDA) in the 

process of building ML ARIMA models. 

Additionally, the result of the iSSSv also implies that 

its major drivers in terms of the physical 

oceanographic predictors (WS, HWS, and SLA) are 

relatively stable (predictable) for the period in 

question (2016-2020). 

 

C. Determination and Validation of the Best ARIMA 

Model 

 

The best ML ARIMA model with the most 

appropriate parameter that scored the minimum AIC 

value of 81.80972 was ARIMA(0,1,2)(0,1,1)[12] 

(Table 3). The result of the preliminary automatic 

model selection task show that the AIC metric is an 

efficient approach for determining the best ML 

ARIMA model and the most appropriate parameters. 

The associated terms, coefficients and p-values are 

ma1, -0.3858, 0.0000; ma2, -0.2633, 0.0000; and 

sma1, -0.7099, 0.0000 respectively. The result of the 

z-test performed on the terms of the best model, 

which shows a p-value of 0.0000 (< 0.05) for the 

three terms implies that all the terms utilized in 

building the best ARIMA models are statistically 

significant. The result also imply that they have 

meaningful impact on the time series. The result of 

the modelling accuracy assessment performed with 

R2 is 0.8345, while the result of its validation with 

MAPE is 0.7779%. The relatively high R2 value 

shows that the ML ARIMA model explained a 

relatively large amount of variation, while the 

relatively low MAPE value shows that the ML 

ARIMA model has a relatively high modelling 

accuracy. 

 

Table 3: Determination of the Best ML ARIMA 

Model with auto.arima Function 

 

        ARIMA Model                                 AIC 

 

ARIMA(2,1,2)(1,1,1)[12]                    : Inf 

ARIMA(0,1,0)(0,1,0)[12]                    : 93.4323 

ARIMA(1,1,0)(1,1,0)[12]                    : 87.02665 

ARIMA(0,1,1)(0,1,1)[12]                    : 81.91669 

ARIMA(0,1,1)(0,1,0)[12]                    : 88.61325 

ARIMA(0,1,1)(1,1,1)[12]                    : Inf 

ARIMA(0,1,1)(1,1,0)[12]                    : 82.80056 

ARIMA(0,1,0)(0,1,1)[12]                    : 87.21183 

ARIMA(1,1,1)(0,1,1)[12]                    : 82.69393 

ARIMA(0,1,2)(0,1,1)[12]                   : 81.80972 

ARIMA(0,1,2)(0,1,0)[12]                    : 89.46024 

ARIMA(0,1,2)(1,1,1)[12]                    : Inf 

ARIMA(0,1,2)(1,1,0)[12]                    : 83.67727 

ARIMA(1,1,2)(0,1,1)[12]                    : 83.56041 

ARIMA(0,1,3)(0,1,1)[12]                    : 83.48725 

ARIMA(1,1,3)(0,1,1)[12]                    : Inf 
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Figure 2: Modelling (Jan. 2016-Dec. 2020) and 

Forecasting (Jan.-Dec. 2021) of SSS Variations using 

the Best ML ARIMA Model 

 

In Figure 2, the “Training” side shows the result of 

using 60 monthly epochs (Jan. 2016-Dec. 2020) of 

the data to train the best ML ARIMA model for 

modelling variations in the SSS, while the adjoining 

“Forecast” side shows the result of the 12 monthly 

epochs (Jan.-Dec. 2021) of the SSS forecast. 

 

D. Determination and Validation of Forecasting 

Accuracy of the Best ARIMA Model 

 

The results of the traditional variants of the SSS 

forecasts, “Forecast”, “Lo 95”, and “Hi 95” (Jan.-

Dec. 2021) by the best ARIMA model are presented 

in Figure 3. The results of the “Forecast”, and “Hi 

95” variants in relation to the observed SSS show 

over-estimation of the SSS values for the entire 

period (Jan.-Dec. 2021). However, the “Hi 95” 

variant shows a higher level of the over-estimation. 

In relation to the observed SSS, the “Lo 95” variant 

shows the lowest level of over-estimation for 10 

months, under-estimation for 1 month (Jun), and 

precise-estimation for 1 month (Oct.). 

 

 
Figure 3: Observed SSS and the Traditional Variants 

of the SSS Forecasts (Jan.-Dec. 2021) by the Best 

ARIMA Model 

In Table 4, the accuracy of the traditional variants of 

the SSS forecasts by the best ARIMA model are 

presented in Table 4. Given that the RMSE is 

relatively difficult to interpret for such applications 

due to the squared nature of the measured error, the 

MAPE was utilized to validate the forecasting 

accuracy. The relatively low MAPE, which ranges 

from 1.5038 to 6.9260% (less than the 10% upper 

limit of high prediction accuracy benchmark) show 

that the best ARIMA model has a relatively high 

forecasting accuracy. This also suggests that the “Lo 

95” variant, which shows the lowest level of over-

estimation for 10 months (Figure 3) and the lowest 

MAPE of 1.5038% (Table 4) is validated to offer the 

most accurate traditional SSS forecast values. 

 

Table 4: Accuracy of the Traditional Variants of the 

SSS Forecasts by the Best ARIMA Model 

 

Traditional Forecasts 

Variants 

RMSE 

(psu) 

MAE 

(psu) 

MAPE 

(%) 

Forecast 0.9850 0.9041 2.7665 

Lo 95 0.5435 0.4958 1.5038 

Hi 95 2.3283 2.2673 6.9260 

 

CONCLUSION 

 

The use of a relatively sparse satellite time series SSS 

data from a tropical coast, the Nigerian coastal zone 

as a case study for ML ARIMA for modelling and 

forecasting variations in ESP yields encouraging 

results. This imply that relatively sparse satellite time 

series data from at least 60 epochs (hourly, daily, 

weekly monthly or yearly) can be productively 

utilized for building a relatively accurate ML 

ARIMA model for modelling and forecasting 

variations in any ESP in any geographical area. A 

relative advantage of the time series model is that it 

does not require predictor (independent) variables to 

model variation and fit new (forecast) values. In this 

regard, the costs (in terms of the amount of data 

input, data processing time, and computer hardware) 

of implementing it are relatively low and affordable. 

The variation modelling accuracy that was validated 

with a MAPE of 0.7779% is more than 2 times 

greater (better) than the forecasting accuracy with a 

MAPE of 2.7670%. It should be underscored that 

such a difference in accuracy (in which the accuracy 
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of the former exceeds that of the latter) is a normal 

experience in such applications of ML models 

because the observed data utilized for validating the 

accuracy of the latter are relatively new to the ML 

model. The synopses of our key findings are 

subsequently presented. 

 

• The data preparation technique made the RMSD 

of the SSS data for modelling and forecasts 

validation to show relatively high level of 

accuracy that exceeded the SMAP mission’s 

accuracy requirement of 0.2 psu by considerable 

margins of about 36.05% and 41.90% 

respectively. 

• The iSSSv, and its major physical oceanographic 

predictors (WS, HWS, and SLA) were relatively 

stable (predictable) for the period (2016-2020). 

• The “Lo 95” variant made the most accurate 

traditional SSS forecasts (Jan.-Dec. 2021) with 

the lowest validation MAPE of about 1.5038% 

(approximately 6 times less than the 10% upper 

limit of high prediction accuracy benchmark). 

 

RECOMMENDATIONS 

 

Considering the relatively high accuracy of the ML 

ARIMA model coupled with its relatively low costs 

of implementation, the following are highly 

recommended. 

 

a. The ML model and its algorithm should be 

updated and adopted by stakeholders (particularly 

government agencies and aquatic entrepreneurs) 

as early warning decision support tools that will 

enable them to provide proactive and sustainable 

preventive measures to any current and future 

risks that may be posed by any ESP to humans 

and the environment. For example, the ML model 

built with SSS data can serve as a decision 

support tool for providing early warning 

information on the risk of upstream seawater 

intrusion to the drinking water supply, people’s 

health, sensitive plants such as rice and 

horticultural crop yield, and the environment. 

b. Further studies on the comparative assessment of 

the best ML ARIMA model with the one utilizing 

a relatively small or large number of monthly 

mean SSS satellite observations should be 

encouraged. 

c. Additionally, appropriate local and global funding 

that will facilitate prompt execution of the 

recommendations in (1) and (2) above should be 

equitably provided to reliable but relatively 

marginalized individual researchers, private 

research organizations and private/public research 

institutions in the geospatial, AI/ML, and related 

industries in Africa, particularly in Nigeria as 

soon as possible. This will encourage the 

development of realistic low-cost univariate ML 

models built with remotely sensed data. 
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