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Abstract- Necessary and sufficient conditions for the 

existence, form and uniqueness of optimal control of 

nonlinear systems are obtained. By using a 

generalized form of the open mapping theorem, 

controllability results are obtained for the free system 

by subjecting certain smoothness conditions on the 

nonlinear base. It is further shown that, if the system 

is relatively controllable, then optimal control is 

unique and bang-bang. 

 

I. INTRODUCTION 

 

Controllability is one of the fundamental concepts in 

mathematical systems theory. It is a qualitative 

property of dynamical control systems and it is of 

particular importance to the control theorist. As 

interpreted by the theory of nonlinear ordinary 

differential equations, [ ], the fundamental problem of 

control theory has been mathematically posed and 

answered. The authors, as a result, believe that a 

thorough and careful presentation of the current status 

on trends in the optimal control of nonlinear neutral 

systems will serve the useful purpose of offering a 

foundation on which later researches could be based 

 

We are not only interested in the controllability of 

phenomena, but also in reaching the desired target 

with minimum wastage of efforts and in optimal time. 

It is this pursuit that has given rise to optimal control 

problems. 

 

In this work, we shall consider the system: 
𝑑

𝑑𝑡
𝐷(𝑡, 𝑥𝑡) =  𝐴𝑥(𝑡 − ℎ) + 𝐹(𝑥(𝑡))

+ ∑ 𝐵𝑖𝑢(𝑡 − ℎ𝑖)]

𝑁

𝑖=1

                   (1.1) 

Optimal controls are used in determining optimal ways 

in controlling dynamical systems. Most theoretical 

works in this field serve as a foundation for our 

research. We here consider some recent works in the 

literature that are relevant to our study:  Eyisi et al 

(2019) worked on Mathematical models for 

optimization of grid-integrated energy storage 

systems. The paper reviews mathematical models for 

optimization of grid-integrated energy storage 

systems. They discussed about optimization models 

including linear programming, mixed-integer linear 

programming and dynamic programming. They also 

presented case studies and simulation results to 

demonstrate the effectiveness of the proposed model. 

 

On their work in the existence results for fractional 

neutral functional differential equations with infinite 

delay and nonlocal boundary conditions, Madeaha A. 

and Shahad A. established sufficient criteria for 

ensuring the existence of solutions and uniqueness for 

a class of nonlinear neutral Caputo fractional 

differential equations supplemented with infinite 

delays and nonlocal boundary conditions involving 

fractional derivatives. The theory of infinite delay and 

standard fixed-point theorems are employed to obtain 

the existence results for the given problem. Examples 

were constructed to illustrate the obtained results. 

Nadjet (2023) on his work on Existence and 

controllability results for nonlocal fractional impulsive 

differential inclusions in Banach Spaces dealt with the 

existence of mild solutions for nonlocal fractional 

impulsive semilinear differential inclusions involving 

Caputo derivatives in Banach Spaces in the case when 

the linear part is the infinitesimal generator of a 

semigroup not necessarily compact. Meanwhile, they 

prove the compactness property of the set of solutions. 

Secondly they established two cases of sufficient 

conditions for the controllability of the considered 

control problems. 

Zhang (2020) on his paper, Optimization methods 

based on optimal control transformed the optimization 

problem into the optimal control problem by designing 

an appropriate cost function. The iterative update gain 

for the optimization is derived using Pontryagin’s 

Maximum Principle and the associated forward-

backward difference equations (FBCE’s). 
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K.S. Nisar et al (2024) treated the optimal and total 

controllability approach of non-instataneous Hilfer 

fractional derivative with integral boundary 

conditions. The focus was on absolute controllability 

of Hilfer impulsive non-instantaneous neutral 

derivative (HINND) with integral boundary condition 

of any order. Total controllability refers to the 

system’s ability to be controlled during the complete 

interval of the process. Optimal control was thus 

achieved by shooting at a particular tgarget within a 

given minimum time in the interval.  

On their work on Optimal control of linear hereditary 

systems with quadratic criterion, Clement  and Walters 

(1992) addressed systems governed by retarded 

functional differential differential equations and 

provided an exact solution for a differential-delay 

equation with one delay. They formulated the optimal 

control problem with quadratic cost and expressed the 

solution in terms of an M2 operator, H(t) which is 

solved using the Rocatti differential operator equation. 

This paper also explores approximation techniques 

based on eigen functions for some complex scenarios. 

Stability and optimal control theory of hereditary 

systems with applications was studied by Ethelbert 

(1992). This work derived equations for the dynamics 

of deterministic models including oscillating flying 

vehicles, mechanical systems and robotics. It 

investigated optimal feedback control strategies and 

integrated robotics into mathematical model to 

describe mathematical model to describe the optimal 

of dynamic systems. 

Approximating the linear quadratic optimal control 

law for hereditary systems with delays in the control 

was done by Mark (1988). In his work, he described 

the approximation schemes for freedback controllers 

in distributed parameter systems with control delays. 

It introduces a factorization approach for deriving 

approximations to optimal feedback gains and 

presents two algorithms, including a fast algorithm for 

time-invariant cases supported by numerical examples 

schemes tor feedback controllers. It also introduces a 

factorization approach for deriving approximations to 

optimal control feedbacks.  

II. NOTATIONS AND PRELIMINARIES 

 

In this paper, the state space will be a continuous 

function, 𝐶([−ℎ, 0], 𝐸𝑛) from [−ℎ, 0]  𝑡𝑜  𝐸𝑛  with the 

topology of uniform convergence. The norm of  

𝜑𝜖𝐶([−ℎ, 0], 𝐸𝑛) is given by 

 
‖𝜑‖ = Sup

−ℎ≤𝜑≤0
|𝜑(𝜃)|                                              (2.1) 

 

Constrained control set will be a closed and bounded 

subset of U with values in 𝐶𝑚 given by  

                      𝐶𝑚 = {𝑢: 𝑢 ∈ 𝐸𝑛, 𝑢𝑗 ≤ 1} 

With h>0, if 𝑥: [−ℎ, 𝑡1] → 𝐸𝑛 and 𝑡 → [0, 𝑡1], the 

symbol 𝑥𝑡 denotes a function on [−ℎ, 0] with 𝑥𝑡(𝑠) =
𝑥(𝑡 + 𝑠),       𝑠 ∈ [−ℎ, 0] 
Consider the system of interest given by equation 

(1.1): 
𝑑

𝑑𝑡
𝐷(𝑡, 𝑥𝑡) =  𝐴𝑥(𝑡 − ℎ) + 𝐹(𝑥(𝑡)) + ∑ 𝐵𝑖𝑢(𝑡 −𝑁

𝑖=1

ℎ𝑖)]        

For 𝑡 ∈ [0, 𝑇], 𝑇 > ℎ   with zero initial conditions 

𝑥(𝑡) = 𝜑(𝑡), 𝑥(0) = 0, 𝑢(𝑡) = 0 for 𝑡 ∈ [−ℎ, 0] 
Here D is a bounded linear operator from 

𝐶{[−ℎ, 0], 𝐸) into 𝐸𝑛 defined by 

 

𝐷(𝑡, 𝑥𝑡)
= 𝑥(𝑡)
−  𝐴−1𝑥(𝑡 − ℎ)                                                 (2.2) 

 

The state 𝑥(𝑡) ∈ 𝐸𝑛 = 𝑋 and the control 𝑢(𝑡) ∈ 𝐸𝑚 =
𝑈 

A is an 𝑛 × 𝑛 dimensional constant matrix. 𝐵𝑖 , 𝑖 =
0,1,2, … , 𝑁 are 𝑛 × 𝑚 dimensional constant matrices. 

0 = ℎ0 < ℎ1 < ℎ2 < ⋯ < ℎ𝑁 = ℎ are constant 

delays. We let C = 𝐶{[−ℎ, 0]𝐸𝑛)be the Banach space 

of continuously differentiable functions. Let 

𝐸(−∞, ∞) be the real line. For any integer n, 𝐸𝑛 is the 

Euclidean space of n – tupples with the norm ‖∙‖. 

 

Let 𝐿1([0, 𝑇], 𝐸𝑛) be the space of Lebesque integrable 

functions taking [0,T] into 𝐸𝑛 with norm ‖𝜑‖ =

∫ |𝜑(𝑥)|𝑑𝑠,
𝑇

0
 𝜑 ∈ 𝐿1. 𝐿∞([0, 𝑇], 𝐸𝑚) is the space of 

essentially bounded functions taking [0,T] into 𝐸𝑚 

with norm 
‖𝜑‖ = 𝑆𝑢𝑝

0≤𝑠≤𝑇
|𝜑(𝑠)|for 𝜑 ∈ 𝐿∞. 

 

  The solution of system (1.1) is given by 

𝑥(𝑡, 𝜑, 𝑢) = 𝑆(𝑡, 𝜑, 0)𝜑(𝑡0) + ∫ 𝑆(𝑡 −
𝑡

0

𝑠) (𝐹(𝑥(𝑠, 𝑢))) + ∑ 𝐵𝑖𝑢(𝑡 − ℎ𝑖)]𝑑𝑠𝑁
𝑖=1  (2.3) 

Here S(t) is an nxn transition matrix for the free system 

of (1.1) defined by 

𝑑

𝑑𝑡
𝐷(𝑡, 𝑥𝑡)

= 𝑥(𝑡)
− 𝐴−1𝑥(𝑡 − ℎ)                                                (2.4) 

We introduce certain notations and present some 

important facts from the general theory of 

controllability that will be useful in this work. 
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Let U and X be given spaces and 𝑔(𝑢): 𝑈 → 𝑋 be a 

mapping continuously differentiable near the origin of 

U. let us suppose for convenience that 𝑔(0) = 0. It is 

well known from the implicit function theorem that if 

the derivative 

 

𝐷𝑔(0): 𝑈 → 𝑋  

 

maps the space of U onto the whole space X, then the 

nonlinear map transforms a neighbourhood of zero 

from the space of U onto some neighbourhood of zero 

into the space X. 

 

Now, let us consider the more general case when the 

domain of the nonlinear operator 𝑔 is in Ω, an open 

subset of 𝑈 containing zero. Let 𝑈𝑐 denote a closed 

and convex cone in 𝑈 with vertex at zero. In the 

sequel, we shall use for controllability investigations, 

some properties of the nonlinear mapping, 𝑔 which is 

a consequence of a generalized open mapping 

theorem. This result seems to be widely known. For 

the sake of completeness, we shall present it here 

without proof and in a slightly less generalized form 

sufficient for our purpose.  

 

We now prove the convexity and compactness of the 

set functions, the Reachable and Attainable   sets. 

However, we shall first establish a relationship 

between the two set functions to enable us see that, 

once the properties have been proved for one set, then 

they are applicable to the other set, then they are 

applicable to the other set. From equation (1.5), taking  

𝑥(𝑡, 𝑢) =  𝐴̌(𝑡, 𝑢)(𝑡, 𝑢) 

we have 

𝐴̌(𝑡, 𝑢) =  𝒮(𝑡, 𝜑, 0)∅(𝑡) + ∫ 𝒮(𝑡 −
𝑡

0

𝑠) (𝐹(𝑥(𝑠, 𝑢))) + ∑ 𝐵𝑖𝑢(𝑡 − ℎ𝑖)]𝑁
𝑖=0  

 = 𝒮(𝑡, 𝜑, 0)[∅(𝑡0) + ℜ(𝑡)] 

Thus 𝐴̌(𝑡, 𝑢) =  𝒮(𝑡, 𝜑, 0)[∅(𝑡0) + ℜ(𝑡)] 
We shall use the attainable set to establish that the two 

set functions possess the properties of convexity, 

closedness and compactness. 

Definition 2.1: (Complete State) 

The complete state of a differential system is defined 

as  

𝑦𝑡 =
{𝑥(𝑡), 𝑥𝑡 , 𝑢𝑡}                                                                      (2.5)
   

where 𝑢𝑡(𝜃) = 𝑢(𝑡𝑡𝜃), 𝜃 ∈ [−ℎ, 0]; ℎ > 0 

Definition 2.2: (Controllability) 

A system is said to be controllable on [𝑡0, 𝑡1] if every 

complete state, 𝑦(𝑡), and every 𝑥1  ∈  𝐸𝑛, there exists 

a control 𝑢 ∈ 𝑈 such that the corresponding trajectory 

of the system satisfies  𝑥(𝑡1) =  𝑥1 

Definition 2.3 : (Optimal control) 

𝑢∗ is an optimal control if there exists 𝑡∗ =

𝐼𝑛𝑓{𝑡: 𝐴̃(𝑡, 𝑥) ∩ 𝐺(𝑡, 𝑢) ≠ 𝜑} and  

𝑢∗ = 𝐼𝑛𝑓{𝑢: 𝐴̃(𝑡, 𝑥) ∩ 𝐺(𝑡, 𝑢) ≠ 𝜑} 

III. MAIN RESULTS 

In this section, we shall proceed in showing that the 

system under study is controllable. Thereafter, we 

shall be interested in determining the minimum control 

energy for the pursuit of our target in order to capture 

it. The first statement raises and answers the question 

of controllability while the second addresses the 

optimal control problem, which is the focus of this 

chapter.  

The following theorem provides a major result for the 

sufficient condition of the system to be controllable. 

Theorem 3.1: (Relative controllability) 

Suppose 

i) 𝐹(0) = 0 
ii) 𝑈𝑐 ∈ 𝑈  is a closed and convex cone with vertex at 

zero. 

iii) The associated linear control system with multiple 

delays in the control is 𝑈𝑐 relatively controllable in 

[0,T]. 

Then the nonlinear neutral system (1.1) with multiple 

delays in the control is 𝑈𝑐 relatively controllable in 

[0,T]. 

Proof: Let us define for the nonlinear neutral system 

(1.1) a nonlinear map  

𝑔: 𝐿∞([0, 𝑇], 𝑈𝑐) → 𝑋 

given by 𝑔(𝑢) = 𝑥(𝑇, 𝑢) 

Similarly, for the associated linear dynamical neutral 

system (1.1), we define a linear map,  

𝐻: 𝐿∞([0, 𝑇], 𝑈𝑐) → 𝑋 by 𝐻𝑣 = 𝑥(𝑇, 𝑣). 

 By the assumption (iii), the associated linear neutral 

system is 𝑈𝑐 −relatively controllable in [0,T]. 

Therefore, the linear operator, H, is surjective, that is, 

it maps cones of admissible controls 𝑈𝑎𝑑 into the 

whole space. Furthermore, by lemma we have that 
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Dg(0)=H. Since 𝑈𝑐 is a closed and convex cone, then 

the cone is of admissible controls. 

𝑈𝑎𝑑 = 𝐿∞([0, 𝑇], 𝑈𝑐) is also a closed and convex cone 

in the function space,  𝐿∞([0, 𝑇], 𝑈𝑐). Therefore the 

nonlinear map, g, transforms a conical neighborhood 

of zero in the cone of admissible controls, 𝑈𝑎𝑑 into 

some neighborhood of zero in the whole space, X. This 

is equivalent to the relative controllability in [0,T] of 

the nonlinear neutral control system (1.1) Hence, our 

Theorem follows. 

In practical applications, of Theorem 4.1, the most 

difficult problem is to verify the assumption (iii) of the 

constrained controllability of neutral systems. In order 

to avoid this serious disadvantage, we use the 

following corollary: 

Corollary 3.1: 

Suppose the set 𝑈𝑐 is a cone with vertex at zero and a 

nonempty interior in 𝐸𝑛 , then the associated linear 

neutral system of (1.1) is 𝑈𝑐 −relatively controllable 

in [0.T] if and only if : 

(i) It is relatively controllable without any constraints. 

That is 

𝑅𝑎𝑛𝑘[𝐵0, 𝐵1 , … , 𝐵𝑁 , 𝐻𝐵0, 𝐻𝐵1, … , 𝐻𝐵𝑁 , 𝐻2𝐵0, 𝐻2𝐵1 , … , 𝐻2𝐵𝑁 , … , 𝐻𝑁−1𝐵𝑁]
= 𝑛 

(ii) there is no real eigenvector  𝑣 ∈ 𝐸𝑛 of the matrix 

H satisfying  

𝑣𝐵𝑁 ≤ 0 for all 𝑈𝑐 ∈ 𝑈 

 

Let us observe that, for a special case where 𝑇 < ℎ1, 

relative controllability problem in [0, 𝑇] for neutral 

systems with delays in the control may be reduced to 

the well-known standard controllability problem for 

dynamical control systems without delays in the 

control. 

 

Corollary 3.2: 

Suppose 𝑇 < ℎ1 and the assumptions of Theorem 3.1 

are satisfied, then the associated linear neutral control 

system of (1.1) is 𝑈𝑐 −relatively controllable in [0,T] 

if and only if is controllable without constraints, that 

is 

𝑅𝑎𝑛𝑘[𝐵0, 𝐻𝐵0, 𝐻2𝐵0, 𝐻𝑁−1𝐵0] = 𝑛 

(i) and there is no real eigenvector eigenvector  

𝑣 ∈ 𝐸𝑛 of the matrix H satisfying  

𝑣𝐵𝑁 ≤ 0 for all 𝑈𝑐 ∈ 𝑈 

 

Constrained controllability for nonlinear neutral 

systems is achieved by making use of the generalized 

open mapping theorem. It is shown that, if U is a 

closed and convex cone with vertex at zero, then the 

nonlinear neutral control system with multiple point 

delays in the control is 𝑈𝑐 −relatively controllable in 

[0,T]. 

 

Theorem 3.2: 

Let 𝑢∗be the optimal control for the neutral control 

system (1.1)  with minimum time, 𝑡∗, then the target 

𝑔(𝑡) = 𝑥(𝑡∗, 𝑥0, 𝑢∗) is on the boundary of the 

attainable set, 𝐴̌. That is,  𝑔(𝑡) ∈ 𝜕𝐴̌, where 𝜕 denotes 

the boundary. 

 

Proof: 

Suppose 𝑢∗ is the minimum control -energy, then, by 

the relative controllability of system (1.1) 

 𝑔(𝑡) = 𝑥(𝑡∗, 𝑥0, 𝑢∗) = 𝑥(𝑡∗, 𝑡0)[η + 𝑦∗] ; 𝑦∗ ∈
 ℜ(𝑡∗, 𝑡0)   ( see expression 3.16) 

Therefore,𝑥(𝑡∗, 𝑥0, 𝑢∗)  ∈  ℜ(𝑡∗, 𝑡0) and 

consequently, 𝑥(𝑡∗, 𝑥0, 𝑢∗)  ∈  𝐴̌(𝑡∗, 𝑡0)                                                                                                 

Suppose 𝑥(𝑡∗, 𝑥0, 𝑢∗) is not on the boundary of 

𝐴̌(𝑡∗, 𝑡0), then it is in its interior for 𝑡∗ > 𝑡0 . 

  

 

 

Therefore there exists a ball 𝐵(𝑔(𝑡∗), 𝑟) of radius r 

about the target, 𝑔(𝑡∗), such that : 𝐵(𝑔(𝑡∗), 𝑟) ∈ 

𝐴̌(𝑡∗, 𝑡0)  

Since 𝐴̌(𝑡∗, 𝑡0) is a continuous set function of t, we can 

preserve the above inclusion for t near 𝑡∗ if we reduce 

the size of the ball  𝐵(𝑔(𝑡∗), 𝑟). That is, if there exists 

𝜀 > 0  such that 𝐵 (𝑔(𝑡∗),
1

2
) ⊂ 𝐴̌(𝑡∗, 𝑡0)  ;   𝑡∗ − 𝜀 ≤

𝑡 ≤ 𝑡1            

Thus, 𝑔(𝑡∗) ∈  𝐴̌(𝑡∗, 𝑡0)  𝑓𝑜𝑟 𝑎𝑙𝑙  𝑡∗ − 𝜀 ≤ 𝑡 ≤ 𝑡1       

This contradicts the optimaility of  𝑡∗ and 𝑡∗ as the 

minimum energy respectively. This contradiction 

however proves that g(t) is on the boundary of the 

attainable set, that is, 𝑔(𝑡) ∈ 𝜕𝐴̌(𝑡∗, 𝑡0)                                                                                                                                                                                                                                                           

Theorem 3.3 (Existence of optimal control): 

 Consider system (1.1) with its basic assumptions. 

Suppose the system is relatively controllable at time 

𝑡1 > 𝑡0, then there exists an optimal control. 

Proof:. 

Let 𝑔(𝑡) ∈ 𝐺(𝑡1, 𝑡0). By the assumption of relative 

controllability for the system, 

𝑔(𝑡) ∈ 𝐺(𝑡1, 𝑡0) ∩ 𝐴̌(𝑡1, 𝑡0)  ≠ ∅  
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So 𝑔(𝑡) ∈ 𝐴̌(𝑡1, 𝑡0). Since 𝐴̌(𝑡1, 𝑡0) is a translation of 

the reachable set through η ∈  𝐸𝑛,   

        η = φ(𝑡0) ∑ ∫ 𝑆(𝑡0,, 𝑠)[𝐴(𝑠)𝑥(𝑠) +
𝑡0

𝑡0−ℎ
𝑁
𝑖=0

𝐵𝑖(𝑠 + ℎ𝑖)𝑢]𝑑𝑠                (3.1) 

We have,  𝑔(𝑡) ∈ ℜ(𝑡1, 𝑡0) and so 

𝑔(𝑡) =

∫ 𝑧(𝑡0, 𝑠)𝑢(𝑠)𝑑𝑠
𝑡1

𝑡0
                                      (3.2)        

Let  𝑡∗ = 𝐼𝑛𝑓{𝑡: 𝑔(𝑡) ∈ ℜ(𝑡1, 𝑡0)} 

Now, 𝑡0 ≤ 𝑡 ≤ 𝑡1 and there is a non-increasing 

sequence of time 𝑡𝑛. That is  

𝑡𝑛 ≤ 𝑡𝑛−1 ≤ 𝑡𝑛−2 ≤ 𝑡𝑛−3 ≤ ⋯ ≤ 𝑡1 ≤ 𝑡0 

and a sequence of controls 𝑢𝑛 ∈ 𝑈. 

Let 𝑔(𝑡) = 𝑦(𝑡, 𝑢) ∈ ℜ(𝑡1. 𝑡0). That is 𝑔(𝑡0) =
𝑦(𝑡0, 𝑢0) ∈ ℜ(𝑡1. 𝑡0). 

Also, |𝑔(𝑡∗) − 𝑦(𝑡∗, 𝑢0)| ≤ |𝑔(𝑡∗) − 𝑔(𝑡0)| +
|𝑔(𝑡0) − 𝑦(𝑡∗, 𝑢0)| 

≤ |𝑔(𝑡∗) − 𝑔(𝑡0)| + |𝑦(𝑡0, 𝑢0) − 𝑦(𝑡∗, 𝑢0)| 

≤ |𝑔(𝑡∗) − 𝑔(𝑡0) + ∫ ‖𝑦(𝑠, 𝑢𝑛)‖
𝑡𝑛

𝑡∗
𝑑𝑠| 

By the continuity of 𝑔(𝑡) and the integrability of 

‖𝑦(𝑡, 𝑢(𝑡))‖, it follows that, 𝑦(𝑡∗, 𝑢0) tends to 𝑔(𝑡∗) 

as t tends to infinity. Since 𝑅(𝑡1. 𝑡0) contains 𝑦(𝑡∗, 𝑢0) 

for each y and ℜ(𝑡1. 𝑡0) is closed, then, 𝑔(𝑡∗) ∈
𝑦(𝑡∗, 𝑢∗) for some 𝑢∗ ∈ 𝑈 and by definition 1.6, 

𝑡∗𝑎𝑛𝑑 𝑢∗ are optimal and 𝑢∗is the optimal control. 

This establishes the existence of the optimal control of 

the nonlinear neutral system (1.1) 

 

Theorem 3.4 ( Form of the optimal control): 

Consider system (3.1) with its basic assumptions, 𝑢∗ is 

the optimal control if and only if it is of the form 

𝑢∗ = 𝑆𝑔𝑛 [𝑐𝑇 ∑ 𝑆(𝑡0, 𝑠)𝐵𝑖(𝑠 +𝑁
𝑖=0

ℎ𝑖)]                               (3.3)  

where 𝑐 ∈ 𝐸𝑛. 

Proof: 

Suppose 𝑢∗ is the optimal control of the system (3.1), 

then it maximizes the rate of change of 

𝑦(𝑡, 𝑢) = 𝑐𝑇 ∑ 𝑆(𝑡0, 𝑠)𝐵𝑖(𝑠 + ℎ𝑖)𝑁
𝑖=0 𝑢(𝑠)  

In the direction of the vector c, that is , we want to 

maximize 

𝑐𝑇 ∑ 𝑆(𝑡0, 𝑠)𝐵𝑖(𝑠 + ℎ𝑖)
𝑁
𝑖=0 𝑢(𝑠)  

Since 𝑢(𝑡) is an admissible control, that is, they are 

constrained to lie in a unit sphere, we have 

    |𝑐𝑇 ∑ 𝑆(𝑡0, 𝑠)𝐵𝑖(𝑠 + ℎ𝑖)
𝑁
𝑖=0 𝑢(𝑠)| ≤

|𝑐𝑇 ∑ 𝑆(𝑡0, 𝑠)𝐵𝑖(𝑠 + ℎ𝑖)
𝑁
𝑖=0 ∗ 1|   (3.4) 

Applying the definition of a signum function, equation 

(4.4) is given below 

𝑐𝑇 ∑ 𝑆(𝑡0, 𝑠)𝐵𝑖(𝑠 + ℎ𝑖)
𝑁
𝑖=0 ≤

            𝑐𝑇 ∑ 𝑆(𝑡0, 𝑠)𝐵𝑖(𝑠 + ℎ𝑖)𝑁
𝑖=0 ∗

𝑆𝑔𝑛 𝑐𝑇 ∑ 𝑆(𝑡0, 𝑠)𝐵𝑖(𝑠 + ℎ𝑖)              (3.5)𝑁
𝑖=0   

  Defining the signum function by 𝑢∗, we have (4.5) 

given as  

𝑐𝑇 ∑ 𝑆(𝑡0, 𝑠)𝐵𝑖(𝑠 + ℎ𝑖)
𝑁
𝑖=0 ≤   𝑐𝑇 ∑ 𝑆(𝑡0, 𝑠)𝐵𝑖(𝑠 +𝑁

𝑖=0

ℎ𝑖) 𝑢∗   for all 𝑡 > 𝑡0  

This means that, the optimal control energy, 𝑢∗, has 

the form 

𝑢∗ = 𝑆𝑔𝑛 [𝑐𝑇 ∑ 𝑆(𝑡0, 𝑠)𝐵𝑖(𝑠 + ℎ𝑖)
𝑁
𝑖=0 ]       as in 

equation (3.3) 

Conversely let 

𝑢∗ = 𝑆𝑔𝑛 [𝑐𝑇𝑆(𝑡0, 𝑠) ∑ 𝐵𝑖(𝑠 + ℎ𝑖)
𝑁
𝑖=0 ]  

Integrating (4.4) for all admissible control 𝑢𝑎𝑑 ∈ 𝑈, 

we have 

  |∫ 𝑐𝑇𝑆(𝑡0, 𝑠) ∑ 𝐵𝑖(𝑠 + ℎ𝑖)𝑢(𝑠)𝑁
𝑖=0 𝑑𝑠

𝑡1

𝑡0
| ≤

 ∫ |∑ 𝑐𝑇𝑆(𝑡0, 𝑠)𝐵𝑖(𝑠 + ℎ𝑖)𝑁
𝑖=0 𝑢∗(𝑠)|𝑑𝑠

𝑡1

𝑡0
 

≤  ∫ |∑ 𝑐𝑇𝑆(𝑡0, 𝑠)𝐵𝑖𝐵𝑖(𝑠 +𝑁
𝑖=0

𝑡1

𝑡0

ℎ𝑖)𝑆𝑔𝑛 [𝑐𝑇 ∑ 𝑆(𝑡0, 𝑠)(𝑠 + ℎ𝑖)
𝑁
𝑖=0 ]|𝑑𝑠  

This shows that 𝑢∗ maximizes 𝑐𝑇 ∑ 𝑆(𝑡0, 𝑠)𝐵𝑖(𝑠 +𝑁
𝑖=0

ℎ𝑖) over all admissible controls. Hence, it is the 

optimal control. 

Theorem 3.5 (Uniqueness of the optimal control) 

Consider the system (1.1) with its basic assumptions. 

If 𝑢∗ is the minimum control  

Energy that brings the system to its target, then 𝑢∗is 

unique. 

Proof: 

Let 𝑢∗ and 𝑣∗ be two optimal controls that bring 

system (1.1)  to its target, then both 𝑢∗ and 𝑣∗ 

maximizes  𝑐𝑇 ∑ 𝑆(𝑡0, 𝑠)𝐵𝑖(𝑠 + ℎ𝑖)
𝑁
𝑖=0  for some 𝑐 ∈

𝐸𝑛 , 𝑐 ≠ 0  over all admissible controls and so, 

|∫ 𝑐𝑇𝑆(𝑡0, 𝑠) ∑ 𝐵𝑖(𝑠 + ℎ𝑖)𝑢(𝑠)𝑁
𝑖=0 𝑑𝑠

𝑡1

𝑡0
| ≤

 ∫ |∑ 𝑐𝑇𝑆(𝑡0, 𝑠)𝐵𝑖(𝑠 + ℎ𝑖)𝑁
𝑖=0 𝑢∗(𝑠)|𝑑𝑠

𝑡1

𝑡0
  (3.7)  

Also, using 𝑣∗as the optimal control, we have  
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|∫ 𝑐𝑇𝑆(𝑡0, 𝑠) ∑ 𝐵𝑖(𝑠 + ℎ𝑖)𝑢(𝑠)𝑁
𝑖=0 𝑑𝑠

𝑡1

𝑡0
| ≤

 ∫ |∑ 𝑐𝑇𝑆(𝑡0, 𝑠)𝐵𝑖(𝑠 + ℎ𝑖)𝑁
𝑖=0 𝑣∗(𝑠)|𝑑𝑠  (3.8)

𝑡1

𝑡0
   

Rewriting (4.7) and (4.8) in the form of equation, we 

have 

max
−1≤𝑢≤1

∫ |𝑐𝑇𝑆(𝑡0, 𝑠)𝐵𝑖(𝑠 + ℎ𝑖)𝑢(𝑠)|𝑑𝑠
𝑡1

𝑡0
=

 ∫ |𝑐𝑇𝑆(𝑡0, 𝑠)𝐵𝑖(𝑠 + ℎ𝑖)𝑢∗(𝑠)|𝑑𝑠     (3.9)
𝑡1

𝑡0
  

max
−1≤𝑢≤1

∫ |𝑐𝑇𝑆(𝑡0, 𝑠)𝐵𝑖(𝑠 + ℎ𝑖)𝑢(𝑠)|𝑑𝑠
𝑡1

𝑡0
=

 ∫ |𝑐𝑇𝑆(𝑡0, 𝑠)𝐵𝑖(𝑠 + ℎ𝑖)𝑣∗(𝑠)|𝑑𝑠     (3.10)
𝑡1

𝑡0
  

Combining equations (3.9) from (3.10) gives 

∫ |𝑐𝑇𝑆(𝑡0, 𝑠)𝐵𝑖(𝑠 + ℎ𝑖)[𝑢∗(𝑠) − 𝑣∗(𝑠)]|𝑑𝑠   ] = 0  
𝑡1

𝑡0
  

This can only be possible if 𝑢∗(𝑠) − 𝑣∗(𝑠) = 0 

whuich implies 𝑢∗(𝑠) = 𝑣∗(𝑠) and proving 

uniqueness of the optimal control. 

CONCLUSION 

Relative controllability for nonlinear neutral systems 

can be achieved by making use of the generalized open 

mapping theorem. It is shown that if U is a closed and 

convex cone with vertex at zero, then the nonlinear 

neutral dynamical control system with multiple delays 

in the control is relatively controllable in [0,T]. In the 

foregoing, we formulated and proved sufficient 

conditions for the existence and uniqueness of the 

optimal control . The form of the optimal control was 

also established as: 

𝑢∗ = 𝑆𝑔𝑛 [𝑐𝑇 ∑ 𝑆(𝑡0, 𝑠)𝐵𝑖(𝑠 + ℎ𝑖)
𝑁
𝑖=0 ]  

It is concluded that, if the given system is normal, 

optimal control is unique and Bang Bang. It was also 

shown that, if 𝑢∗ is the optimal control with 𝑡∗ the 

minimum time, then, 𝑢(𝑡∗) ∈ 𝜕ℜ(𝑡∗, 𝑡0), that is, the 

boundary of the reachable set. 

Optimal controls as emphasized earlier literally means 

controlling a system in the ‘best conceivable way’. 

This has been observed in most controlled linear 

processes of certain types. Exploits are now directed 

at nonlinear systems too of many types where 

unavoidable nonlinearities in systems affect the 

evolution of the system in a direct manner. The 

findings of this thesis has x-rayed and resolved such 

nonlinearities in neutral control systems. More 

interestingly is the fact that the neutral control system 

is shown to be not only relatively controllable but also 

optimally controllable. 
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