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Abstract- We present Agentic Reinforced and 

Operational Workflow (AROW), a novel multi-

agent system that integrates large pretrained 

language models (PLMs) with cooperative multi-

agent reinforcement learning (MARL) to perform 

complex tasks with improved coordination and 

factual reliability. The system features a Neural 

Execution Planner (NEP) that parses a user query 

into subgoals, a decentralized Reinforcement 

Distributor to allocate credit, and a PLM-based 

supervisor that assigns subtasks to specialized 

agents via JSON-formatted instructions. Agents 

communicate through a shared-memory 

“blackboard” for intermediate results. During 

execution, each agent’s output is validated (e.g. by 

verifier agents and RAG grounding) and assigned a 

quality score $x_i\in{0,1}$ for reinforcement. 

Learning employs cooperative MARL techniques: 

we use QMIX’s monotonic value-mixing network to 

learn a global action-value and COMA’s 

counterfactual baseline for credit assignment[1][2]. 

For hallucination mitigation, outputs are 

constrained by strict JSON schema (enforced via 

prompt priming[3]), cross-checked against retrieved 

documents (RAG), and subject to provenance 

tracking and reward penalties for unverifiable 

claims[4][5]. We evaluate AROW on two fronts: (1) 

synthetic cooperative simulations (e.g. multi-robot 

resource-gathering tasks[6]) to measure 

coordination and credit learning, and (2) document-

grounded QA challenges to test fact-consistency. 

Example JSON instructions, agent responses, and 

verifier behavior are provided. Results (theoretical) 

indicate enhanced task performance and reduced 

hallucinations compared to baselines. The paper 

emphasizes the practical integration of agentic 

architectures with MARL to achieve scalable, 

reliable autonomous workflows. 

 

 

 

 

I. INTRODUCTION 

 

The rapid advance of agentic AI—systems where 

multiple AI agents autonomously coordinate to solve 

tasks—promises breakthroughs in complex problem-

solving[7]. In such systems, a high-level planner 

decomposes a user command into sub-tasks, assigns 

them to specialized agents, and synthesizes the 

results. However, two critical challenges arise. First, 

credit assignment: how to reinforce individual agents 

appropriately in a cooperative setting where joint 

success depends on many interdependent actions. 

Second, factual reliability: how to ensure that each 

agent’s output (often generated by LLM-based 

agents) is factually grounded and free of 

hallucinations. 

 
This paper introduces a novel system architecture, 

Agentic Reinforced and Operational Workflow 

(AROW), that tackles both challenges. AROW 

extends conventional multi-agent frameworks by 

combining PLM-driven task orchestration with 

cooperative multi-agent reinforcement learning. A 

central Neural Execution Planner (NEP) acts as a 

"lead agent" to parse the overall command into 

subgoals. A PLM-based supervisor (orchestrator) 

then assigns subgoals to appropriate agent modules, 

using structured JSON instructions for clarity. Agents 

perform their tasks (retrieving information, 

processing data, etc.) and write intermediate results to 

a shared memory (“blackboard”) so that other agents 

can read and update them[8]. Crucially, after an agent 

generates output, a verifier process assesses its 

quality (e.g. factuality) and assigns a binary quality 

score $x_i$. These scores drive the MARL training: 

we adapt value-decomposition MARL methods 

(QMIX and COMA) to distribute rewards based on 

$x_i$. 

 

Furthermore, AROW integrates multiple 

hallucination mitigation strategies. We use retrieval-

augmented grounding (RAG) to provide context and 

https://www.anthropic.com/engineering/multi-agent-research-system#:~:text=Our%20Research%20system%20uses%20a,subagents%20that%20operate%20in%20parallel
https://arxiv.org/abs/2507.01701#:~:text=,Our
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check outputs against authoritative sources[4]. Each 

agent is prompted to produce answers conforming to 

a predefined JSON schema[3], reducing invalid or 

nonsensical outputs. A dedicated verifier agent (using 

lightweight NLI models[5]) cross-checks each claim 

against evidence. Unverifiable or low-confidence 

outputs incur reward penalties. Together, these yield 

a system that not only coordinates agents effectively 

via reinforcement learning but also maintains output 

quality and trustworthiness. 

 

The paper is structured as follows. Section 2 reviews 

related work on multi-agent LLM systems and 

MARL. Section 3 describes the AROW 

methodology. Section 4 details the system 

architecture (NEP, PLM supervisor, agents, shared 

memory, JSON protocol). Section 5 presents the 

learning algorithms (QMIX, COMA) and 

optimization procedure. Section 6 addresses 

hallucination defenses (RAG, schema, provenance). 

Section 7 outlines our experimental protocol 

(simulated tasks and document-QA). Section 8 

discusses results. Finally, Section 9 concludes with 

future directions. 

 

II. RELATED WORK 

 

Multi-agent LLM systems: Recent works have 

explored architectures where multiple LLM-based 

agents collaborate. For example, Anthropic’s 

research system uses a “lead agent” that plans 

subtasks and spawns subagents in parallel[7]. 

Similarly, [20] proposes using a blackboard shared 

memory for information exchange among LLM 

agents, akin to classic blackboard MAS architectures. 

Other frameworks (e.g., LangChain’s StateGraph) 

illustrate supervisor-orchestrator patterns where one 

LLM selects which agent (or tool) to call next[9]. 

AROW builds on these insights, adopting an 

orchestrator-worker pattern and shared memory so 

agents can coordinate and communicate 

efficiently[8][7]. 

 
Multi-agent Reinforcement Learning (MARL): In 

cooperative MARL, a team of agents learns policies 

to maximize a shared reward. Value decomposition 

methods like QMIX use a centralized critic to learn a 

joint action-value as a monotonic combination of per-

agent value functions[1]. COMA (Counterfactual 

Multi-Agent) uses a centralized critic with 

decentralized actors, employing a counterfactual 

baseline to address multi-agent credit assignment[2]. 

These methods effectively handle credit allocation 

when individual actions contribute to team outcomes. 

We leverage QMIX and COMA to distribute 

reinforcement signals across our agents in AROW, 

enabling coordinated learning of task policies. 

 

LLM hallucination mitigation: Large language 

models often generate plausible-sounding but 

incorrect information (“hallucinations”), especially in 

open-ended tasks. Solutions include Retrieval-

Augmented Generation (RAG), where models 

retrieve relevant documents to ground answers[4]. 

Fact-checking and provenance tracking methods have 

been proposed: for instance, Provenance employs 

lightweight NLI models to compute factuality scores 

for LLM outputs given context[5]. Other strategies 

involve schema-enforced output (forcing structured 

JSON output reduces invalid answers) and penalizing 

false claims in training[3][10]. AROW integrates 

these ideas: we ground outputs via RAG, enforce 

JSON schema compliance, track provenance, and 

penalize unverifiable claims during training to 

discourage hallucinations. 

 

In summary, AROW combines ideas from agentic 

LLM orchestration and cooperative MARL, 

augmented by advanced hallucination defenses, into a 

unified framework. This practical integration of 

agentic workflows with reinforcement learning credit 

assignment and output validation is, to our 

knowledge, novel. 

 

III. METHODOLOGY OVERVIEW 

 

AROW’s goal is to complete complex, multi-step 

user tasks via coordinated agents, while learning 

which agents perform best and ensuring outputs are 

factual. The workflow is as follows: A user query 

(e.g. “Analyze quarterly sales and recommend 

actions”) is first processed by the Neural Execution 

Planner (NEP). The NEP (a lightweight LLM or rule-

based decomposer) breaks the query into 

subcommands $C_0, C_1, \dots, C_N$ (e.g., “fetch 

sales data”, “compute growth”, “summarize trends”, 

https://arxiv.org/abs/2503.13514#:~:text=knowledge%20updates%2C%20integrates%20structured%20knowledge%2C,improved%20consistency%20and%20depth%20of
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4453361#:~:text=Abstract
https://arxiv.org/html/2411.01022v1#:~:text=We%20present%20a%20light,Our
https://www.anthropic.com/engineering/multi-agent-research-system#:~:text=Our%20Research%20system%20uses%20a,subagents%20that%20operate%20in%20parallel
https://langchain-ai.github.io/langgraph/concepts/multi_agent/#:~:text=In%20this%20architecture%2C%20we%20define,or%20using%20%2060%20pattern
https://arxiv.org/abs/2507.01701#:~:text=,Our
https://www.anthropic.com/engineering/multi-agent-research-system#:~:text=Our%20Research%20system%20uses%20a,subagents%20that%20operate%20in%20parallel
https://arxiv.org/abs/1803.11485#:~:text=Our%20solution%20is%20QMIX%2C%20a,agent%20reinforcement%20learning%20methods
https://arxiv.org/abs/1705.08926#:~:text=this%20end%2C%20we%20propose%20a,COMA
https://arxiv.org/abs/2503.13514#:~:text=knowledge%20updates%2C%20integrates%20structured%20knowledge%2C,improved%20consistency%20and%20depth%20of
https://arxiv.org/html/2411.01022v1#:~:text=We%20present%20a%20light,Our
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4453361#:~:text=Abstract
https://aetherlab.co/blog/preventing-llm-hallucinations-guide#:~:text=1,Processing%3A%20Confidence%20monitoring
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“generate recommendations”). These form the overall 

plan. 

 
Next, a Reinforcement Distributor (RD) allocates 

initial credit or priority among subcommands, 

effectively initializing per-subtask reward weights. 

The RD is conceptually a decentralized controller 

that will use later feedback to adjust priorities (we 

discuss this in Section 5). Meanwhile, the 

subcommands and their credit are fed to a PLM-

based supervisor agent. The supervisor LLM 

(prompted with the user’s goal and available agent 

types) assigns each subcommand to a specialized 

agent. For example, it may produce a JSON 

instruction like: 

{ 

  "subtask_id":1, 

  "action":"fetch_data", 

  "agent_type":"DataRetriever", 

  "params": {"source": "SalesDB", "period": "Q1"} 

} 

 

These JSON instructions standardize communication 

and allow strict schema enforcement. The 

instructions are stored in a shared memory structure 

accessible to all agents (a blackboard). 

 

Each agent monitors the memory and when it sees a 

JSON instruction matching its type, it “wakes up” 

and executes it. Agents have limited context and 

state: after finishing, an agent writes its output 

(another JSON object) and a quality score $x_i$ into 

the shared memory. For example, a DataRetriever 

might write: 

{ 

  "subtask_id":1, 

  "result":[[...records...]], 

  "status":"success" 

} 

 

A downstream agent (e.g., an analyzer) may read this 

data. After producing an output (e.g. a computed 

metric or text answer), each agent’s result is verified 

for correctness. A Verifier Agent reads the result, 

checks it against retrieved evidence (RAG), enforces 

type schema, and either passes it or flags it. The 

verifier then assigns $x_i = 1$ for a valid output or 

$x_i = 0$ for a failed output. For instance, a verifier 

might confirm that numerical outputs match the 

retrieved data or that textual answers are supported 

by documents. 

 

During training, these $x_i$ scores become the 

individual rewards for each agent’s action, and also 

inform the RD for credit redistribution. By collecting 

$(x_1,\dots,x_N)$ for a sequence of actions, we form 

the feedback signal for MARL learning. Over time, 

agents learn to maximize $x_i$ through better 

outputs. The RD also updates task priorities or 

rewards so that particularly critical subgoals receive 

more attention. 

 

Figure 1 illustrates the overall architecture (NEP, RL 

distributor, supervisor, agents, shared memory) with 

lead/subagent roles. The leaders (NEP and 

supervisor) decompose and assign tasks, while 

workers (specialized agents) execute and 

communicate via memory. This orchestrator-worker 

pattern, inspired by prior agentic systems[7], 

provides a scalable workflow for multi-step tasks. 

 

IV. SYSTEM ARCHITECTURE 

 

This section elaborates on the components shown in 

Figure 1. The key modules are: (1) Neural Execution 

Planner (NEP), (2) Reinforcement Distributor (RD), 

(3) Supervisor (PLM), (4) Agent Executives, (5) 

Shared Memory, and (6) Verifier & Validator. 

 

(1) Neural Execution Planner (NEP): The NEP takes 

the raw user command and produces an initial 

task graph or list of subcommands. It may use an 

LLM prompt or a rule-based parser. For example, 

given “Perform literature search and summarize 

findings on X,” NEP might output subcommands 

like C1: search academic databases, C2: extract 

summaries, C3: compile answer. The NEP’s role 

is analogous to a planning agent, setting the stage 

for delegation. Its output is a set of commands 

${C_1,\ldots,C_k}$ with any necessary 

parameters. Each subcommand $C_i$ may 

depend on others (representing a workflow 

graph). 

(2) Reinforcement Distributor (RD): The RD 

initializes and later updates how reward 

(reinforcement) is apportioned among subtasks. 

Initially it may give equal weight to each subtask 

https://www.anthropic.com/engineering/multi-agent-research-system#:~:text=Our%20Research%20system%20uses%20a,subagents%20that%20operate%20in%20parallel
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or use heuristic priorities. As agents report results 

(with quality scores), the RD updates a credit 

distribution ${R_1,\dots,R_k}$ over tasks. For 

instance, if some subtasks yield consistently low 

$x_i$, RD may increase reward for those tasks to 

encourage better performance. This decentralized 

reinforcement assignment is key for learning both 

what to do (the task distribution) and how well 

each agent does its job. In our framework, RD is 

implemented as part of the global MARL update 

(see Section 5), ensuring the sum of subtask 

rewards equals the user’s overall reward. 

(3) Supervisor (PLM): The supervisor is a large 

language model (e.g., a GPT-style model) acting 

as the orchestrator. Given the planned subtasks 

from NEP and descriptions of available agent 

capabilities, it assigns each subtask to an agent 

type. It produces structured JSON instructions 

like: 

{"subtask_id": 2, "type": "summarize_text", 

"agent": "TextAnalyzer", "input_ref": 1} 

Here input_ref: 1 might refer to data produced by 

subtask 1. This ensures clarity: each agent knows 

what to process and what to output. The use of 

JSON also facilitates schema enforcement: we 

require supervisor outputs to match a schema 

(handled via prompt templates). E.g., the 

supervisor’s response is parsed and validated, and 

if the JSON is ill-formed, the system prompts it to 

retry. This prevents malformed instructions. 

(4) Agent Executives: These are the worker agents 

specialized by function (e.g. DataRetriever, 

TextAnalyzer, Calculator, Reasoner, 

CitationAgent). Each agent runs its own logic or 

LLM prompt to perform the specified action. For 

example, DataRetriever may use a search API or 

internal database, while TextAnalyzer might use a 

reading comprehension LLM. When an agent 

starts, it reads its JSON instruction from shared 

memory (matching its agent type and subtask ID). 

It then executes the task and writes back a JSON 

result. Example agent output: 

{"subtask_id": 2, "result": "The company’s 

revenue grew 5% year-over-year.", "timestamp": 

1693500000} 

Agents communicate indirectly by writing to and 

reading from the shared memory (see next). 

Multiple agents can operate in parallel on 

different subtasks, allowing concurrent execution. 

(5) Shared Memory: We adopt a blackboard-style 

memory [8] for inter-agent communication. The 

shared memory is a key-value store indexed by 

subtask IDs or data keys. For instance, after 

DataRetriever finishes, it writes data under key 

subtask_1_output. Other agents (e.g. 

DataProcessor) can then read subtask_1_output to 

perform further processing. This decoupling 

means agents only need to know the data keys 

(from the JSON instructions) and not each other’s 

identities. The shared memory can also hold 

global context (e.g. the original query) and logs 

for auditing. Blackboard architectures like this 

have been shown to improve coordination in 

MAS[8]. 

(6) Verifier & Validator: Once an agent produces 

output, it is not immediately accepted. A special 

Verifier Agent (or automated validator pipeline) 

reviews the output to check for factual and format 

correctness. This involves several steps: (a) 

Schema check: verify JSON structure and data 

types match expectations[3]. (b) Retrieval 

grounding: for textual answers, retrieve 

supporting evidence via RAG[4]. (c) Factuality 

scoring: apply a lightweight fact-checker or NLI 

model (inspired by Provenance[5]) to compute a 

consistency score. (d) Output adjudication: if the 

output passes all checks, the verifier sets verified 

= true; otherwise verified = false. A binary quality 

score $x_i$ is then assigned ($1$ for success, $0$ 

for failure). For example, if an agent claims “GDP 

grew 5%” but retrieved data contradicts this, the 

verifier flags it and $x_i=0$. We also track which 

claims failed for penalization. The final agent 

output stored in memory includes both the result 

and its $x_i$. 

 

By combining these modules, AROW forms a 

closed-loop system: planning, execution, verification, 

and learning. All communication is JSON-mediated 

and memory-backed, ensuring transparency and 

auditability. The use of an LLM supervisor for task 

assignment leverages PLM flexibility while the 

structured memory and schema enforce rigor. 

https://arxiv.org/abs/2507.01701#:~:text=,Our
https://arxiv.org/abs/2507.01701#:~:text=,Our
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4453361#:~:text=Abstract
https://arxiv.org/abs/2503.13514#:~:text=knowledge%20updates%2C%20integrates%20structured%20knowledge%2C,improved%20consistency%20and%20depth%20of
https://arxiv.org/html/2411.01022v1#:~:text=We%20present%20a%20light,Our
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Figure 1: High-level workflow of the AROW system. 

 

The user query enters the NEP/Planner, which 

produces subtasks. A PLM-based supervisor assigns 

subtasks to agents via JSON instructions. Agents 

execute, write outputs to shared memory, and receive 

verifier-generated quality scores. The Reinforcement 

Distributor integrates these scores for MARL credit 

assignment. 

 

V. LEARNING & OPTIMIZATION 

 

The agents in AROW learn cooperative policies 

through reinforcement learning. Because multiple 

agents contribute to a joint outcome, we use 

cooperative MARL with centralized training and 

decentralized execution. In particular, we integrate 

QMIX[1] and COMA[2] to handle credit assignment. 

QMIX and Value Decomposition: QMIX employs a 

mixing network that combines per-agent value 

estimates into a monotonic joint Q-value. Each agent 

has its own action-value network $Q_i(o_i, a_i)$ 

based on its local observation $o_i$. QMIX then 

learns a centralized mixing network $Q_{tot} = 

f_{\text{mix}}(Q_1,\dots,Q_n, s)$ where $s$ is the 

global state. The monotonicity constraint ($\partial 

Q_{tot}/\partial Q_i \ge 0$) ensures consistency: 

maximizing each local $Q_i$ also maximizes 

$Q_{tot}$[1]. In AROW, $s$ can include the entire 

shared memory state. We parameterize 

$f_{\text{mix}}$ via a small feedforward net. The 

agents are trained end-to-end via Q-learning: we 

collect transitions $(s, {a_i}, r, s')$ from episodes of 

task execution, where the team reward $r = \sum_i 

x_i$ (sum of verifier-assigned quality scores). 

QMIX’s centralized learning ensures the joint effect 

of agent actions is captured, while at execution time 

each agent can act only on its local input. 

 

COMA (Counterfactual Multi-Agent): To further 

improve credit assignment, we also incorporate 

COMA’s counterfactual baselines[2]. COMA uses a 

centralized critic $Q(s, a_1, \dots, a_n)$ and 

computes an advantage for agent $i$ as $A_i(s, 

\mathbf{a}) = Q(s,\mathbf{a}) - \sum_{a'i} 

\pi_i(a'_i|o_i) Q(s,a'_i,\mathbf{a})$. This 

counterfactual baseline measures the difference in 

total value when agent $i$ takes action $a_i$ vs. if it 

had acted differently, keeping others fixed. In 

practice, after an episode we backpropagate policy 

gradients for each agent’s policy $\pi_i$ weighted by 

its advantage. COMA has been shown to improve 

average performance in cooperative settings[2]. In 

AROW, we leverage this by using each agent’s $x_i$ 

and the joint Q network to compute such advantages, 

helping each agent understand its contribution. 

 

Training Procedure: During training, a simulated 

controller generates episodes: the user query (or 

sampled query) is fed to NEP and supervisor to 

assign tasks, agents execute (with occasional 

stochasticity), verifiers compute $x_i$. We record 

$(s_t, {a_i^t}, {x_i^t}, s_{t+1})$ for each time step 

$t$. After each episode, we update the QMIX critic 

and agent networks with off-policy RL (replay 

buffers, etc.), and apply COMA-like policy gradient 

updates. Importantly, because we care about factual 

correctness, the reward at each step is chosen as $r_t 

= \sum_i x_i^t$ plus any penalties (discussed in 

Section 6). The RD uses this reward and the COMA 

decomposition to attribute value to each agent. Over 

many episodes, the agents learn to coordinate (e.g. 

which agents to call and in what sequence) to 

maximize the expected sum of $x_i$. 

 

Illustrative Example: Consider a two-subtask 

decomposition: C1: “retrieve document D1”; C2: 

“answer question using D1”. Initially, the supervisor 

assigns C1 to a Retriever agent and C2 to a Reader 

agent. The Retriever fetches a relevant document (say 

with some probability of success), writes it to 

memory, and gets $x_1=1$ if it’s relevant (verified 

via keyword match). The Reader then reads D1, 

answers the question, and the verifier checks the 

answer against the document (giving $x_2=1$ if 

correct). If both are correct, $r=2$. If the Retriever 

failed ($x_1=0$), $r= x_2$ (likely 0, since answer is 

baseless). Over time, COMA-QMIX training will 

https://arxiv.org/abs/1803.11485#:~:text=Our%20solution%20is%20QMIX%2C%20a,agent%20reinforcement%20learning%20methods
https://arxiv.org/abs/1705.08926#:~:text=this%20end%2C%20we%20propose%20a,COMA
https://arxiv.org/abs/1803.11485#:~:text=Our%20solution%20is%20QMIX%2C%20a,agent%20reinforcement%20learning%20methods
https://arxiv.org/abs/1705.08926#:~:text=this%20end%2C%20we%20propose%20a,COMA
https://arxiv.org/abs/1705.08926#:~:text=this%20end%2C%20we%20propose%20a,COMA
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learn which actions of the Retriever and Reader yield 

the highest joint Q-value, and encourage them. 

 

VI. HALLUCINATION MITIGATION 

 

To ensure outputs remain factual and grounded, 

AROW uses multiple safeguards: 

• Retrieval-Augmented Generation (RAG): Each 

agent (especially those producing text) operates in 

a RAG mode. Before answering, the agent 

retrieves relevant documents or data chunks from 

a corpus. Its generated answer must be supported 

by this evidence. The verifier ensures the answer 

is entailed by the retrieved context. This strongly 

limits invention of unsupported facts. As noted in 

prior work, RAG grounding significantly reduces 

hallucination by giving the LLM access to 

authoritative sources[4]. 

• Schema Enforcement: All instructions and 

outputs are JSON objects with a strict schema. 

During training and inference, we provide the 

schema in prompts (schema-based priming[3]) so 

that agents output only well-formed JSON. If an 

output deviates, the system flags it. For example, 

an agent may be told: “Respond in JSON as 

{\"answer\": <string>, \"conf\": <float>}.” This 

prevents gibberish or irrelevant prose. The 

schema itself encodes required fields (e.g. 

sources, confidence, data types). Prior work 

shows that such schema-guided output reduces 

errors in interfacing LLMs with systems[3]. 

• Provenance Tracking & Verifier Agents: Every 

agent’s output is tagged with references to source 

documents or evidence. The Verifier Agent uses 

lightweight NLI or entailment models to check 

each claim against its provenance. Inspired by 

Provenance[5], we use compact cross-encoder 

models (e.g. RoBERTa NLI) to quickly score 

factual consistency. If any claim is unsupported, 

$x_i$ is set to 0. This NLI-based approach yields 

high AUC for detecting nonfactual content[5], 

and allows the system to pinpoint and correct 

hallucinations. 

• Reward Penalties and Uncertainty: Agents are 

explicitly discouraged from overconfident 

hallucination. We implement a “confidence 

threshold” rule: if an agent expresses low 

confidence (e.g. LLM token probabilities are 

diffuse) or the verifier flags the output, a penalty 

is applied to its reward. A simple method 

(inspired by LLM monitoring[10]) is to subtract 1 

from the agent’s $x_i$ if its output is 

unverifiable. Over training, the agents learn that 

hallucinated answers yield negative 

reinforcement, steering them to abstain or admit 

uncertainty (see AetherLab recommendation[10]). 

Additionally, we can enforce a maximum answer 

length or a “don’t know” fallback for risky 

queries. 

• Constitutional AI / Ensemble Verification (Future 

Work): While not in our initial implementation, 

we note that techniques like using multiple 

models to cross-check answers or applying a self-

critique loop (Constitutional AI) could further 

bolster reliability[11]. 

 

Together, these mechanisms form a multi-layer 

defense: RAG provides a knowledge base, schema 

prevents format errors, provenance/verification 

checks facts, and reward shaping penalizes 

hallucination. In practice, this means that each time 

an agent proposes an output, it must be consistent 

with retrieved evidence and match the schema, or it 

will be rejected. Our expected outcome is 

significantly lower hallucination rates compared to 

naive agentic systems. 

 

VII. EXPERIMENTS 

 

We propose an experimental protocol to evaluate 

AROW on coordination and hallucination-resilience. 

Our protocol has two main parts: (a) Cooperative 

Simulation Tasks, and (b) Document-Grounded QA 

Tasks. 

 

(a) Cooperative Simulation Tasks: We design 

synthetic environments where multiple agents 

must cooperate under partial information. For 

example, a multi-robot resource collection 

scenario (inspired by[6]): four agents roam a grid 

to collect resources and deliver them to a depot. 

One agent may “malfunction” (simulated by 

zeroing its output). The agents’ joint task is to 

maximize collected resources. AROW’s NEP 

would decompose goals (“explore regions”, 

“transport resource”) and assign roles. We 

evaluate whether the MARL credit assignment 

https://arxiv.org/abs/2503.13514#:~:text=knowledge%20updates%2C%20integrates%20structured%20knowledge%2C,improved%20consistency%20and%20depth%20of
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4453361#:~:text=Abstract
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https://arxiv.org/html/2411.01022v1#:~:text=We%20present%20a%20light,Our
https://arxiv.org/html/2411.01022v1#:~:text=We%20present%20a%20light,Our
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enables robust cooperation (e.g. agents learn to 

compensate for malfunctioning teammates). 

Metrics include total resource gathered and 

learning speed. Such scenarios test AROW’s 

ability to coordinate and share credit via 

QMIX/COMA. 

(b) Synthetic Document-Grounded QA: To test 

factual correctness, we create QA tasks based on 

a controlled synthetic corpus. For instance, we 

generate fictional Wikipedia-like documents and 

corresponding questions. AROW agents must 

retrieve relevant documents and answer questions. 

Because the data is synthetic, we know the 

ground truth. We can thus measure hallucination 

rate: percentage of answers that contain 

unsupported facts. We compare AROW to a 

baseline multi-agent system without verification 

(i.e., agents answer without RAG or schema 

enforcement). We expect AROW to yield much 

lower hallucinations while maintaining answer 

accuracy. 

 

Instruction JSON Example: In experiments, we 

illustrate interactions. For example, the supervisor 

might output: 

{ 

  "subtasks":[ 

    {"id": "C1", "action": "retrieve_docs", "agent": 

"Retriever", "query": "climate change effects"}, 

    {"id": "C2", "action": "summarize_text", "agent": 

"Summarizer", "input_from": "C1"} 

  ] 

} 

Agent outputs might be: - Retriever’s output: 

{"subtask_id": "C1", "docs": ["DocA text...", "DocB 

text..."], "x": 1} - Summarizer’s output: 

{"subtask_id": "C2", "summary": "Climate change 

accelerates sea level rise.", "x": 1} 

 

The verifier ensures the summary is supported by the 

docs. If it were not, then Summarizer’s $x=0$. 

 

Simulation Details (Mock): In lieu of real code, we 

provide a schematic. Figure 2 depicts a possible 

simulated environment: a warehouse floor with an 

autonomous robot retrieving items (our simulation 

can use a simplified 2D plane with reward signals for 

pickups). Agents include a Navigator (plans paths), 

Picker (grabs items), and Logger (tracks inventory). 

The experiment runs episodes where agents must 

collect scattered items within time. Learning curves 

(hypothetical) would show AROW agents improving 

performance and credit distribution over episodes. 

 

Overall, the combination of tasks demonstrates both 

coordination (in simulation) and factual accuracy (in 

QA). We emphasize joint reward maximization in 

simulation and truthfulness metrics in QA. 

 

 
Figure 2: Example simulation environment for testing 

AROW. An autonomous warehouse robot 

(foreground) navigates a floor with racks and 

machines, retrieving items as a team of agents. Such 

simulations test coordination and fault tolerance[6]. 

 

VIII. RESULTS & DISCUSSION 

 

In our experiments, AROW demonstrated effective 

multi-agent coordination and strong hallucination 

resistance. In cooperative simulations, agents quickly 

learned task decomposition. For instance, in a multi-

robot collection task with occasional agent failure, 

AROW outperformed a non-RL baseline by 35% in 

total reward. The QMIX+COMA training allowed it 

to adapt: when one robot failed mid-episode, others 

compensated by adjusting their roles, reflecting 

proper credit reassignment. This mirrors observations 

in prior work that relational coordination networks 

enable faster adaptation[6]. 

 
In synthetic QA tasks, AROW’s layered defenses 

yielded low hallucination. Baseline agents (no RAG 

or verification) hallucinated on ~20% of answers. 

With AROW, the rate dropped to <5%. The verifier 

correctly caught most errors, demonstrating high 

AUC as in Provenance[5]. Importantly, overall 

answer accuracy remained high (>90%) thanks to 

https://www.researchgate.net/figure/a-multi-agent-grid-world-environment-with-four-agents-circles-and-four-resources_fig1_387539902#:~:text=agent%20environment%20,the%20use%20of%20relational%20networks
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RAG and schema enforcement. Agents learned to 

mark uncertain queries for further retrieval rather 

than guess, due to the reward penalty. Qualitatively, 

we observed that AROW agents cited sources or 

refrained from answering when unsure, whereas 

baselines sometimes fabricated details. 

 

Ablation: Removing COMA-style counterfactuals 

slowed learning but had minor impact on final 

performance, whereas removing QMIX mixing broke 

coordination (agents learned suboptimal individual 

behaviors). Omitting the verifier (but keeping RAG) 

increased hallucinations to 12%, underscoring the 

verifier’s role. The JSON schema enforcement 

virtually eliminated format errors and facilitated 

debugging during experiments. 

 

Novelty and Practicality: AROW’s key novelty is the 

integration of these elements into a coherent 

workflow. While MARL and agentic LLM systems 

exist separately, AROW shows they can work 

synergistically. The practical implication is that real-

world agentic pipelines (e.g. supply chain planning, 

automated research assistants) can incorporate RL-

based learning to improve over time, without 

sacrificing factual reliability. The shared-memory 

design and structured JSON also make 

implementation in modern frameworks (e.g. 

LangChain graphs) straightforward. 

 

Limitations: Our study uses synthetic tasks; real-

world complexities (noisy data, longer horizons) 

require further testing. The reliance on PLMs means 

latency and token cost can be high; however, the 

distributed parallel agent architecture can mitigate 

wall-clock time. Finally, tuning the interplay of RL 

parameters and hallucination penalties is delicate – 

too harsh penalties may make agents overly 

conservative. 

 

CONCLUSION 

 

We have presented the AROW framework: a 

comprehensive agentic workflow combining PLM 

orchestration with multi-agent reinforcement learning 

and rigorous output validation. By using QMIX and 

COMA for cooperative training, enforcing strict 

JSON schemas, and incorporating RAG and verifier 

agents, AROW achieves coordinated task execution 

with mitigated hallucination. This advances the state-

of-the-art in autonomous agentic systems by 

explicitly linking agent coordination learning with 

quality control. Our experimental protocols 

(simulations and QA) illustrate its promise: improved 

collaboration and factual robustness. Future work 

will extend AROW to larger-scale tasks, integrate 

dynamic agent creation/destruction, and explore 

richer verifier logic. We believe agentic RL 

workflows like AROW are a practical path toward 

reliable, autonomous AI systems for complex 

applications. 
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