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Abstract- A Support Vector Machines (SVMs) and 

Decision Trees in handwritten digits recognition. 

The primary research aim is to find performance 

and suitability of these algorithms. Most of the time, 

the physically constructed digits are not inside the 

domains of proportionate size, due to the similarities 

between the numbers, such as 1 and 7, 5 and 6, 3 

and 8, 2 and 5, 2 and 7. The performance and 

accuracy of machine learning algorithms heavily 

depend on the quality and diversity of the dataset 

used for training and testing. This research limited 

by the availability of suitable handwritten digit 

datasets (MNIST), which impact the generalizability 

of the results. Using MNIST dataset consists of a 

large number of 28x28 pixel grayscale images of 

handwritten digits (0 through 9) and 60,000 

Training Images and 10,000 Testing. In this study, 

different machine learning methods, which are 

SVM  and Decision Trees architectures are used to 

achieve high performance on the digit string 

recognition problem. In these methods, images of 

digit strings are trained with the SVM  and Decision 

Trees model methods structure by sliding a fixed 

size window through the images labeling each sub-

image as a part of a digit or not. The research 

ultimately revealed that Support Vector Machines 

was the classifier, with 98% accuracy. The lowest 

score of accuracy goes to Decision Tree with 96% of 

accuracy and we Recommend the Use of SVM as 

the Best Algorithms for the handwritten digits 

recognition but also we suggest that combination of 

difference Datasets for more accuracy of the 

recognition MNIST dataset a most of U.S written 

style.. 

 

Index Terms- Machine Learning, Support Vector 

Machine, Decision Tree, MNIST, digit recognition 

and Data Set. 

 

I. INTRODUCTION 

 

Two of the best available statistical classification, 

Support Vector Machines (SVMs) and Decision 

Trees (DTs), are examined through both necessary 

modifications as well as traditional implementations 

to explore the inherent structure of digit appearance 

in the way of maximal scarification along with 

necessary complexity. Various techniques also 

addressed the presence of dynamic information in 

captured images. The results obtained from 

competing visual digit databases demonstrate that 

SVM and DT classifiers jointly could skillfully 

predict new digit templates by representing the 

structure at static level and usage of proper resources 

at capturing level simultaneously. Decision Trees 

provide an elaborated way to incorporate the dynamic 

information within static ones that subsequent of such 

an incorporation leads to one of the best available 

digit digitization approaches using various distances. 

Also, it concludes that capturing information present 

within the static image is inevitable for a practical 

prediction. Capturing dynamic information over a 

single static image could lead to a quantifiable level 

of prediction improvement (Reddy et al., 2020). 

 

Handwriting digits recognition, a challenging task in 

pattern recognition, has been automatized, and used 

in many practical applications such as user 

identification, user verification, and mail sorting 

(Chakraborty & Bhattacharjee, 2020).  Excellent 

practical performance has already been obtained by 

using various statistical classification methods. 

Substantial deviations in extracted characteristic 

information of digit appearance, as a result of rapid 

variations in writing style and size, sometimes lead to 

misclassifications by existing statistical methods. 

These deviations are primarily due to the ineffective 

expression of dynamic information over the captured 
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images and under-fit in a poorly expressive 

functional space. To address these concerns, we 

perform concurrent analysis on static and dynamic 

information and with a functional space that contains 

only information necessary by significantly 

sparsifying the functional space (Keysers, 2007). 

 

In finally, the background of the research highlights 

the importance of accurate handwriting digits 

recognition in various applications and the challenges 

associated with this task. The comparison analysis of 

SVMs and Decision Trees aims to contribute to the 

advancement of this field by providing valuable 

insights into the performance and suitability of these 

algorithms for recognizing handwritten digits. 

  

II. RESEARCH METHODOLOGY 

 

In this section, the research describes the various 

methods, tools, datasets used, how the models are 

created and how the models were trained are tested. 

In this section, chapters  discuss how algorithms used 

and presented the block diagram of the proposed 

system: 

 

 
Figure 2.1 Flowchart 

 

2.1 Data Collection  

 

The MNIST dataset, which stands for the Modified 

National Institute of Standards and Technology 

dataset, is a widely used dataset in the field of 

machine learning and computer vision. It was created 

for the purpose of training and testing various 

machine learning algorithms for handwritten digit 

recognition. Here's how the MNIST dataset was 

collected and obtained (Geetha & Malathi 2023). 

 

A. Data Source: The MNIST dataset consists of a 

large number of 28x28 pixel grayscale images of 

handwritten digits (0 through 9). These digits were 

collected from two primary sources: 

 

a. NIST Special Database 3: This database originally 

contained binary images of handwritten digits 

collected from Census Bureau employees and high 

school students. These images were converted into 

the MNIST format. 

 

b. NIST Special Database 1: This database contained 

handwritten characters, including digits and letters, 

from Census Bureau employees. The digits from this 

database were also used to create the MNIST dataset. 

 

B. Data Preprocessing: The original images from the 

NIST databases underwent preprocessing to ensure 

consistency and usability in machine learning 

experiments. This preprocessing included 

normalizing the images to have a fixed size of 28x28 

pixels and scaling the grayscale values to a range 

between 0 and 1. 

 

C. Dataset Split: The MNIST dataset is typically split 

into two subsets: a training set and a test set. The 

training set is used to train machine learning models, 

while the test set is used to evaluate their 

performance. The dataset also includes labels 

indicating the correct digit corresponding to each 

image. 

 

D. Accessibility: The MNIST dataset is made 

publicly available and can be downloaded from 

various sources, including the official MNIST 

website (http://yann.lecun.com/exdb/mnist/), machine 

learning libraries and data repositories. 

 

It's important to note that while MNIST was a 

groundbreaking dataset for many years, it is 

relatively small by modern standards, with only 

60,000 training images and 10,000 test images. As a 

result, it has been largely superseded by larger and 

more challenging datasets for benchmarking machine 

learning algorithms. Nonetheless, MNIST remains a 

valuable resource for educational purposes and for 

testing and prototyping algorithms in the field of 

computer vision. 
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Figure. 2.2 MNIST Data Set Visualization 

 

In addition to the MNIST dataset and our custom 

dataset, we have also incorporated a supplementary 

dataset into our program. This additional dataset 

addresses a specific limitation of MNIST, which 

primarily consists of American-style numbers, 

making it challenging to classify isolated numbers, 

particularly those like "1" and "7". 

 

2.2 Model Implementation 

 

2.2.1 Decision Tree Implementation  

 

A decision tree is a supervised machine learning 

algorithm used for both classification and regression 

tasks. It's a hierarchical structure that resembles an 

upside-down tree, where each node represents a 

decision or a test on an attribute, each branch 

represents an outcome of the decision, and each leaf 

node represents a class label or a predicted value. 

Decision trees are easy to understand and interpret, 

making them valuable for both data analysis and 

decision support (Mendes Gil, & Ferreira 2014). 

 

Components of a Decision Tree: 

I. Parent Node: Think of it as the big boss node. It's 

at the top and tells others what to do. 

II. Child Node: These are like the workers or 

helpers. They listen to the big boss node. 

III. Root Node: This is where everything starts. It's 

like the very first boss who doesn't have anyone 

above. 

IV. Leaf Node/Leaf: These are like the end results. 

They don't have anyone else to tell what to do. 

V. Internal Nodes/Nodes: These are in the middle. 

They have a boss above them and workers below 

them. 

VI. Splitting: It's like breaking a big task into smaller 

tasks so it's easier to handle. 

VII. Decision Node: When the big boss decides what 

tasks to split into smaller ones, it's called a 

decision node. 

VIII. Pruning: If the big boss thinks some tasks are not 

needed anymore, they remove them. It's like 

cleaning up unnecessary work. 

IX. Branch/Sub-tree: It's like looking at just one part 

of the big task, not the whole thing. Like focusing 

on one group of workers instead of the whole 

company.  

 

 
Figure 2.3 Decision Tree Structure 

 

2.2.2 SVM Implementation:   

 

Support Vector Machine (SVM) is a machine 

learning algorithm used for classification and 

regression tasks. SVM can be used to separate data 

into different classes or predict numerical values. 

One of the key aspects of SVM is its ability to handle 

both linear and nonlinear problems through the use of 

kernel functions. 

 

Here's an explanation of SVM in both linear and 

nonlinear contexts (Rajput, P, & Kumar, S. 2021.): 

 

I. Linear SVM: 

• Objective: In linear SVM, the algorithm aims to 

find a hyperplane that best separates two classes 

of data points with the largest possible margin 

between them. This hyperplane is referred to as 

the "maximum margin hyperplane." 
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• Linear Separability: Linear SVM is suitable when 

the data is linearly separable, meaning a straight 

line (in two dimensions) or a hyperplane (in 

higher dimensions) can cleanly separate the 

classes. 

• Equation of the Hyperplane: In a two-dimensional 

space, the equation of the hyperplane can be 

represented as: w^T * x + b = 0, where w is the 

weight vector, x is the input feature vector, and b 

is the bias term. 

• Support Vectors: The data points closest to the 

hyperplane, known as "support vectors," are 

crucial for defining the margin and the decision 

boundary. These support vectors help determine 

the orientation and position of the hyperplane. 

• C Parameter: The regularization parameter 'C' in 

linear SVM controls the trade-off between 

maximizing the margin and minimizing the 

classification error. A smaller 'C' value allows for 

a wider margin but may tolerate some 

misclassifications, while a larger 'C' value tries to 

minimize misclassifications at the cost of a 

narrower margin. 

 

 
Figure 2.4 SVM Linear 

 

II. Nonlinear SVM: 

• Objective: Nonlinear SVM is used when the data 

is not linearly separable, meaning a straight line 

or hyperplane cannot cleanly separate the classes 

in the original feature space. 

• Kernel Trick: To address nonlinear problems, 

SVM employs a technique known as the "kernel 

trick." Instead of directly transforming the data 

into a higher-dimensional space, which can be 

computationally expensive, SVM applies a kernel 

function to the data in the original feature space. 

The kernel function computes the dot product 

between data points in the higher-dimensional 

space without explicitly transforming them. 

• Common Kernels: There are various types of 

kernel functions, including: 

• Polynomial Kernel: Used to capture polynomial 

relationships in the data. 

• Radial Basis Function (RBF) Kernel: Suitable for 

capturing complex, nonlinear patterns in the data. 

• Sigmoid Kernel: Can model sigmoidal (S-shaped) 

decision boundaries. 

• Kernel Parameters: Depending on the kernel 

chosen, there may be additional hyperparameters 

to fine-tune, such as the kernel width in the RBF 

kernel. 

• ‘Effectiveness: Nonlinear SVM is effective in 

capturing intricate relationships within the data 

and is capable of handling complex, nonlinear 

separations. 

 

 
Figure 2.5 SVM Non Linear 

 

2.2.3Programming Environment:  

 

Python is a high-level, interpreted, and versatile 

programming language known for its simplicity, 

readability, and broad applicability. It is 

characterized by its (Rathore, L., & Yadav, R. 2023.):  

I. Readability: Python emphasizes clean and 

readable code through indentation. 

II. Interpreted Nature: Code is executed without 

prior compilation, making development fast and 

accessible. 

III. General-Purpose: Python can be used for a wide 

range of applications, from web development to 

scientific computing and artificial intelligence. 
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IV. Cross-Platform: Python runs on multiple 

operating systems. 

V. Extensive Standard Library: Python comes with a 

rich set of built-in modules for various tasks. 

VI. Dynamic Typing: Data types are inferred at 

runtime, enhancing flexibility. 

VII. Community and Ecosystem: Python has a large 

and active developer community, with a rich 

ecosystem of third-party libraries and 

frameworks. 

VIII. Object-Oriented: Python supports object-oriented 

programming. 

IX. Indentation: It uses whitespace for defining code 

blocks, promoting a consistent coding style. 

X. Open Source: Python is open-source and freely 

available. 

 

Below are the required libraries. (Rathore, L., & 

Yadav, R. 2023). 

I. pandas as pd: The pandas library is used for 

data manipulation and analysis. It provides 

data structures like DataFrames and Series, 

which are helpful for handling structured data, 

such as tabular data. The alias pd is a common 

convention used to make it easier to reference 

functions and objects from the pandas library 

throughout the code. 

II. seaborn as sns: Seaborn is a data visualization 

library that is built on top of Matplotlib. It 

provides a high-level interface for creating 

informative and attractive statistical graphics. 

The alias sns is commonly used to reference 

seaborn functions and settings. 

III. from sklearn.model_selection import 

train_test_split: This import statement is used 

to import the train_test_split function from the 

model_selection module of the Scikit-Learn 

library (abbreviated as sklearn). This function 

is often used to split a dataset into training and 

testing subsets for machine learning model 

development and evaluation. 

IV. from sklearn import: This statement is a 

wildcard import of all submodules within 

Scikit-Learn. While wildcard imports are 

generally discouraged, this particular import is 

used to simplify the code for educational 

purposes. In practice, it's better to import only 

the specific modules or classes you need. 

V. import numpy as np: The numpy library is 

essential for numerical and array-based 

operations in Python. It provides support for 

multi-dimensional arrays and mathematical 

functions. The alias np is a common 

convention used to reference numpy functions 

and objects throughout the code. 

VI. import matplotlib.pyplot as plt: Matplotlib is a 

widely-used library for creating static, 

animated, and interactive visualizations in 

Python. The pyplot submodule is commonly 

imported as plt to simplify plotting 

commands. 

VII. from sklearn.preprocessing import 

StandardScaler: Scikit-Learn provides various 

preprocessing techniques, and StandardScaler 

is a class used for standardizing or scaling 

features in a dataset. It helps ensure that 

features have similar scales, which is often 

important for machine learning algorithms. 

VIII. from sklearn.svm import SVC: This import 

statement is used to import the SVC class, 

which stands for Support Vector 

Classification. It's part of Scikit-Learn and is 

used for implementing Support Vector 

Machine (SVM) classification models. 

IX. from sklearn.pipeline import Pipeline: Scikit-

Learn's Pipeline class allows you to create a 

sequence of data preprocessing and model 

training steps that can be executed in a 

structured and automated way. 

X. from sklearn import metrics: This import 

statement brings in various metrics for 

evaluating machine learning models, such as 

accuracy, precision, recall, etc. It's used to 

assess the performance of models. 

XI. from sklearn.metrics import accuracy_score: 

This specific import brings in the 

accuracy_score function, which is used to 

compute the accuracy of classification models 

by comparing predicted labels to actual labels.  

XII. import pickle: The pickle module is used for 

serializing and deserializing Python objects. 

It's often used for saving and loading machine 

learning models. 

XIII. from joblib import dump, load: Joblib is 

another library for serializing Python objects, 

often used for saving and loading large 

machine learning models more efficiently than 
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pickle. dump is used to save objects, and load 

is used to load them. 

XIV. from sklearn import tree, metrics: This line 

imports two modules/classes, tree and metrics, 

from Scikit-Learn (Sharma, D., Singh, I., & 

Pandey, U. 2022.). 

 

1. tree: This module provides the necessary 

components for working with decision trees, 

including building decision tree classifiers and 

regressors. 

2. metrics: This module contains various metrics and 

functions for evaluating machine learning models' 

performance, such as accuracy, precision, recall, 

etc. 

 

XV.from sklearn.tree import DecisionTreeClassifier: 

This line specifically imports the 

DecisionTreeClassifier class from the tree module 

within Scikit-Learn. The DecisionTreeClassifier is a 

machine learning algorithm used for classification 

tasks. It builds a decision tree model based on the 

training data and uses it to make predictions. 

 

2.3 Model Training and Testing 

 

Training Procedure: handwritten digit recognition 

using machine learning algorithms like Support 

Vector Machines (SVM) and Decision Trees, it's 

crucial to divide the dataset into training and testing 

subsets to evaluate the models' performance 

accurately. The MNIST dataset is a commonly used 

dataset for this task, containing 28x28 pixel grayscale 

images of handwritten digits from 0 to 9. Here's how 

we divide the MNIST dataset for training and testing 

(Gomathy, C. K., & Jaya Sairam, K. 2021): 

 

I. Dataset Description: Start by obtaining the 

MNIST dataset, which typically consists of a 

large number of labeled examples (e.g., 60,000 

training images and 10,000 testing images). 

II. Data Preprocessing: Before splitting the data, we 

preprocess it. This includes tasks such as 

normalization, feature extraction, and data 

augmentation (optional). For MNIST, you might 

simply normalize pixel values to be in the range 

[0, 1] by dividing by 255. 

III. Splitting the Dataset: 

a. Training Set: The training set is used to train the 

machine learning models. It's crucial for learning 

the patterns and features in the data. You typically 

reserve a significant portion of the dataset for 

training, often around 80% of the data. For 

MNIST with 60,000 samples, this would be 

approximately 60,000 samples. 

b. Testing Set: The testing set is used to evaluate the 

model's performance on unseen data. You should 

set aside a smaller portion of the dataset for 

testing, typically around 20% of the data. In the 

case of MNIST, this would be approximately 

10,000 samples. 

c. Validation Set (Optional): In some cases, you 

might create a validation set in addition to the 

training and testing sets. The validation set helps 

in tuning hyperparameters and preventing 

overfitting. You can typically use around 10-20% 

of the training data for validation.  

 

IV.  Implementing the Split: 

a. Since we are working with Python programming 

language, we can use libraries such as NumPy, 

scikit-learn, or TensorFlow/Keras to efficiently 

split the dataset. For instance, in scikit-learn: 

 

python 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split 

(X, y, test_size=0.2, random_state=42) 

Here, X represents the feature matrix (image data),  

and y represents the corresponding labels. 

 

V. Model Training and Evaluation: After splitting the 

dataset, we can proceed to train your machine 

learning models (e.g., SVM and Decision Tree) 

on the training set and evaluate their performance 

on the testing set. We can use metrics like 

accuracy, precision, and confusion matrices to 

assess the model's performance. 

 

III. RESULTS AND DISCUSSIONS 

 

A model’s performance is evaluated based on 

different metrics  such  as  accuracy, and precision 

score. The different evaluation  metrics  will  allow  

data  analysts  to  understand  a  model’s  

performance  based  on  its  strengths  and  

weaknesses.  For  this  project,  two  models,  CNN,  
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MLP  and  SVM  will  be  evaluated  based  on  

certain  metrics and  a  decision  will  be  made  to  

choose  the  best algorithm for handwritten digit 

recognition. 

 

3.1 Processing Result 

 

To obtaining good analytic results, the pre-processing 

results contained the 10 nominal Digits. Figure 4.1 

displays the Distribution of 10 Digits in MNIST 

Training Set that was utilized in this research and 

Figure 4.2 Show the Sample Digits of the Data Set. 

 
Figure 3.1 Distribution of Digits in the MNIST 

Training Set 

 

  
Figure 3.2 Sample Digits of the Dataset 

 

3.2 Performance Results of the Classifiers 

Here are the experimental results that were driven by 

the performance metrics that were covered in the 

Methodology. 

 

In the final experimentation of the models which 

include training and testing the models, Support 

Vector Model has the accuracy of 98 while Decision 

Tree has the accuracy of 94%. The results of the 

algorithms are clearly summarized in Table 3.  

 
Figure 3.3 Confusion matrix using SVM on test 

dataset 

 
Figure 3.4 : SVM Testing result. 

 

Figure 3.3 and figure.3.4 above show Confusion 

matrix using SVM on test dataset and Models Result 

Respectibily. The Final result of the SVM Model 

after the Implementation; the model had an Testing 

accuracy of 98%, Precision Score of 98%, Recall 

Score of 98% and F1 Score of 98%. 

 

  
Figure  3.5 Confusion matrix using Decision Tree 

on test dataset 
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Figure 3.5 show the Confusion Matrix of 

Decission Tree were the result show that ‘1’ as thas 

the lowest Correct Predicat while 5 has the Lowest. 

 

 
Figure  3.6 Evaluate SVM and Decision Tree 

 

The Figure 3.6 Above Shows that Graphtical 

Represention of the Result were we can identify that 

the SVM Model is presented in a bar of blue colour 

while the Decision tree is presentation  in bar of 

green colour and also the bar Chart show clearly that 

in all Eveluation Support Vector Machines (SVM) 

has the highest Performance than the Decision Tree. 

 

Table 3.1 Shows the Result of the Evaluation below. 

  Metric SVM Decision Tree 

0 Accuracy 98.37 95.88 

1 Precision 98.366593 95.826053 

2 Recall 98.350036 95.817291 

3 F1  Score 98.357676 95.817488 

 

Table 3.1 Result 

 

    
Figure 3.7 GUI Design. 

Figure 3.7 Above Shows the Web Interface of the 

models where we upload the image of digits “1” and 

the Predicted Result of each algorithm is “1” which is 

correct.  

 

CONCLUSION 

 

In this Research handwritten digits from MNIST 

database are trained and tested using two Machine 

Learning algorithms such as Decision Tree, Support 

Vector Machine. 60000 samples are used for training 

the model and 10000 samples are used for testing the 

model. The models are compared based on their 

accuracy, precision, recall and f1 score  
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