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Abstract- This study examines the advantages of a 

particular connection in Finsler geometry that 

addresses the equivalence problem. The connection 

considered is torsion-free and exhibits an “almost” 

compatibility with the associated metric. We focus on 

an intrinsic investigation of a specific category of 

regular Finsler connections within the framework of 

special curvatures and connections. As a result, this 

leads naturally to a generalized notion of sectional 

curvature in Finsler geometry, along with several 

related comparison theorems. 

 

I. INTRODUCTION 

 

Riemannian geometry has long served as the 

foundation for describing curved space-time. Its role 

in formulating and interpreting gravity is closely tied 

to the assumption of local isotropy in space-time. The 

metric structure of this geometry successfully supports 

the observational predictions of general relativity, 

such as the existence of geodesics and their deviations. 

Within the scope of physical geometry—concerned 

with analyzing space in relation to moving and 

interacting objects—the geometrical structure of 

space-time becomes central. In this setting, 

gravitational phenomena can be represented through 

geometrical entities like curvature, which provides a 

powerful tool for investigating the nature of the 

universe. 

 

A natural extension arises when one incorporates not 

only positional information but also the direction or 

velocity of a particle into the framework of geometry. 

This leads to a generalization of the Riemannian 

metric known as Finsler geometry, sometimes referred 

to as the geometry of the variational calculus. Unlike 

Riemannian geometry, Finsler geometry is capable of 

describing locally anisotropic space-times, where 

many physical processes cannot be captured by the 

Riemannian model alone. Over the past decade, there 

has been growing scientific interest in the applications 

of Finsler, Finsler-like, and Lagrange-Finsler 

geometries. This renewed focus has significantly 

advanced their use in gravitation, general relativity, 

and cosmology, with several influential works 

contributing to this development. 

 

Applications in Various Topics of Science 

Beyond gravitation, Finsler geometry has found 

applications across diverse branches of science. In 

mathematical biology, for example, Peter Antonelli 

employed it to study problems in ecology, social 

interactions, predator–prey dynamics, and 

evolutionary theory. In the field of information 

thermodynamics, researchers such as Roman Ingarden 

and R. Mrugala introduced the notion of relative 

information (entropy) to establish a Riemannian 

structure on the space of thermodynamic parameters; 

for nonequilibrium systems, however, this structure 

naturally extends to a Finslerian one. Further 

applications appear in various areas of optics—

including crystal, physiological, and electron optics. In 

seismology, Finsler geometry has been used to model 

seismic wave fronts in anisotropic media, where the 

wave front deviates from a circular form and instead 

assumes a convex curve known as a 

superellipse.Applications in Gravitation 

 

The study of geodesic deviations within the 

framework of the tangent bundle has played a central 

role in the development of Raychaudhuri equations for 

congruences on the Finsler tangent bundle, 

particularly in the context of F–R spacetimes. 

Alternative approaches have also been proposed, and 

notable progress has been achieved in formulating 

classical physical fields on Finsler spacetimes. Several 

attempts to construct field equations for the 

generalized metric tensor are documented in the 

literature. 

 

In this setting, the tangent Lorentz bundle emerges as 

a differentiable eight-dimensional manifold that can 
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be endowed with a generalized metric-compatible 

connection and its associated curvature tensor. 

Consequently, it has become common practice to 

formulate an eight-dimensional analogue of the 

Einstein field equations on this bundle, employing 

these generalized quantities in place of the classical 

ones. An alternative perspective is provided by the 

osculating Riemannian space approach, which 

effectively reduces a Finslerian spacetime to a 

corresponding “Riemannian” model, thereby offering 

another route to address this problem. 

 

Special Connections and Curvature 

 

1. Connections: 

A connection on a Finsler manifold (M,F) is defined 

as a linear connection on the vector bundle ρ: 

π∗TM→TM0 and it can be introduced through several 

approaches. Distinguished geometers such as É. 

Cartan and S. S. Chern have made significant 

contributions to this field. Of particular importance is 

the connection for Finsler metrics first introduced by 

S. S. Chern in 1943, which is now known as the Chern 

connection. Independently, H. Rund later presented 

the same connection in a different framework. 

Consequently, in some parts of the literature ([101], 

[11], p.171), the Chern connection is also referred to 

as the Rund connection. 

 

1.1 Chern Connection 

Let (M, F) be an n-dimensional Finsler manifold, and 

denote by TM0 = TM \{0} its slit tangent bundle. The 

natural projection π: TM0 → M induces a vector 

bundle π∗TM on TM0, whose fiber at a point (x, y) ∈ 

TM0 is 

 

π∗TM|(x,y) := {(x, y, v)|v ∈ TxM} ∼= TxM 

 

In other words, π∗TM is a vector bundle of rank nnn 

with base space TM0. Its dual bundle is denoted by 

π*T*M, where the fiber at (x,y)∈TM0  is the dual 

space T*
xM corresponding to the fiber TxM. 

 

Theorem 1 (S. S. Chern). Let (M,F) be an nnn-

dimensional Finsler manifold. On the pullback tangent 

bundle π∗TM, there exists a unique linear connection 

∇ that is torsion-free and almost metric-compatible. 

More precisely, for any local frame field {ei} on π∗TM 

with corresponding dual coframe {ωi} on π∗T∗M, there 

exists a unique collection of local 1-forms {ωi
j} on 

TM0 such that 

 

 
 

(1.1) and (1.2) can be also written as 

 
 

Remark. Since the Chern connection is constructed on 

the pullback tangent bundle π∗TM, it should be 

emphasized that ∇uv and [u,v] in the preceding 

formulas must be interpreted as ∇u(ρ−1v) and 

[ρ−1u,ρ−1v]=ρ−1[u,v], according to the commutative 

diagram. The remaining expressions follow in the 

same way and are therefore not explicitly stated. 

 

Proof of Theorem 1.1. Without loss of generality, the 

theorem may be proved in a standard local coordinate 

system (xi,yi) on TM0. In this setting, the local frame 

field of the pullback tangent bundle π∗TM is given by 

{∂i=∂/∂xi, and its corresponding dual frame field in the 

dual bundle π∗T∗M is {dxi}. 

 

2. Curvature: 

2.1 Curvature form of the Chern connection 

     Let (M, F) be an nnn-dimensional Finsler manifold. 

For any local frame field {ei} on the pullback tangent 

bundle π∗TM and its dual coframe {ωi} on the dual 

bundle π∗T∗M, the Chern connection forms {ωi
j} are 

determined by (1.1) and (1.2). The corresponding 

curvature 2-forms are then defined by 

 

 
Exterior differentiating (1.1) and using (1.1) and 

(2.1), one can obtain 

(2.2) 

 

which is called the first Bianchi identity. 
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CONCLUSION 

 

In the coming years, further developments in the 

applications of Finsler and Finsler-like geometries are 

anticipated, particularly in the areas of general 

relativity, gravitation, and cosmology, where they may 

provide valuable tools for addressing problems related 

to a universe with weak anisotropic fields in these 

domains.  
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