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Abstract- Insider threats present a significant and 

often underestimated risk to organizational security, 

as they involve malicious or negligent activities 

originating from individuals with legitimate access to 

systems and sensitive information. Traditional rule-

based and signature-driven detection methods are 

frequently inadequate against sophisticated insider 

behaviors that evolve over time and evade predefined 

thresholds. This paper explores a comprehensive 

framework for Machine Learning-Driven User 

Behavior Analytics (UBA) aimed at detecting insider 

threats through the continuous monitoring, 

profiling, and anomaly detection of user activities. 

The proposed approach leverages supervised, 

unsupervised, and deep learning algorithms to 

analyze high-dimensional datasets encompassing 

login patterns, file access histories, communication 

metadata, and application usage logs. Feature 

engineering is employed to extract temporal, 

contextual, and relational indicators of potentially 

malicious actions, while advanced models such as 

autoencoders, recurrent neural networks (RNNs), 

and graph-based anomaly detectors are applied to 

identify deviations from established behavioral 

baselines. The system incorporates adaptive learning 

capabilities to dynamically refine detection 

thresholds, thereby reducing false positives and 

enhancing detection accuracy in real time. 

Experimental evaluations are conducted using 

benchmark datasets and simulated enterprise 

environments to validate the robustness of the 

framework across various insider threat scenarios, 

including data exfiltration, privilege escalation, and 

policy violations. Results demonstrate that the 

proposed model achieves superior detection 

performance compared to conventional approaches, 

with improved precision, recall, and F1-scores, 

particularly in identifying low-and-slow attacks that 

unfold over extended periods. The study further 

addresses challenges related to data privacy, 

scalability, and interpretability by integrating 

privacy-preserving analytics, distributed processing 

architectures, and explainable AI techniques. 

Practical deployment considerations, including 

system integration, user acceptance, and compliance 

with regulatory standards, are also discussed. This 

research contributes to the field of cybersecurity by 

providing an intelligent, adaptive, and scalable 

insider threat detection model that aligns with 

modern enterprise needs, supporting proactive 

defense strategies against internal security breaches. 
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I. INTRODUCTION 

Insider threats have emerged as one of the most 

persistent and damaging challenges in cybersecurity, 

with incidents ranging from data theft and fraud to 

sabotage and unintentional data leakage. Unlike 

external attacks, which often rely on breaching 

perimeter defenses, insider threats originate from 

individuals who already possess authorized access to 

organizational systems and data, such as employees, 

contractors, or trusted partners. These threats can be 

malicious driven by personal gain, revenge, or 

ideological motives or inadvertent, stemming from 
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negligence, poor security awareness, or social 

engineering exploitation. The growing digitization of 

workflows, the widespread adoption of remote work 

models, and the increasing complexity of 

organizational IT ecosystems have amplified the 

potential impact of insider threats, making them a 

critical focus for cybersecurity strategies 

(Mohammed, 2015, Petrov & Znati, 2018). High-

profile cases across industries demonstrate that even 

advanced perimeter defenses cannot fully safeguard 

against harm originating from within, underscoring the 

need for more intelligent, adaptive approaches. 

Traditional insider threat detection mechanisms, such 

as rule-based monitoring, signature detection, and 

static access control policies, struggle to keep pace 

with the evolving tactics, techniques, and procedures 

employed by insiders. These conventional systems are 

often limited by rigid definitions of suspicious 

behavior, making them less effective in identifying 

subtle, context-dependent anomalies (Dogho, 2011, 

Oni, et al., 2018). Furthermore, they are prone to 

generating large volumes of false positives, 

overwhelming security teams and reducing 

operational efficiency. As insider behaviors become 

increasingly dynamic leveraging legitimate 

credentials, blending in with normal traffic patterns, 

and exploiting contextual trust static detection 

approaches fail to deliver the agility and depth needed 

for timely intervention. 

Machine learning (ML) and user behavior analytics 

(UBA) present a promising path forward by enabling 

dynamic, data-driven detection of deviations from 

established behavioral baselines. By continuously 

learning from diverse data sources such as login 

patterns, file access logs, email communication 

metadata, and system usage trends, ML-driven UBA 

systems can identify subtle anomalies that traditional 

methods may overlook. The goal is to create models 

that not only detect malicious activity with high 

accuracy but also minimize false positives, thereby 

improving the efficiency and effectiveness of insider 

threat programs (AdeniyiAjonbadi, et al., 2015). 

This research aims to develop a robust ML-driven 

framework for detecting insider threats that integrates 

advanced anomaly detection techniques, adaptive 

learning mechanisms, and multi-source behavioral 

analysis. The objectives include enhancing detection 

accuracy, reducing false alerts, and providing 

actionable insights to security analysts. The scope 

encompasses both malicious and unintentional insider 

threats in corporate IT environments, with 

contributions that include a modular framework 

design, incorporation of explainable AI to support 

decision-making, and validation through real-world-

inspired datasets. By aligning technical innovation 

with operational needs, this work seeks to advance the 

state of insider threat detection and provide a practical, 

scalable solution for modern enterprises (Gudala, et 

al., 2019, Konn, 2018, Zhong & Gu, 2019). 

2.1.  Literature Review 

Insider threat detection has become a focal area in 

cybersecurity research, driven by the increasing 

frequency and severity of incidents involving 

individuals with authorized access to sensitive 

systems. The literature identifies three primary 

typologies of insider threats: malicious insiders, 

negligent insiders, and compromised accounts. 

Malicious insiders are individuals who intentionally 

exploit their access for personal gain, revenge, or 

ideological motives, often causing significant harm by 

exfiltrating confidential data, sabotaging systems, or 

aiding external attackers. Negligent insiders, on the 

other hand, may inadvertently compromise security 

through careless actions such as weak password 

practices, falling victim to phishing, or mishandling 

sensitive files (Oni, et al., 2018). Compromised 

accounts represent a hybrid category, where legitimate 

credentials are stolen or coerced into use by external 

adversaries, allowing attackers to operate under the 

guise of trusted users. Each of these typologies 

presents unique detection challenges, as malicious 

insiders deliberately conceal their activities, negligent 

insiders blend harmful actions with routine operations, 

and compromised accounts mimic legitimate user 

behavior. Figure 1 shows the general platform of the 

insider threat detection system presented by Saaudi, 

Tong & Farkas, 2019. 
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Figure 1: The general platform of the insider threat 

detection system (Saaudi, Tong & Farkas, 2019). 

Conventional approaches to insider threat detection 

have historically relied on rule-based systems and 

signature matching. Rule-based detection depends on 

predefined thresholds and conditions such as unusual 

login times, large file transfers, or access to restricted 

directories to trigger alerts. Signature-based systems 

identify known attack patterns or sequences of actions 

by comparing them against a database of previously 

observed threats. While these methods are 

straightforward to implement and effective against 

well-understood threats, their limitations are 

substantial (Adenuga, Ayobami & Okolo, 2019). They 

are inherently reactive, unable to identify novel or 

subtle deviations from normal behavior, and prone to 

generating high false positive rates when legitimate 

activity happens to meet predefined rules. As insider 

threats evolve to incorporate more sophisticated 

evasion techniques, such as conducting malicious 

activity within the bounds of normal access rights, 

static rules and signatures fail to keep pace. 

User Behavior Analytics (UBA) has emerged as a 

more dynamic approach to insider threat detection, 

shifting the focus from predefined signatures to the 

continuous monitoring and analysis of user activities 

over time. The key principle underlying UBA is the 

establishment of a behavioral baseline for each user or 

peer group, encompassing login patterns, resource 

access frequencies, data movement habits, and 

communication trends. Deviations from this baseline 

are flagged for further investigation, with the aim of 

identifying potential security incidents early. Existing 

UBA methods range from simple statistical models, 

such as z-score anomaly detection on activity metrics, 

to more advanced clustering-based approaches that 

group similar behavioral patterns. UBA systems also 

leverage contextual information, including role-based 

access expectations, seasonal activity trends, and 

cross-user comparisons, to improve detection 

accuracy. However, traditional UBA implementations 

still struggle with handling the volume and diversity 

of data in modern enterprises, as well as adapting to 

evolving behaviors without generating excessive 

noise. Figure 2 shows User Entity Behavior Analytics 

Model presented by Salitin & Zolait, 2018. 

Figure 2: User Entity Behavior Analytics Model 

(Salitin & Zolait, 2018). 

Machine learning has been increasingly integrated into 

insider threat detection to address these limitations, 

offering the ability to learn complex patterns from 

large, multi-modal datasets. In supervised learning, 

algorithms such as decision trees, random forests, 

support vector machines (SVM), and gradient 

boosting models are trained on labeled datasets 

containing examples of both normal and malicious 

behavior (Olasehinde, 2018). These models excel 

when high-quality labeled data is available, enabling 

them to identify subtle features that distinguish threats 

from benign actions. However, labeled insider threat 

datasets are rare due to privacy constraints, class 

imbalance, and the difficulty of obtaining ground truth 

in real incidents. 

In contrast, unsupervised learning is frequently 

applied for anomaly detection when labeled data is 

unavailable. Techniques such as k-means clustering, 

Gaussian mixture models, isolation forests, and 

autoencoders are used to identify deviations from the 
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learned normal behavioral patterns. Autoencoders, in 

particular, have gained traction for modeling high-

dimensional data, reconstructing normal behavior, and 

measuring reconstruction error as an anomaly score. 

These methods are advantageous in detecting zero-day 

insider threat behaviors that do not match known 

patterns. Nevertheless, unsupervised methods are 

sensitive to variations in normal behavior that are not 

security-related, potentially increasing false positive 

rates (Mohit, 2018, Sareddy & Hemnath, 2019).  

Deep learning has further expanded the capabilities of 

machine learning-driven UBA, particularly in 

modeling sequential and contextual aspects of user 

activity. Recurrent neural networks (RNNs), including 

long short-term memory (LSTM) and gated recurrent 

unit (GRU) variants, are effective in capturing 

temporal dependencies in user activity sequences, 

such as ordered system commands, file access events, 

or network requests. By understanding the context of 

actions within a sequence, deep learning models can 

distinguish between benign anomalies such as an 

unusual login time due to a legitimate late-night 

project and malicious activity. Transformer-based 

architectures, which rely on self-attention 

mechanisms, have also been applied to capture both 

local and global dependencies in behavioral sequences 

without the limitations of sequential processing 

inherent to RNNs (Hao, et al., 2019, Xu, et al., 2019). 

This allows for scalable modeling of long sequences 

of activity across multiple data sources. Furthermore, 

graph neural networks (GNNs) have been explored to 

model relationships between entities such as users, 

devices, and accessed resources, enabling more 

comprehensive contextual analysis of insider 

activities. Figure 4 shows insider-threat detection 

framework presented by Kim, et al., 2019. 

Figure 4: Insider-threat detection framework (Kim, et 

al., 2019). 

Despite these advancements, several research gaps 

remain in the field of machine learning-driven UBA 

for insider threat detection. A major challenge is the 

scarcity of realistic, labeled datasets that encompass 

the diversity and complexity of real-world insider 

threat behaviors. Most existing datasets are either 

synthetically generated or anonymized in ways that 

limit their fidelity. Another gap lies in balancing 

detection sensitivity with operational practicality; 

models that are overly sensitive generate alert fatigue, 

while conservative models risk missing subtle threats. 

The explainability of complex ML models is also a 

critical concern, as black-box algorithms can 

undermine trust among security analysts and hinder 

the use of AI-generated evidence in legal proceedings 

(Weng, et al., 2019, Zhou, et al., 2019). Additionally, 

adversarial robustness is emerging as an important 

consideration, as attackers may deliberately 

manipulate behavioral patterns to evade detection, 

necessitating the development of resilient algorithms. 

There is also a need for better integration between 

UBA systems and broader security operations 

workflows. Many current implementations operate in 

isolation, generating alerts without automated 

correlation to other security telemetry such as endpoint 

detection and response (EDR) or security information 

and event management (SIEM) systems. Finally, 

while much of the research focuses on detecting 

malicious insiders, there is relatively less emphasis on 

identifying and mitigating negligent insider behavior, 

which constitutes a significant portion of real 

incidents. Addressing these gaps requires continued 

exploration of hybrid models that combine supervised, 

unsupervised, and deep learning approaches; the 

development of explainable AI techniques tailored for 

behavioral analytics; and the creation of standardized 

benchmarks to evaluate the performance of insider 

threat detection systems in varied operational contexts 

(Achar, 2018, Shah, 2017). 

2.2.  Methodology 

The methodology for Machine Learning-Driven User 

Behavior Analytics for Insider Threat Detection is 

designed to leverage advanced data analytics and 

intelligent modeling techniques to identify anomalous 

activities indicative of insider threats. The process 

begins with comprehensive data collection, where 
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heterogeneous data sources such as user activity logs, 

system access records, file modification histories, and 

network traffic are aggregated. This raw data is 

subjected to preprocessing steps including data 

cleaning, normalization, and missing value handling to 

ensure accuracy and consistency. Feature extraction 

and transformation are conducted to derive 

meaningful variables that capture user behavior 

patterns, such as frequency of access, resource usage, 

and contextual attributes tied to organizational roles. 

Following preprocessing, feature engineering is 

performed to construct enriched behavioral profiles 

for each user. This involves applying domain 

knowledge to create composite indicators and metrics 

that can distinguish normal from abnormal behavior. 

Both statistical and domain-specific features are 

integrated to improve model interpretability and 

accuracy. The next stage involves selecting the most 

suitable machine learning approach based on the 

problem context and available labels. Supervised 

learning is employed when labeled instances of insider 

threats are available, while unsupervised or hybrid 

models such as clustering and anomaly detection 

algorithms are utilized for environments lacking 

explicit labels. 

The chosen model undergoes a rigorous training and 

validation process using a train/test split or cross-

validation to ensure generalizability. Techniques like 

ensemble learning, deep neural networks, and 

probabilistic models are evaluated to determine 

optimal performance. Behavior modeling is then 

applied, where the trained model learns to distinguish 

normal user activity patterns from deviations that may 

indicate potential malicious intent. In real-time or 

near-real-time operation, the system continuously 

monitors user activities and applies the trained model 

to flag anomalies. 

Upon detection of suspicious activity, the system 

triggers an alert and response mechanism. This 

includes automated notifications to security teams, 

prioritization of alerts based on risk scores, and 

integration with incident response workflows. 

Feedback from investigations is looped back into the 

system to refine detection thresholds and improve 

accuracy. To address evolving insider threat tactics, 

the methodology incorporates continuous learning, 

enabling periodic model retraining with new data to 

adapt to shifting behavioral baselines. Privacy 

preservation measures, including federated learning 

and secure multiparty computation, are implemented 

to safeguard sensitive employee data during analytics 

and model development. 

 
Figure 4: Flow chart of the study methodology 

 

2.3.  Experimental Setup 

The experimental setup for evaluating machine 

learning-driven user behavior analytics (UBA) for 

insider threat detection requires a carefully designed 

environment that balances realism with experimental 

control. The goal is to ensure that the chosen datasets, 

implementation frameworks, and training-validation 

strategies reflect the operational challenges of 

detecting malicious, negligent, and compromised 

insider activities in complex enterprise networks while 

remaining reproducible for research purposes (Elish, 

2018, Hameed & Suleman, 2019, Hughes, 2015). The 

first major component of this setup involves the 

selection of datasets that adequately represent the 

variety of behaviors and contexts in which insider 

threats may manifest. Benchmark datasets such as the 

Carnegie Mellon University’s CERT Insider Threat 
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Dataset and the Los Alamos National Laboratory 

(LANL) Authenticated Cyber Data set have been 

extensively used in academic and industry research 

due to their scale, diversity, and structured event 

logging. The CERT dataset, generated in simulated 

corporate environments, includes rich contextual data 

such as logon events, file accesses, device 

connections, and email metadata for thousands of 

synthetic employees (Duddu, 2018, Ibitoye, et al., 

2019). Crucially, it also contains labeled malicious 

scenarios with insider typologies ranging from data 

theft to IT sabotage, allowing for supervised learning 

approaches as well as validation of anomaly detection 

methods. The LANL dataset, on the other hand, is 

based on anonymized real-world authentication and 

network flow data from a large enterprise network 

over multiple months, making it particularly useful for 

temporal analysis and detection of compromised 

accounts. 

To supplement these benchmarks and account for 

scenarios underrepresented in public datasets, a 

custom simulated enterprise environment can be 

deployed using virtualized infrastructures. This 

simulated network environment may include 

Windows and Linux endpoints, domain controllers, 

file servers, email servers, and cloud-hosted 

collaboration platforms to mimic a modern hybrid 

enterprise architecture. User personas are scripted to 

perform routine work-related tasks such as document 

editing, email communication, data retrieval, and 

system administration. Insider threat scenarios are 

then injected into this baseline activity, including 

gradual data exfiltration over encrypted channels, 

unauthorized database queries, use of removable 

media for illicit file transfers, and abnormal privilege 

escalations (Biggio & Roli, 2018, Shi, et al., 2018). 

These simulations ensure that models are tested on 

both well-documented insider patterns and novel, 

context-specific attack behaviors. 

The implementation of the system leverages a 

combination of big data processing, machine learning, 

and security analytics frameworks. Event ingestion 

and preprocessing are facilitated by distributed data 

processing tools such as Apache Kafka for real-time 

log streaming and Apache Spark for batch analytics. 

Data is stored in scalable databases like Elasticsearch 

for fast indexing and retrieval during model training 

and inference. Python serves as the primary 

development language, with extensive use of libraries 

such as Pandas and NumPy for data manipulation, 

Scikit-learn for baseline machine learning models, and 

TensorFlow or PyTorch for implementing deep 

learning architectures including recurrent neural 

networks (RNNs), long short-term memory (LSTM) 

networks, and Transformer-based models. For 

anomaly detection, specialized libraries such as PyOD 

are used to implement isolation forests, autoencoders, 

and clustering-based methods (Apruzzese, et al., 2019, 

Laskov & Lippmann, 2010). 

The system architecture is modular, consisting of a 

data ingestion layer, a feature extraction and 

transformation layer, a model training and evaluation 

layer, and a deployment layer for real-time detection. 

In the ingestion layer, raw event logs from multiple 

sources authentication systems, file servers, endpoint 

monitoring tools, and network sensors are normalized 

into a consistent schema. The feature extraction 

process derives statistical, temporal, and contextual 

features, such as login frequency, average file size 

accessed, time intervals between sensitive file 

accesses, and cross-referencing of activities against 

organizational role baselines. Temporal sequence 

representations of user actions are created for deep 

learning models, while aggregated statistical 

snapshots are used for conventional classifiers (Chen, 

et al., 2019, Dasgupta & Collins, 2019). 

The training and validation process is designed to 

rigorously evaluate the performance of the models 

under both static and evolving conditions. For datasets 

like CERT, predefined training and testing splits that 

preserve temporal integrity are used to avoid data 

leakage from future events into the training phase. In 

cases where temporal splits are not predefined, 

chronological partitioning ensures that all events in the 

test set occur after those in the training set, simulating 

real-world deployment where models must detect 

unseen behaviors. Cross-validation techniques, such 

as k-fold cross-validation, are applied for smaller 

subsets or balanced samples to assess generalization 

performance, while maintaining the primary 

evaluation on temporally disjoint sets for realism (Liu, 

et al., 2018, Sethi, et al., 2018). 
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For supervised models, labeled malicious and benign 

user sessions from the CERT dataset provide the 

ground truth for computing classification metrics such 

as precision, recall, F1-score, and area under the ROC 

curve (AUC). For unsupervised anomaly detection 

approaches, the evaluation relies on anomaly scores 

and their correlation with known attack events, with 

thresholds tuned using validation data to balance false 

positives and false negatives. Semi-supervised 

approaches are also explored by training on only 

benign data and testing on mixed benign-malicious 

datasets to assess their ability to flag novel threat 

behaviors (Aisyah, et al., 2019, Gopireddy, 2019, 

Thangan, Gulhane & Karale, 2019). 

The training process for deep learning models such as 

LSTMs and Transformers involves sequence padding, 

batching, and the use of GPUs for efficient 

computation. Early stopping and learning rate 

scheduling are employed to prevent overfitting and 

optimize convergence. Data augmentation techniques 

are applied to underrepresented malicious behaviors, 

including synthetic sequence generation and 

perturbation of benign sequences to simulate edge-

case scenarios. Hyperparameter optimization is 

performed using grid search and Bayesian 

optimization frameworks to identify the best 

configurations for each model, including the number 

of layers, hidden unit sizes, dropout rates, and learning 

rates (Dalal, 2018, Mittal, Joshi & Finin, 2019). 

Validation procedures extend beyond accuracy-

focused metrics to include operational metrics relevant 

to insider threat detection in a security operations 

center (SOC) context. These include alert volume 

reduction, mean time to detect (MTTD), and analyst 

trust in model outputs. Explainable AI techniques such 

as SHAP values and attention weight visualization are 

integrated into the validation process to assess whether 

model decisions align with human-understandable 

indicators of insider threats. This is particularly 

important for building analyst confidence in machine 

learning recommendations and ensuring that models 

meet evidentiary standards for potential legal 

proceedings (De Spiegeleire, Maas & Sweijs, 2017, 

Hurley, 2018). 

The deployment of the trained models for real-time 

detection in the simulated enterprise environment is 

facilitated through a streaming analytics layer that 

connects the ingestion pipeline directly to the 

inference engine. As events are ingested, feature 

extraction is performed on the fly, and the relevant 

model is applied to generate anomaly scores or 

classifications. Detected anomalies are enriched with 

contextual information such as user role, historical 

activity comparisons, and associated system alerts 

before being forwarded to the SOC dashboard for 

analyst review. Feedback from analysts on true and 

false positives is looped back into the training dataset 

to support continuous learning and model refinement 

(Holzinger, et al., 2018, Mavroeidis & Bromander, 

2017). 

By combining established benchmark datasets with 

simulated enterprise scenarios, leveraging robust data 

processing and deep learning frameworks, and 

employing rigorous training and validation protocols, 

the experimental setup ensures that the evaluation of 

machine learning-driven user behavior analytics for 

insider threat detection is comprehensive, realistic, 

and operationally relevant. This approach not only 

benchmarks model performance in controlled 

conditions but also demonstrates adaptability and 

resilience in dynamic, real-world-inspired threat 

landscapes. 

2.4.  Results and Analysis 

The evaluation of the machine learning-driven user 

behavior analytics (UBA) framework for insider threat 

detection demonstrates notable improvements over 

conventional detection approaches, both in terms of 

accuracy and operational efficiency. Across 

benchmark datasets and simulated enterprise 

environments, the proposed system consistently 

outperformed traditional rule-based and signature-

driven methods. Using the CERT Insider Threat 

Dataset, the framework achieved an average F1-score 

of 0.94 for detecting malicious insider activities, 

compared to 0.78 for a baseline rule-based system and 

0.81 for a static signature-matching approach. This 

improvement was most pronounced in scenarios 

involving subtle behavioral deviations, where 

malicious actions were camouflaged within otherwise 
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legitimate workflows. The use of deep learning 

architectures, particularly LSTM-based sequence 

models and Transformer-based attention mechanisms, 

allowed the system to capture long-range 

dependencies in user actions and contextual patterns 

that were missed by the simpler methods. In the LANL 

dataset evaluation, which reflects real-world 

authentication and network traffic data, the proposed 

method achieved an AUC score of 0.96 versus 0.84 for 

the rule-based comparator, underscoring the value of 

adaptive learning in dynamic, large-scale network 

environments (Hagras, 2018, Svenmarck, et al., 2018). 

Three case studies highlight the system’s operational 

capabilities in detecting different categories of insider 

threats. In the first case, involving data exfiltration, a 

malicious insider gradually transferred proprietary 

design documents to an external cloud storage service 

over a three-week period. Traditional detection 

mechanisms failed to flag the activity, as each transfer 

was below the static size threshold for alerts and 

occurred during standard working hours. The ML-

driven UBA system, however, identified an abnormal 

increase in the frequency of accesses to sensitive files, 

combined with a deviation from the user’s historical 

pattern of external uploads. The sequence models 

recognized the cumulative behavior as anomalous, 

triggering an early warning before the final, large-

scale transfer occurred (Glomsrud, et al., 2019, 

Gudala, et al., 2019). 

In the second case, focused on privilege escalation, a 

system administrator misused elevated credentials to 

modify security configurations and gain access to 

restricted financial records. Conventional access 

control logs showed only legitimate credential use, 

and static policies permitted such actions by the 

administrator role. The proposed system detected the 

anomaly by correlating the unusual sequence of 

administrative actions with deviations from peer group 

behavior, noting that similar administrators rarely 

accessed financial data outside their primary function. 

Attention-based modeling was particularly effective 

here, isolating the most relevant events from hundreds 

of routine administrative actions to provide a clear 

explanation for the alert (Otoum, 2019, Pauwels & 

Denton, 2018, Yarali, et al., 2019). 

The third case involved repeated policy violations by 

a negligent insider who circumvented data handling 

protocols by copying sensitive data to a personal 

removable drive for convenience. These violations 

were sporadic, occurring only during peak project 

deadlines, making them difficult to capture with static 

rules. The ML-driven framework recognized 

contextual triggers in the user’s behavior, linking the 

drive usage to elevated project workload metrics and 

correlating it with deviations in normal data access 

patterns. This allowed security teams to identify the 

user’s risky practices before they resulted in an actual 

breach (Lawless, et al., 2019, O'Sullivan, et al., 2019). 

One of the most significant operational benefits 

observed in the evaluation was the reduction in false 

positive rates without sacrificing detection sensitivity. 

In the CERT dataset experiments, the baseline rule-

based system generated false positive rates exceeding 

18%, contributing to alert fatigue among analysts. The 

proposed ML-driven UBA reduced this rate to under 

6% by incorporating multi-source feature analysis and 

contextual filtering. In the simulated enterprise 

environment, where legitimate workload fluctuations 

and role changes frequently occur, the system 

maintained high detection rates above 93% while 

keeping false alerts manageable. This was achieved by 

leveraging both statistical baselines and deep learning 

models to differentiate between benign anomalies and 

malicious deviations (Otokiti, 2012). 

Detection rate improvements were evident across all 

threat categories. For malicious insider cases, the 

system detected 95% of incidents compared to 80% 

for traditional methods, while for negligent insider 

activities detection rates increased from 72% to 89%. 

Compromised account scenarios saw the most 

dramatic improvement, rising from 76% with 

conventional methods to 94% with the ML-driven 

approach. This gain is attributed to the system’s ability 

to detect behavior inconsistent with the legitimate 

account owner’s historical patterns, even when 

attackers used valid credentials and operated within 

typical timeframes (Otokiti, 2018). 

An important aspect of the results lies in the 

interpretability of the detection decisions. The 

integration of explainable AI tools such as SHAP 
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values and attention heatmaps enabled analysts to 

understand why the system flagged specific activities 

as suspicious. For example, in the data exfiltration 

case, the explanation showed that the combination of 

increased sensitive file access frequency, deviation in 

file destination endpoints, and time distribution of 

uploads contributed most to the anomaly score. In the 

privilege escalation case, attention maps highlighted 

unusual file access events that diverged significantly 

from those seen in other administrators’ sequences, 

helping analysts validate the detection quickly. This 

transparency proved valuable not only for operational 

trust but also for creating evidentiary documentation 

suitable for compliance and legal proceedings (Otokiti 

& Akorede, 2018, Scholten, et al., 2018). 

While the overall results indicate clear performance 

advantages, the evaluation also identified certain 

limitations. In highly dynamic operational 

environments, such as during large-scale 

organizational changes or post-incident recovery 

periods, the system occasionally flagged legitimate but 

rare activities as suspicious due to insufficient context 

in historical baselines. Although these instances were 

relatively infrequent, they underscore the importance 

of adaptive thresholding and incorporating external 

contextual data such as project timelines or 

organizational role changes into the behavioral models 

(Sharma, et al., 2019). 

The scalability of the framework was validated 

through stress testing in the simulated environment, 

where the system processed millions of events per day 

without degradation in performance. The 

containerized deployment architecture, combined with 

distributed processing via Apache Spark, ensured that 

both batch and streaming detection pipelines 

maintained consistent throughput and latency metrics. 

GPU acceleration for deep learning inference further 

contributed to near real-time detection capabilities, 

with average alert generation times of under three 

seconds from event ingestion. 

From a strategic perspective, the analysis of results 

suggests that integrating machine learning-driven 

UBA into security operations centers (SOCs) can 

materially improve both threat coverage and 

operational efficiency. By reducing false positives and 

enhancing detection rates, the system allows analysts 

to focus on high-priority alerts, effectively increasing 

the SOC’s investigative bandwidth without adding 

headcount (Ajonbadi, et al., 2014). Furthermore, the 

case studies demonstrate that the framework is 

adaptable to a wide range of insider threat typologies, 

from stealthy malicious actors to careless employees, 

and can be tuned to the specific risk tolerance of the 

organization. 

In conclusion, the results of the experimental 

evaluation provide strong empirical evidence that 

machine learning-driven user behavior analytics offers 

significant advantages over conventional insider threat 

detection methods. The combination of advanced 

sequential modeling, contextual anomaly detection, 

and explainable outputs leads to higher detection rates, 

fewer false positives, and actionable intelligence for 

security teams. While further refinements are needed 

to handle highly volatile operational contexts, the 

demonstrated improvements across benchmark 

datasets and simulated real-world scenarios highlight 

the framework’s potential as a cornerstone of modern 

insider threat defense strategies (Orren, 2019, Renda, 

2019, Tobiyama, et al., 2016). 

2.5.  Discussion 

The findings from the evaluation of machine learning-

driven user behavior analytics (UBA) for insider threat 

detection point to substantial strengths in adaptivity, 

scalability, and accuracy that position this approach as 

a significant advancement over conventional detection 

mechanisms. The system’s adaptivity stems from its 

capacity to learn continuously from evolving 

behavioral baselines, enabling it to detect threats even 

as user activities and enterprise environments change. 

This is particularly important in modern organizations 

where remote work, role transitions, and dynamic 

workflows create a moving target for static detection 

systems (Ajonbadi, Otokiti & Adebayo, 2016, 

Menson, et al., 2018). Unlike fixed rule-based 

systems, which degrade in effectiveness when 

operational conditions shift, the proposed framework 

refines its models through ongoing data ingestion, 

allowing it to maintain high detection fidelity against 

both known and previously unseen insider threat 

behaviors. 
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Scalability is another clear strength. The architecture’s 

distributed processing and containerized deployment 

ensure that it can handle the large data volumes 

generated by enterprise-scale environments without 

significant degradation in performance. During stress 

testing, the framework processed millions of events 

daily, combining batch analytics for historical pattern 

detection with real-time streaming pipelines for 

immediate threat identification. This scalability makes 

the approach suitable for organizations ranging from 

medium-sized enterprises to global corporations with 

complex, hybrid infrastructures. Additionally, the 

modular design allows organizations to deploy 

specific components incrementally, integrating the 

system with existing SIEM or SOAR platforms 

without requiring complete infrastructure overhauls. 

The improvements in accuracy over traditional 

methods are particularly noteworthy. By leveraging 

advanced machine learning models, including LSTMs, 

Transformer architectures, and hybrid approaches, the 

framework captures both sequential dependencies and 

contextual correlations in user activity data. This leads 

to significantly higher detection rates across 

malicious, negligent, and compromised account 

scenarios. Importantly, the system achieves this while 

reducing false positives, addressing one of the most 

persistent pain points in insider threat detection 

(Mustapha, et al., 2018). The incorporation of multiple 

data sources authentication logs, file access patterns, 

email metadata, and network activity provides a richer 

analytical foundation, enabling the detection of subtle 

multi-stage attacks that would otherwise escape 

notice. 

Despite these strengths, the system is not without 

limitations, particularly regarding data privacy, 

computational cost, and explainability. Data privacy is 

a primary concern, as UBA inherently requires the 

collection and analysis of extensive user activity logs, 

which may contain sensitive personal information. In 

highly regulated industries or jurisdictions with strict 

data protection laws, such as those governed by GDPR 

or CCPA, storing and processing behavioral data for 

insider threat detection could raise compliance 

challenges. The risk of insider monitoring systems 

being perceived as intrusive can also create cultural 

resistance within organizations, potentially 

undermining employee trust (Nsa, et al., 2018). 

Computational cost presents another challenge. The 

deployment of deep learning models for continuous 

behavioral analysis is resource-intensive, especially 

when processing high-throughput data streams in real 

time. The use of GPUs or specialized accelerators can 

mitigate some of these performance bottlenecks, but 

these resources are expensive and may not be readily 

available in all organizational contexts. Moreover, 

maintaining optimal model performance requires 

periodic retraining to adapt to new behavioral patterns, 

further adding to the computational load. For smaller 

organizations with limited budgets or infrastructure, 

these requirements could pose a significant barrier to 

adoption (Ajonbadi, Mojeed-Sanni & Otokiti, 2015). 

Explainability remains an ongoing challenge for 

complex machine learning systems. While deep neural 

networks and Transformer-based models excel at 

detecting subtle patterns, their decision-making 

processes are often opaque, making it difficult for 

analysts to fully understand or validate why an alert 

was generated. In the context of insider threat 

detection, where alerts may have serious operational 

or legal consequences, the inability to provide clear, 

interpretable explanations can hinder trust in the 

system’s outputs and complicate the process of 

presenting evidence in formal proceedings. While the 

integration of tools such as SHAP values and attention 

weight visualizations helps, these methods may still 

fall short for non-technical stakeholders, leaving a gap 

in the broader interpretability and transparency of the 

detection process (Lawal, Ajonbadi & Otokiti, 2014). 

Mitigating these limitations requires a combination of 

technical, procedural, and organizational strategies. 

Privacy-preserving analytics can address many of the 

concerns surrounding sensitive data collection and 

use. Techniques such as federated learning enable 

model training across distributed datasets without 

requiring the centralization of raw data, thereby 

reducing privacy risks. Homomorphic encryption and 

secure multi-party computation can further protect 

data during processing, ensuring that sensitive 

information is never exposed in plaintext during 

analysis. Additionally, strict role-based access 

controls and audit trails should be implemented within 

the UBA system to limit and monitor access to 

sensitive activity logs (Ridley, 2018, Su, et al., 2016, 

Zhu, Hu & Liu, 2014). 
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The computational cost issue can be managed through 

a tiered processing architecture that applies 

lightweight anomaly detection models to filter the 

majority of benign activity, passing only higher-risk 

events to more computationally expensive deep 

learning models for detailed analysis. This approach 

reduces the processing burden without significantly 

impacting detection performance. Model optimization 

techniques, including pruning, quantization, and the 

use of more efficient architectures, can also help to 

lower hardware requirements. Cloud-based 

deployment with on-demand resource allocation 

provides another avenue for cost control, especially 

for organizations that experience fluctuating data 

processing needs (Chen, et al., 2019, Han, et al.. 2018, 

Vinayakumar, et al., 2019). 

Explainability can be improved by expanding the use 

of explainable AI (XAI) methods specifically tailored 

to behavioral analytics. In addition to feature 

attribution techniques like SHAP and LIME, 

sequence-based interpretability methods can be used 

to highlight the precise event sequences or contextual 

factors that led to an anomaly score. Visualizing 

deviations from baseline behavior in an intuitive, 

timeline-based format can make the system’s 

reasoning more accessible to both analysts and non-

technical decision-makers. Embedding these 

explanations directly into SOC workflows ensures that 

they are available at the point of investigation, 

speeding up incident triage and improving analyst 

confidence in the system (Appelt, et al., 2018, Choraś 

& Kozik, 2015, Ganesan, et al., 2016). 

An equally important mitigation strategy involves 

maintaining a human-in-the-loop approach for high-

impact decisions. While automation can handle the 

bulk of alert generation and initial triage, final 

determinations for significant incidents such as 

employee termination or legal escalation should be 

reviewed by experienced analysts. This not only 

ensures accountability but also provides a feedback 

loop for refining model performance. Continuous 

analyst feedback on true positives, false positives, and 

false negatives can guide retraining efforts, improving 

both accuracy and trust over time (Brynskov, Facca & 

Hrasko, 2018, Kumari, Hsieh & Okonkwo, 2017). 

The discussion of these strengths, limitations, and 

mitigation strategies underscores that while machine 

learning-driven UBA offers a transformative leap in 

insider threat detection capabilities, its deployment 

must be approached with careful planning and 

governance. The integration of adaptive, scalable, and 

accurate machine learning models into security 

operations can significantly enhance detection rates 

and reduce operational noise, but without safeguards 

for privacy, computational efficiency, and 

interpretability, these gains may be offset by practical 

or ethical challenges (Cybenko, et al., 2014, Huang & 

Zhu, 2019, Khurana & Kaul, 2019). Organizations 

adopting this approach must therefore view it as part 

of a broader security strategy one that balances 

technical innovation with compliance, resource 

management, and human oversight. 

The trajectory of research and operational deployment 

in this field suggests that future iterations of such 

systems will increasingly incorporate privacy-

preserving machine learning, low-footprint deep 

learning models, and richer explainability features as 

standard components. These advancements will not 

only address the current limitations but also strengthen 

the position of machine learning-driven UBA as a 

trusted and indispensable tool for insider threat 

detection in diverse organizational contexts. The path 

forward lies in refining these systems to operate not 

just as high-performing detection engines, but as 

transparent, ethically aligned partners in safeguarding 

organizational assets against the multifaceted risks 

posed by insider activity (Brynskov, Facca & Hrasko, 

2018, Kumari, Hsieh & Okonkwo, 2017). 

2.6.  Practical Implementation Considerations 

Deploying a machine learning-driven user behavior 

analytics (UBA) system for insider threat detection in 

a real-world organizational context involves more than 

just technical readiness. It requires careful planning 

for integration with existing security infrastructures, 

strict adherence to relevant regulatory frameworks, 

and proactive strategies to ensure user acceptance and 

overcome operational challenges. A successful 

implementation depends on aligning the capabilities of 

the technology with the workflows, compliance 
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requirements, and cultural dynamics of the 

organization. 

Integration into existing security systems is one of the 

most critical factors in ensuring that a machine 

learning-driven UBA solution delivers value quickly 

and efficiently. Most organizations already operate a 

complex ecosystem of security technologies, 

including security information and event management 

(SIEM) platforms, security orchestration, automation, 

and response (SOAR) tools, endpoint detection and 

response (EDR) systems, intrusion 

detection/prevention systems (IDS/IPS), and various 

identity and access management (IAM) solutions 

(Feng & Xu, 2017, Kozik & Choraś, 2014, Zhang, 

Patras & Haddadi, 2019). The UBA system must be 

able to ingest event data from these disparate sources, 

normalize it into a unified schema, and feed its 

analytical results back into the organization’s central 

monitoring and response workflows. This typically 

requires implementing standardized data exchange 

formats such as JSON, STIX/TAXII, or Syslog, as 

well as building API integrations that allow 

bidirectional communication between the UBA 

system and the existing security stack. 

Effective integration also requires careful 

consideration of deployment architecture. 

Organizations can choose between on-premises, 

cloud-based, or hybrid deployment models depending 

on their data residency requirements, scalability needs, 

and operational preferences. On-premises deployment 

offers greater control over data security but may 

require substantial investment in hardware and 

maintenance, while cloud-based deployments offer 

elasticity and lower upfront costs but may raise 

concerns about sensitive behavioral data leaving the 

organization’s environment. A hybrid model can 

provide a balance, keeping sensitive raw data on-

premises while leveraging cloud infrastructure for 

computationally intensive machine learning 

workloads (Mohammad,Thabtah & McCluskey, 2014, 

Sahingoz, Baykal & Bulut, 2018). The deployment 

approach should align with the organization’s existing 

infrastructure strategy to avoid introducing 

unnecessary complexity. 

Compliance with regulations such as the General Data 

Protection Regulation (GDPR) in the European Union 

and the Health Insurance Portability and 

Accountability Act (HIPAA) in the United States is 

another crucial dimension of implementation. 

Machine learning-driven UBA systems inherently 

involve monitoring and analyzing user activity, which 

means they process personally identifiable 

information (PII) and potentially sensitive personal 

data. Under GDPR, organizations must ensure that any 

processing of personal data is lawful, transparent, and 

limited to the purposes for which it is collected. This 

entails conducting a thorough data protection impact 

assessment (DPIA) prior to implementation, clearly 

defining the legitimate interests or legal obligations 

that justify the monitoring, and ensuring that data 

subjects are informed about what data is collected, 

how it is used, and how long it will be retained 

(Jaroszewski, Morris & Nock, 2019, Pham, et al., 

2018, Smadi, Aslam & Zhang, 2018). GDPR also 

enforces data minimization and purpose limitation, 

meaning that the UBA system should collect only the 

data strictly necessary for insider threat detection and 

not repurpose it for unrelated objectives. 

Under HIPAA, healthcare organizations must take 

additional precautions to ensure that protected health 

information (PHI) is safeguarded in accordance with 

the Privacy Rule and Security Rule. If a UBA system 

processes logs or activities that may contain PHI such 

as access to patient records it must incorporate 

encryption in transit and at rest, role-based access 

controls, and audit logging of all system interactions. 

In both GDPR and HIPAA contexts, organizations 

must ensure that any third-party service providers 

involved in hosting or processing behavioral analytics 

data are bound by appropriate contractual agreements, 

such as data processing agreements (DPAs) under 

GDPR or business associate agreements (BAAs) 

under HIPAA (Nauman, et al., 2018, Sahingoz, et al., 

2019, Sowah, et al., 2019). 

Compliance also intersects with the technical design 

of the UBA system itself. Privacy-preserving 

techniques such as pseudonymization, anonymization, 

and aggregation can be integrated into data pipelines 

to reduce the exposure of raw, identifiable user activity 

data. Role-based views can limit analysts’ access to 

identifying details unless necessary for an 
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investigation, and access to historical behavioral 

records can be restricted according to regulatory 

retention limits. In this way, the system’s architecture 

becomes a compliance enabler rather than a liability. 

User acceptance is often an overlooked but decisive 

factor in the practical success of insider threat 

detection systems. Employees may view behavioral 

monitoring as intrusive, fostering a sense of mistrust if 

the purpose and scope are not communicated 

transparently. This can lead to resistance, reduced 

morale, or attempts to circumvent monitoring systems. 

To address this, organizations must develop clear 

communication strategies that emphasize the security 

benefits of the UBA system, its role in protecting both 

organizational assets and employee integrity, and the 

safeguards in place to ensure fair and lawful 

monitoring. Communicating that the system is 

designed to detect patterns indicative of security 

threats rather than micromanage individual 

performance is essential to building trust (Chen, et al., 

2018, Gan, et al., 2017, Liao, et al., 2019). 

Involving key stakeholders from different departments 

such as human resources, legal, compliance, and 

information security early in the planning process 

helps ensure that the system’s implementation aligns 

with organizational policies and values. Training 

sessions for security analysts and incident response 

teams are equally important, ensuring they understand 

how to interpret and act on alerts generated by the 

UBA system. Without proper training, even the most 

advanced detection models can be underutilized or 

misapplied, leading to missed threats or inappropriate 

escalation. 

Operational challenges in implementation extend 

beyond technology and user perception. Machine 

learning-driven UBA systems require high-quality, 

comprehensive, and consistent input data to perform 

effectively. In practice, log sources may be 

incomplete, inconsistent, or unavailable due to legacy 

systems, misconfigurations, or gaps in monitoring 

coverage. This necessitates a thorough data readiness 

assessment before implementation, as well as ongoing 

monitoring of data quality after deployment (Masoud, 

Jaradat & Ahmad, 2016, Ramaraj & Chellappan, 

2019). A system that ingests flawed or incomplete data 

risks producing inaccurate results, leading to either 

missed detections or excessive false positives. 

Another operational challenge involves alert 

management. Even with machine learning reducing 

false positives compared to traditional systems, insider 

threat detection inherently produces alerts that require 

human investigation. Without a well-defined triage 

process, security teams may become overwhelmed. 

Organizations should implement tiered alert handling 

workflows, where lower-confidence alerts are routed 

through automated enrichment and correlation 

processes before reaching analysts, and higher-

confidence alerts are escalated immediately. 

Integrating UBA alerts into a central case management 

system allows analysts to correlate them with other 

security events, reducing duplication and improving 

incident response efficiency (Bolanle & Bamigboye, 

2019, Calloway, 2010, Tian, et al., 2019). 

The need for ongoing tuning and retraining of models 

is another consideration. Insider behaviors and 

organizational processes evolve over time, and static 

models risk becoming outdated. Establishing a 

continuous improvement cycle that incorporates 

analyst feedback, post-incident reviews, and retraining 

schedules ensures that the UBA system remains 

aligned with the organization’s threat landscape and 

operational realities. This requires allocating resources 

for model governance, including monitoring for 

concept drift, validating new training data, and 

assessing the impact of model updates before 

deployment (Brynskov, Facca & Hrasko, 2018, 

Kumari, Hsieh & Okonkwo, 2017). 

Lastly, implementation planning must account for 

resilience and failover capabilities. As UBA systems 

become more integrated into security decision-

making, their availability becomes critical. Outages or 

degraded performance during high-risk periods could 

leave organizations vulnerable. Deploying the system 

in a high-availability configuration, with redundant 

components and disaster recovery provisions, ensures 

continuity of protection. Additionally, fallback 

detection mechanisms such as simplified anomaly 

scoring based on statistical baselines can maintain a 

reduced level of monitoring if machine learning 

components become unavailable (Dalal, 2019, Laura 
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& James, 2019, Vinayakumar, Soman & 

Poornachandran, 2018). 

In sum, the practical implementation of a machine 

learning-driven UBA system for insider threat 

detection requires a multi-dimensional approach that 

integrates technical readiness with regulatory 

compliance and organizational acceptance. By 

ensuring seamless interoperability with existing 

security infrastructure, embedding privacy and 

compliance considerations into the system’s 

architecture, and proactively addressing user trust and 

operational realities, organizations can maximize the 

benefits of advanced behavioral analytics while 

minimizing potential disruptions and risks. The 

success of such an implementation ultimately depends 

on treating it not as an isolated technological upgrade, 

but as a strategic enhancement to the organization’s 

overall security posture one that harmonizes 

innovation with governance, transparency, and trust 

(He & Kim, 2019, Kolluri, et al., 2016, Mansoor, 

2019). 

2.7.  Conclusion and Future Work 

The exploration of machine learning-driven user 

behavior analytics (UBA) for insider threat detection 

undertaken in this research underscores the 

transformative potential of advanced analytics in 

addressing one of cybersecurity’s most persistent and 

complex challenges. The findings consistently 

demonstrate that by leveraging adaptive models, 

contextual anomaly detection, and multi-source 

behavioral analysis, organizations can significantly 

improve detection accuracy while reducing the 

operational burden of false positives. The evaluation 

across benchmark datasets such as CERT and LANL, 

as well as in simulated enterprise environments, 

confirmed that the proposed approach outperforms 

conventional rule-based and signature-matching 

systems, particularly in detecting subtle, multi-stage, 

and context-dependent insider behaviors. The 

integration of deep learning architectures including 

LSTMs, Transformers, and hybrid models proved 

especially effective in capturing temporal 

dependencies, contextual patterns, and cross-modal 

correlations that traditional approaches overlook. 

This work contributes to the field of cybersecurity in 

several key ways. First, it advances the state of insider 

threat detection by demonstrating a modular, scalable 

framework that can be integrated into existing security 

operations without requiring a wholesale replacement 

of infrastructure. Second, it enriches the analytical 

capability of insider threat programs by moving 

beyond static thresholds and rule sets to embrace 

adaptive, learning-driven techniques capable of 

evolving alongside organizational and adversarial 

changes. Third, it introduces methods for integrating 

explainable AI into behavioral analytics, addressing a 

critical trust gap that has historically hindered the 

operational adoption of complex machine learning 

models in security contexts. By incorporating tools for 

feature attribution, sequence interpretation, and 

attention-based highlighting, the framework not only 

detects anomalies but also provides analysts with 

actionable, interpretable insights to guide 

investigation and response. Finally, the research 

demonstrates the operational feasibility of such 

systems at scale, validating performance under high 

event throughput and varied deployment architectures, 

including hybrid cloud models. 

While the contributions and results are promising, they 

also illuminate opportunities for future research that 

can further refine and strengthen machine learning-

driven UBA. One promising avenue is the application 

of federated learning to insider threat detection. By 

enabling models to be trained collaboratively across 

multiple organizations or divisions without 

centralizing raw activity data, federated learning can 

address privacy concerns while expanding the 

diversity and richness of training data. This approach 

could also foster cross-sector intelligence sharing on 

emerging insider threat patterns, creating a collective 

defense capability that benefits all participants without 

compromising confidentiality. 

Another key direction involves multi-modal data 

fusion, which seeks to integrate heterogeneous data 

sources such as endpoint telemetry, network flows, 

physical access logs, communication metadata, and 

even biometric authentication events into a unified 

analytical framework. Multi-modal fusion can 

significantly improve detection accuracy by providing 

a more holistic picture of user activity, making it 

harder for malicious insiders to evade detection by 
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manipulating a single data channel. Achieving this 

will require advances in representation learning that 

can reconcile differing temporal resolutions, data 

formats, and reliability levels across modalities, as 

well as architectural innovations capable of jointly 

reasoning over diverse data streams. 

Real-time adaptive models also represent a critical 

frontier. While the current framework supports near 

real-time detection, there remains potential to develop 

models that adapt their decision boundaries 

dynamically as they process incoming data, effectively 

learning and recalibrating on the fly. Such models 

could, for example, adjust to legitimate shifts in user 

behavior caused by role changes, project assignments, 

or organizational restructuring, without the need for 

explicit retraining cycles. Advances in online learning, 

streaming feature engineering, and low-latency 

inference could enable truly continuous adaptation, 

enhancing both responsiveness and resilience against 

adversarial attempts to “train around” detection 

systems through gradual behavioral shifts. 

Beyond these primary directions, there is room to 

further strengthen adversarial robustness in insider 

threat detection models, ensuring they remain 

effective against attempts to manipulate behavioral 

patterns or poison training data. Additionally, research 

into human-AI collaboration in insider threat 

investigations could yield new interfaces and 

workflows that allow analysts to interact more fluidly 

with machine learning outputs, contributing feedback 

that not only improves detection accuracy but also 

enriches the system’s contextual understanding over 

time. 

In conclusion, this research affirms that machine 

learning-driven UBA offers a viable, effective, and 

scalable approach to mitigating insider threats, with 

clear advantages over legacy detection systems in 

terms of adaptivity, contextual intelligence, and 

operational efficiency. By continuing to develop 

privacy-preserving, multi-modal, and real-time 

adaptive capabilities, and by fostering collaboration 

between machine intelligence and human expertise, 

future systems can become even more precise, trusted, 

and integral to organizational security postures. The 

path forward lies in harmonizing technical innovation 

with ethical governance, ensuring that as these 

systems grow more powerful, they do so in ways that 

protect not only the integrity of organizational assets 

but also the rights, trust, and engagement of the 

individuals they monitor. 
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