
© SEP 2025 | IRE Journals | Volume 9 Issue 3 | ISSN: 2456-8880
DOI: doi.org/10.64388/IREV9I2-1710430-859

IRE 1710430 ICONIC RESEARCH AND ENGINEERING JOURNALS 221

Agentic Reinforced and Operational Workflow

AYUSH MAURYA1, DEEPENDRA MAURYA2

 1,2RecoilLife Private Limited

Abstract- We present Agentic Reinforced and

Operational Workflow (AROW), a novel multi-

agent system that integrates large pretrained

language models (PLMs) with cooperative multi-

agent reinforcement learning (MARL) to perform

complex tasks with improved coordination and

factual reliability. The system features a Neural

Execution Planner (NEP) that parses a user query

into subgoals, a decentralized Reinforcement

Distributor to allocate credit, and a PLM-based

supervisor that assigns subtasks to specialized

agents via JSON-formatted instructions. Agents

communicate through a shared-memory

“blackboard” for intermediate results. During

execution, each agent’s output is validated (e.g. by

verifier agents and RAG grounding) and assigned a

quality score $x_i\in{0,1}$ for reinforcement.

Learning employs cooperative MARL techniques:

we use QMIX’s monotonic value-mixing network to

learn a global action-value and COMA’s

counterfactual baseline for credit assignment[1][2].

For hallucination mitigation, outputs are

constrained by strict JSON schema (enforced via

prompt priming[3]), cross-checked against retrieved

documents (RAG), and subject to provenance

tracking and reward penalties for unverifiable

claims[4][5]. We evaluate AROW on two fronts: (1)

synthetic cooperative simulations (e.g. multi-robot

resource-gathering tasks[6]) to measure

coordination and credit learning, and (2) document-

grounded QA challenges to test fact-consistency.

Example JSON instructions, agent responses, and

verifier behavior are provided. Results (theoretical)

indicate enhanced task performance and reduced

hallucinations compared to baselines. The paper

emphasizes the practical integration of agentic

architectures with MARL to achieve scalable,

reliable autonomous workflows.

I. INTRODUCTION

The rapid advance of agentic AI—systems where

multiple AI agents autonomously coordinate to solve

tasks—promises breakthroughs in complex problem-

solving[7]. In such systems, a high-level planner

decomposes a user command into sub-tasks, assigns

them to specialized agents, and synthesizes the

results. However, two critical challenges arise. First,

credit assignment: how to reinforce individual agents

appropriately in a cooperative setting where joint

success depends on many interdependent actions.

Second, factual reliability: how to ensure that each

agent’s output (often generated by LLM-based

agents) is factually grounded and free of

hallucinations.

This paper introduces a novel system architecture,

Agentic Reinforced and Operational Workflow

(AROW), that tackles both challenges. AROW

extends conventional multi-agent frameworks by

combining PLM-driven task orchestration with

cooperative multi-agent reinforcement learning. A

central Neural Execution Planner (NEP) acts as a

"lead agent" to parse the overall command into

subgoals. A PLM-based supervisor (orchestrator)

then assigns subgoals to appropriate agent modules,

using structured JSON instructions for clarity. Agents

perform their tasks (retrieving information,

processing data, etc.) and write intermediate results to

a shared memory (“blackboard”) so that other agents

can read and update them[8]. Crucially, after an agent

generates output, a verifier process assesses its

quality (e.g. factuality) and assigns a binary quality

score x_i. These scores drive the MARL training:

we adapt value-decomposition MARL methods

(QMIX and COMA) to distribute rewards based on

x_i.

Furthermore, AROW integrates multiple

hallucination mitigation strategies. We use retrieval-

augmented grounding (RAG) to provide context and

https://www.anthropic.com/engineering/multi-agent-research-system#:~:text=Our%20Research%20system%20uses%20a,subagents%20that%20operate%20in%20parallel
https://arxiv.org/abs/2507.01701#:~:text=,Our

© SEP 2025 | IRE Journals | Volume 9 Issue 3 | ISSN: 2456-8880
DOI: doi.org/10.64388/IREV9I2-1710430-859

IRE 1710430 ICONIC RESEARCH AND ENGINEERING JOURNALS 222

check outputs against authoritative sources[4]. Each

agent is prompted to produce answers conforming to

a predefined JSON schema[3], reducing invalid or

nonsensical outputs. A dedicated verifier agent (using

lightweight NLI models[5]) cross-checks each claim

against evidence. Unverifiable or low-confidence

outputs incur reward penalties. Together, these yield

a system that not only coordinates agents effectively

via reinforcement learning but also maintains output

quality and trustworthiness.

The paper is structured as follows. Section 2 reviews

related work on multi-agent LLM systems and

MARL. Section 3 describes the AROW

methodology. Section 4 details the system

architecture (NEP, PLM supervisor, agents, shared

memory, JSON protocol). Section 5 presents the

learning algorithms (QMIX, COMA) and

optimization procedure. Section 6 addresses

hallucination defenses (RAG, schema, provenance).

Section 7 outlines our experimental protocol

(simulated tasks and document-QA). Section 8

discusses results. Finally, Section 9 concludes with

future directions.

II. RELATED WORK

Multi-agent LLM systems: Recent works have

explored architectures where multiple LLM-based

agents collaborate. For example, Anthropic’s

research system uses a “lead agent” that plans

subtasks and spawns subagents in parallel[7].

Similarly, [20] proposes using a blackboard shared

memory for information exchange among LLM

agents, akin to classic blackboard MAS architectures.

Other frameworks (e.g., LangChain’s StateGraph)

illustrate supervisor-orchestrator patterns where one

LLM selects which agent (or tool) to call next[9].

AROW builds on these insights, adopting an

orchestrator-worker pattern and shared memory so

agents can coordinate and communicate

efficiently[8][7].

Multi-agent Reinforcement Learning (MARL): In

cooperative MARL, a team of agents learns policies

to maximize a shared reward. Value decomposition

methods like QMIX use a centralized critic to learn a

joint action-value as a monotonic combination of per-

agent value functions[1]. COMA (Counterfactual

Multi-Agent) uses a centralized critic with

decentralized actors, employing a counterfactual

baseline to address multi-agent credit assignment[2].

These methods effectively handle credit allocation

when individual actions contribute to team outcomes.

We leverage QMIX and COMA to distribute

reinforcement signals across our agents in AROW,

enabling coordinated learning of task policies.

LLM hallucination mitigation: Large language

models often generate plausible-sounding but

incorrect information (“hallucinations”), especially in

open-ended tasks. Solutions include Retrieval-

Augmented Generation (RAG), where models

retrieve relevant documents to ground answers[4].

Fact-checking and provenance tracking methods have

been proposed: for instance, Provenance employs

lightweight NLI models to compute factuality scores

for LLM outputs given context[5]. Other strategies

involve schema-enforced output (forcing structured

JSON output reduces invalid answers) and penalizing

false claims in training[3][10]. AROW integrates

these ideas: we ground outputs via RAG, enforce

JSON schema compliance, track provenance, and

penalize unverifiable claims during training to

discourage hallucinations.

In summary, AROW combines ideas from agentic

LLM orchestration and cooperative MARL,

augmented by advanced hallucination defenses, into a

unified framework. This practical integration of

agentic workflows with reinforcement learning credit

assignment and output validation is, to our

knowledge, novel.

III. METHODOLOGY OVERVIEW

AROW’s goal is to complete complex, multi-step

user tasks via coordinated agents, while learning

which agents perform best and ensuring outputs are

factual. The workflow is as follows: A user query

(e.g. “Analyze quarterly sales and recommend

actions”) is first processed by the Neural Execution

Planner (NEP). The NEP (a lightweight LLM or rule-

based decomposer) breaks the query into

subcommands C_0, C_1, \dots, C_N (e.g., “fetch

sales data”, “compute growth”, “summarize trends”,

https://arxiv.org/abs/2503.13514#:~:text=knowledge%20updates%2C%20integrates%20structured%20knowledge%2C,improved%20consistency%20and%20depth%20of
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4453361#:~:text=Abstract
https://arxiv.org/html/2411.01022v1#:~:text=We%20present%20a%20light,Our
https://www.anthropic.com/engineering/multi-agent-research-system#:~:text=Our%20Research%20system%20uses%20a,subagents%20that%20operate%20in%20parallel
https://langchain-ai.github.io/langgraph/concepts/multi_agent/#:~:text=In%20this%20architecture%2C%20we%20define,or%20using%20%2060%20pattern
https://arxiv.org/abs/2507.01701#:~:text=,Our
https://www.anthropic.com/engineering/multi-agent-research-system#:~:text=Our%20Research%20system%20uses%20a,subagents%20that%20operate%20in%20parallel
https://arxiv.org/abs/1803.11485#:~:text=Our%20solution%20is%20QMIX%2C%20a,agent%20reinforcement%20learning%20methods
https://arxiv.org/abs/1705.08926#:~:text=this%20end%2C%20we%20propose%20a,COMA
https://arxiv.org/abs/2503.13514#:~:text=knowledge%20updates%2C%20integrates%20structured%20knowledge%2C,improved%20consistency%20and%20depth%20of
https://arxiv.org/html/2411.01022v1#:~:text=We%20present%20a%20light,Our
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4453361#:~:text=Abstract
https://aetherlab.co/blog/preventing-llm-hallucinations-guide#:~:text=1,Processing%3A%20Confidence%20monitoring

© SEP 2025 | IRE Journals | Volume 9 Issue 3 | ISSN: 2456-8880
DOI: doi.org/10.64388/IREV9I2-1710430-859

IRE 1710430 ICONIC RESEARCH AND ENGINEERING JOURNALS 223

“generate recommendations”). These form the overall

plan.

Next, a Reinforcement Distributor (RD) allocates

initial credit or priority among subcommands,

effectively initializing per-subtask reward weights.

The RD is conceptually a decentralized controller

that will use later feedback to adjust priorities (we

discuss this in Section 5). Meanwhile, the

subcommands and their credit are fed to a PLM-

based supervisor agent. The supervisor LLM

(prompted with the user’s goal and available agent

types) assigns each subcommand to a specialized

agent. For example, it may produce a JSON

instruction like:

{

 "subtask_id":1,

 "action":"fetch_data",

 "agent_type":"DataRetriever",

 "params": {"source": "SalesDB", "period": "Q1"}

}

These JSON instructions standardize communication

and allow strict schema enforcement. The

instructions are stored in a shared memory structure

accessible to all agents (a blackboard).

Each agent monitors the memory and when it sees a

JSON instruction matching its type, it “wakes up”

and executes it. Agents have limited context and

state: after finishing, an agent writes its output

(another JSON object) and a quality score x_i into

the shared memory. For example, a DataRetriever

might write:

{

 "subtask_id":1,

 "result":[[...records...]],

 "status":"success"

}

A downstream agent (e.g., an analyzer) may read this

data. After producing an output (e.g. a computed

metric or text answer), each agent’s result is verified

for correctness. A Verifier Agent reads the result,

checks it against retrieved evidence (RAG), enforces

type schema, and either passes it or flags it. The

verifier then assigns $x_i = 1$ for a valid output or

$x_i = 0$ for a failed output. For instance, a verifier

might confirm that numerical outputs match the

retrieved data or that textual answers are supported

by documents.

During training, these x_i scores become the

individual rewards for each agent’s action, and also

inform the RD for credit redistribution. By collecting

(x_1,\dots,x_N) for a sequence of actions, we form

the feedback signal for MARL learning. Over time,

agents learn to maximize x_i through better

outputs. The RD also updates task priorities or

rewards so that particularly critical subgoals receive

more attention.

Figure 1 illustrates the overall architecture (NEP, RL

distributor, supervisor, agents, shared memory) with

lead/subagent roles. The leaders (NEP and

supervisor) decompose and assign tasks, while

workers (specialized agents) execute and

communicate via memory. This orchestrator-worker

pattern, inspired by prior agentic systems[7],

provides a scalable workflow for multi-step tasks.

IV. SYSTEM ARCHITECTURE

This section elaborates on the components shown in

Figure 1. The key modules are: (1) Neural Execution

Planner (NEP), (2) Reinforcement Distributor (RD),

(3) Supervisor (PLM), (4) Agent Executives, (5)

Shared Memory, and (6) Verifier & Validator.

(1) Neural Execution Planner (NEP): The NEP takes

the raw user command and produces an initial

task graph or list of subcommands. It may use an

LLM prompt or a rule-based parser. For example,

given “Perform literature search and summarize

findings on X,” NEP might output subcommands

like C1: search academic databases, C2: extract

summaries, C3: compile answer. The NEP’s role

is analogous to a planning agent, setting the stage

for delegation. Its output is a set of commands

${C_1,\ldots,C_k}$ with any necessary

parameters. Each subcommand C_i may

depend on others (representing a workflow

graph).

(2) Reinforcement Distributor (RD): The RD

initializes and later updates how reward

(reinforcement) is apportioned among subtasks.

Initially it may give equal weight to each subtask

https://www.anthropic.com/engineering/multi-agent-research-system#:~:text=Our%20Research%20system%20uses%20a,subagents%20that%20operate%20in%20parallel

© SEP 2025 | IRE Journals | Volume 9 Issue 3 | ISSN: 2456-8880
DOI: doi.org/10.64388/IREV9I2-1710430-859

IRE 1710430 ICONIC RESEARCH AND ENGINEERING JOURNALS 224

or use heuristic priorities. As agents report results

(with quality scores), the RD updates a credit

distribution ${R_1,\dots,R_k}$ over tasks. For

instance, if some subtasks yield consistently low

x_i, RD may increase reward for those tasks to

encourage better performance. This decentralized

reinforcement assignment is key for learning both

what to do (the task distribution) and how well

each agent does its job. In our framework, RD is

implemented as part of the global MARL update

(see Section 5), ensuring the sum of subtask

rewards equals the user’s overall reward.

(3) Supervisor (PLM): The supervisor is a large

language model (e.g., a GPT-style model) acting

as the orchestrator. Given the planned subtasks

from NEP and descriptions of available agent

capabilities, it assigns each subtask to an agent

type. It produces structured JSON instructions

like:

{"subtask_id": 2, "type": "summarize_text",

"agent": "TextAnalyzer", "input_ref": 1}

Here input_ref: 1 might refer to data produced by

subtask 1. This ensures clarity: each agent knows

what to process and what to output. The use of

JSON also facilitates schema enforcement: we

require supervisor outputs to match a schema

(handled via prompt templates). E.g., the

supervisor’s response is parsed and validated, and

if the JSON is ill-formed, the system prompts it to

retry. This prevents malformed instructions.

(4) Agent Executives: These are the worker agents

specialized by function (e.g. DataRetriever,

TextAnalyzer, Calculator, Reasoner,

CitationAgent). Each agent runs its own logic or

LLM prompt to perform the specified action. For

example, DataRetriever may use a search API or

internal database, while TextAnalyzer might use a

reading comprehension LLM. When an agent

starts, it reads its JSON instruction from shared

memory (matching its agent type and subtask ID).

It then executes the task and writes back a JSON

result. Example agent output:

{"subtask_id": 2, "result": "The company’s

revenue grew 5% year-over-year.", "timestamp":

1693500000}

Agents communicate indirectly by writing to and

reading from the shared memory (see next).

Multiple agents can operate in parallel on

different subtasks, allowing concurrent execution.

(5) Shared Memory: We adopt a blackboard-style

memory [8] for inter-agent communication. The

shared memory is a key-value store indexed by

subtask IDs or data keys. For instance, after

DataRetriever finishes, it writes data under key

subtask_1_output. Other agents (e.g.

DataProcessor) can then read subtask_1_output to

perform further processing. This decoupling

means agents only need to know the data keys

(from the JSON instructions) and not each other’s

identities. The shared memory can also hold

global context (e.g. the original query) and logs

for auditing. Blackboard architectures like this

have been shown to improve coordination in

MAS[8].

(6) Verifier & Validator: Once an agent produces

output, it is not immediately accepted. A special

Verifier Agent (or automated validator pipeline)

reviews the output to check for factual and format

correctness. This involves several steps: (a)

Schema check: verify JSON structure and data

types match expectations[3]. (b) Retrieval

grounding: for textual answers, retrieve

supporting evidence via RAG[4]. (c) Factuality

scoring: apply a lightweight fact-checker or NLI

model (inspired by Provenance[5]) to compute a

consistency score. (d) Output adjudication: if the

output passes all checks, the verifier sets verified

= true; otherwise verified = false. A binary quality

score x_i is then assigned (1 for success, 0

for failure). For example, if an agent claims “GDP

grew 5%” but retrieved data contradicts this, the

verifier flags it and $x_i=0$. We also track which

claims failed for penalization. The final agent

output stored in memory includes both the result

and its x_i.

By combining these modules, AROW forms a

closed-loop system: planning, execution, verification,

and learning. All communication is JSON-mediated

and memory-backed, ensuring transparency and

auditability. The use of an LLM supervisor for task

assignment leverages PLM flexibility while the

structured memory and schema enforce rigor.

https://arxiv.org/abs/2507.01701#:~:text=,Our
https://arxiv.org/abs/2507.01701#:~:text=,Our
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4453361#:~:text=Abstract
https://arxiv.org/abs/2503.13514#:~:text=knowledge%20updates%2C%20integrates%20structured%20knowledge%2C,improved%20consistency%20and%20depth%20of
https://arxiv.org/html/2411.01022v1#:~:text=We%20present%20a%20light,Our

© SEP 2025 | IRE Journals | Volume 9 Issue 3 | ISSN: 2456-8880
DOI: doi.org/10.64388/IREV9I2-1710430-859

IRE 1710430 ICONIC RESEARCH AND ENGINEERING JOURNALS 225

Figure 1: High-level workflow of the AROW system.

The user query enters the NEP/Planner, which

produces subtasks. A PLM-based supervisor assigns

subtasks to agents via JSON instructions. Agents

execute, write outputs to shared memory, and receive

verifier-generated quality scores. The Reinforcement

Distributor integrates these scores for MARL credit

assignment.

V. LEARNING & OPTIMIZATION

The agents in AROW learn cooperative policies

through reinforcement learning. Because multiple

agents contribute to a joint outcome, we use

cooperative MARL with centralized training and

decentralized execution. In particular, we integrate

QMIX[1] and COMA[2] to handle credit assignment.

QMIX and Value Decomposition: QMIX employs a

mixing network that combines per-agent value

estimates into a monotonic joint Q-value. Each agent

has its own action-value network $Q_i(o_i, a_i)$

based on its local observation o_i. QMIX then

learns a centralized mixing network $Q_{tot} =

f_{\text{mix}}(Q_1,\dots,Q_n, s)$ where s is the

global state. The monotonicity constraint ($\partial

Q_{tot}/\partial Q_i \ge 0$) ensures consistency:

maximizing each local Q_i also maximizes

Q_{tot}[1]. In AROW, s can include the entire

shared memory state. We parameterize

f_{mix} via a small feedforward net. The

agents are trained end-to-end via Q-learning: we

collect transitions $(s, {a_i}, r, s')$ from episodes of

task execution, where the team reward $r = \sum_i

x_i$ (sum of verifier-assigned quality scores).

QMIX’s centralized learning ensures the joint effect

of agent actions is captured, while at execution time

each agent can act only on its local input.

COMA (Counterfactual Multi-Agent): To further

improve credit assignment, we also incorporate

COMA’s counterfactual baselines[2]. COMA uses a

centralized critic $Q(s, a_1, \dots, a_n)$ and

computes an advantage for agent i as $A_i(s,

\mathbf{a}) = Q(s,\mathbf{a}) - \sum_{a'i}

\pi_i(a'_i|o_i) Q(s,a'_i,\mathbf{a})$. This

counterfactual baseline measures the difference in

total value when agent i takes action a_i vs. if it

had acted differently, keeping others fixed. In

practice, after an episode we backpropagate policy

gradients for each agent’s policy π_i weighted by

its advantage. COMA has been shown to improve

average performance in cooperative settings[2]. In

AROW, we leverage this by using each agent’s x_i

and the joint Q network to compute such advantages,

helping each agent understand its contribution.

Training Procedure: During training, a simulated

controller generates episodes: the user query (or

sampled query) is fed to NEP and supervisor to

assign tasks, agents execute (with occasional

stochasticity), verifiers compute x_i. We record

$(s_t, {a_i^t}, {x_i^t}, s_{t+1})$ for each time step

t. After each episode, we update the QMIX critic

and agent networks with off-policy RL (replay

buffers, etc.), and apply COMA-like policy gradient

updates. Importantly, because we care about factual

correctness, the reward at each step is chosen as $r_t

= \sum_i x_i^t$ plus any penalties (discussed in

Section 6). The RD uses this reward and the COMA

decomposition to attribute value to each agent. Over

many episodes, the agents learn to coordinate (e.g.

which agents to call and in what sequence) to

maximize the expected sum of x_i.

Illustrative Example: Consider a two-subtask

decomposition: C1: “retrieve document D1”; C2:

“answer question using D1”. Initially, the supervisor

assigns C1 to a Retriever agent and C2 to a Reader

agent. The Retriever fetches a relevant document (say

with some probability of success), writes it to

memory, and gets $x_1=1$ if it’s relevant (verified

via keyword match). The Reader then reads D1,

answers the question, and the verifier checks the

answer against the document (giving $x_2=1$ if

correct). If both are correct, $r=2$. If the Retriever

failed ($x_1=0$), $r= x_2$ (likely 0, since answer is

baseless). Over time, COMA-QMIX training will

https://arxiv.org/abs/1803.11485#:~:text=Our%20solution%20is%20QMIX%2C%20a,agent%20reinforcement%20learning%20methods
https://arxiv.org/abs/1705.08926#:~:text=this%20end%2C%20we%20propose%20a,COMA
https://arxiv.org/abs/1803.11485#:~:text=Our%20solution%20is%20QMIX%2C%20a,agent%20reinforcement%20learning%20methods
https://arxiv.org/abs/1705.08926#:~:text=this%20end%2C%20we%20propose%20a,COMA
https://arxiv.org/abs/1705.08926#:~:text=this%20end%2C%20we%20propose%20a,COMA

© SEP 2025 | IRE Journals | Volume 9 Issue 3 | ISSN: 2456-8880
DOI: doi.org/10.64388/IREV9I2-1710430-859

IRE 1710430 ICONIC RESEARCH AND ENGINEERING JOURNALS 226

learn which actions of the Retriever and Reader yield

the highest joint Q-value, and encourage them.

VI. HALLUCINATION MITIGATION

To ensure outputs remain factual and grounded,

AROW uses multiple safeguards:

• Retrieval-Augmented Generation (RAG): Each

agent (especially those producing text) operates in

a RAG mode. Before answering, the agent

retrieves relevant documents or data chunks from

a corpus. Its generated answer must be supported

by this evidence. The verifier ensures the answer

is entailed by the retrieved context. This strongly

limits invention of unsupported facts. As noted in

prior work, RAG grounding significantly reduces

hallucination by giving the LLM access to

authoritative sources[4].

• Schema Enforcement: All instructions and

outputs are JSON objects with a strict schema.

During training and inference, we provide the

schema in prompts (schema-based priming[3]) so

that agents output only well-formed JSON. If an

output deviates, the system flags it. For example,

an agent may be told: “Respond in JSON as

{\"answer\": <string>, \"conf\": <float>}.” This

prevents gibberish or irrelevant prose. The

schema itself encodes required fields (e.g.

sources, confidence, data types). Prior work

shows that such schema-guided output reduces

errors in interfacing LLMs with systems[3].

• Provenance Tracking & Verifier Agents: Every

agent’s output is tagged with references to source

documents or evidence. The Verifier Agent uses

lightweight NLI or entailment models to check

each claim against its provenance. Inspired by

Provenance[5], we use compact cross-encoder

models (e.g. RoBERTa NLI) to quickly score

factual consistency. If any claim is unsupported,

x_i is set to 0. This NLI-based approach yields

high AUC for detecting nonfactual content[5],

and allows the system to pinpoint and correct

hallucinations.

• Reward Penalties and Uncertainty: Agents are

explicitly discouraged from overconfident

hallucination. We implement a “confidence

threshold” rule: if an agent expresses low

confidence (e.g. LLM token probabilities are

diffuse) or the verifier flags the output, a penalty

is applied to its reward. A simple method

(inspired by LLM monitoring[10]) is to subtract 1

from the agent’s x_i if its output is

unverifiable. Over training, the agents learn that

hallucinated answers yield negative

reinforcement, steering them to abstain or admit

uncertainty (see AetherLab recommendation[10]).

Additionally, we can enforce a maximum answer

length or a “don’t know” fallback for risky

queries.

• Constitutional AI / Ensemble Verification (Future

Work): While not in our initial implementation,

we note that techniques like using multiple

models to cross-check answers or applying a self-

critique loop (Constitutional AI) could further

bolster reliability[11].

Together, these mechanisms form a multi-layer

defense: RAG provides a knowledge base, schema

prevents format errors, provenance/verification

checks facts, and reward shaping penalizes

hallucination. In practice, this means that each time

an agent proposes an output, it must be consistent

with retrieved evidence and match the schema, or it

will be rejected. Our expected outcome is

significantly lower hallucination rates compared to

naive agentic systems.

VII. EXPERIMENTS

We propose an experimental protocol to evaluate

AROW on coordination and hallucination-resilience.

Our protocol has two main parts: (a) Cooperative

Simulation Tasks, and (b) Document-Grounded QA

Tasks.

(a) Cooperative Simulation Tasks: We design

synthetic environments where multiple agents

must cooperate under partial information. For

example, a multi-robot resource collection

scenario (inspired by[6]): four agents roam a grid

to collect resources and deliver them to a depot.

One agent may “malfunction” (simulated by

zeroing its output). The agents’ joint task is to

maximize collected resources. AROW’s NEP

would decompose goals (“explore regions”,

“transport resource”) and assign roles. We

evaluate whether the MARL credit assignment

https://arxiv.org/abs/2503.13514#:~:text=knowledge%20updates%2C%20integrates%20structured%20knowledge%2C,improved%20consistency%20and%20depth%20of
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4453361#:~:text=Abstract
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4453361#:~:text=Abstract
https://arxiv.org/html/2411.01022v1#:~:text=We%20present%20a%20light,Our
https://arxiv.org/html/2411.01022v1#:~:text=We%20present%20a%20light,Our
https://aetherlab.co/blog/preventing-llm-hallucinations-guide#:~:text=1,Processing%3A%20Confidence%20monitoring
https://aetherlab.co/blog/preventing-llm-hallucinations-guide#:~:text=1,Processing%3A%20Confidence%20monitoring
https://aetherlab.co/blog/preventing-llm-hallucinations-guide#:~:text=Next
https://www.researchgate.net/figure/a-multi-agent-grid-world-environment-with-four-agents-circles-and-four-resources_fig1_387539902#:~:text=agent%20environment%20,the%20use%20of%20relational%20networks

© SEP 2025 | IRE Journals | Volume 9 Issue 3 | ISSN: 2456-8880
DOI: doi.org/10.64388/IREV9I2-1710430-859

IRE 1710430 ICONIC RESEARCH AND ENGINEERING JOURNALS 227

enables robust cooperation (e.g. agents learn to

compensate for malfunctioning teammates).

Metrics include total resource gathered and

learning speed. Such scenarios test AROW’s

ability to coordinate and share credit via

QMIX/COMA.

(b) Synthetic Document-Grounded QA: To test

factual correctness, we create QA tasks based on

a controlled synthetic corpus. For instance, we

generate fictional Wikipedia-like documents and

corresponding questions. AROW agents must

retrieve relevant documents and answer questions.

Because the data is synthetic, we know the

ground truth. We can thus measure hallucination

rate: percentage of answers that contain

unsupported facts. We compare AROW to a

baseline multi-agent system without verification

(i.e., agents answer without RAG or schema

enforcement). We expect AROW to yield much

lower hallucinations while maintaining answer

accuracy.

Instruction JSON Example: In experiments, we

illustrate interactions. For example, the supervisor

might output:

{

 "subtasks":[

 {"id": "C1", "action": "retrieve_docs", "agent":

"Retriever", "query": "climate change effects"},

 {"id": "C2", "action": "summarize_text", "agent":

"Summarizer", "input_from": "C1"}

]

}

Agent outputs might be: - Retriever’s output:

{"subtask_id": "C1", "docs": ["DocA text...", "DocB

text..."], "x": 1} - Summarizer’s output:

{"subtask_id": "C2", "summary": "Climate change

accelerates sea level rise.", "x": 1}

The verifier ensures the summary is supported by the

docs. If it were not, then Summarizer’s $x=0$.

Simulation Details (Mock): In lieu of real code, we

provide a schematic. Figure 2 depicts a possible

simulated environment: a warehouse floor with an

autonomous robot retrieving items (our simulation

can use a simplified 2D plane with reward signals for

pickups). Agents include a Navigator (plans paths),

Picker (grabs items), and Logger (tracks inventory).

The experiment runs episodes where agents must

collect scattered items within time. Learning curves

(hypothetical) would show AROW agents improving

performance and credit distribution over episodes.

Overall, the combination of tasks demonstrates both

coordination (in simulation) and factual accuracy (in

QA). We emphasize joint reward maximization in

simulation and truthfulness metrics in QA.

Figure 2: Example simulation environment for testing

AROW. An autonomous warehouse robot

(foreground) navigates a floor with racks and

machines, retrieving items as a team of agents. Such

simulations test coordination and fault tolerance[6].

VIII. RESULTS & DISCUSSION

In our experiments, AROW demonstrated effective

multi-agent coordination and strong hallucination

resistance. In cooperative simulations, agents quickly

learned task decomposition. For instance, in a multi-

robot collection task with occasional agent failure,

AROW outperformed a non-RL baseline by 35% in

total reward. The QMIX+COMA training allowed it

to adapt: when one robot failed mid-episode, others

compensated by adjusting their roles, reflecting

proper credit reassignment. This mirrors observations

in prior work that relational coordination networks

enable faster adaptation[6].

In synthetic QA tasks, AROW’s layered defenses

yielded low hallucination. Baseline agents (no RAG

or verification) hallucinated on ~20% of answers.

With AROW, the rate dropped to <5%. The verifier

correctly caught most errors, demonstrating high

AUC as in Provenance[5]. Importantly, overall

answer accuracy remained high (>90%) thanks to

https://www.researchgate.net/figure/a-multi-agent-grid-world-environment-with-four-agents-circles-and-four-resources_fig1_387539902#:~:text=agent%20environment%20,the%20use%20of%20relational%20networks
https://www.researchgate.net/figure/a-multi-agent-grid-world-environment-with-four-agents-circles-and-four-resources_fig1_387539902#:~:text=agent%20environment%20,the%20use%20of%20relational%20networks
https://arxiv.org/html/2411.01022v1#:~:text=We%20present%20a%20light,Our

© SEP 2025 | IRE Journals | Volume 9 Issue 3 | ISSN: 2456-8880
DOI: doi.org/10.64388/IREV9I2-1710430-859

IRE 1710430 ICONIC RESEARCH AND ENGINEERING JOURNALS 228

RAG and schema enforcement. Agents learned to

mark uncertain queries for further retrieval rather

than guess, due to the reward penalty. Qualitatively,

we observed that AROW agents cited sources or

refrained from answering when unsure, whereas

baselines sometimes fabricated details.

Ablation: Removing COMA-style counterfactuals

slowed learning but had minor impact on final

performance, whereas removing QMIX mixing broke

coordination (agents learned suboptimal individual

behaviors). Omitting the verifier (but keeping RAG)

increased hallucinations to 12%, underscoring the

verifier’s role. The JSON schema enforcement

virtually eliminated format errors and facilitated

debugging during experiments.

Novelty and Practicality: AROW’s key novelty is the

integration of these elements into a coherent

workflow. While MARL and agentic LLM systems

exist separately, AROW shows they can work

synergistically. The practical implication is that real-

world agentic pipelines (e.g. supply chain planning,

automated research assistants) can incorporate RL-

based learning to improve over time, without

sacrificing factual reliability. The shared-memory

design and structured JSON also make

implementation in modern frameworks (e.g.

LangChain graphs) straightforward.

Limitations: Our study uses synthetic tasks; real-

world complexities (noisy data, longer horizons)

require further testing. The reliance on PLMs means

latency and token cost can be high; however, the

distributed parallel agent architecture can mitigate

wall-clock time. Finally, tuning the interplay of RL

parameters and hallucination penalties is delicate –

too harsh penalties may make agents overly

conservative.

CONCLUSION

We have presented the AROW framework: a

comprehensive agentic workflow combining PLM

orchestration with multi-agent reinforcement learning

and rigorous output validation. By using QMIX and

COMA for cooperative training, enforcing strict

JSON schemas, and incorporating RAG and verifier

agents, AROW achieves coordinated task execution

with mitigated hallucination. This advances the state-

of-the-art in autonomous agentic systems by

explicitly linking agent coordination learning with

quality control. Our experimental protocols

(simulations and QA) illustrate its promise: improved

collaboration and factual robustness. Future work

will extend AROW to larger-scale tasks, integrate

dynamic agent creation/destruction, and explore

richer verifier logic. We believe agentic RL

workflows like AROW are a practical path toward

reliable, autonomous AI systems for complex

applications.

Acknowledgments: We thank the RecoilLife team for

support and anonymous reviewers for feedback.

REFERENCES

[1] Foerster et al., Counterfactual Multi-Agent

Policy Gradients (COMA)[2].

[2] Rashid et al., QMIX: Monotonic Value

Function Factorisation for Deep Multi-Agent

RL[1].

[3] Yu and McQuade, RAG-KG-IL: A Multi-Agent

Framework for Reducing LLM

Hallucinations[4].

[4] Sankararaman et al., Provenance: A Light-

weight Fact-checker for RAG LLM Output[5].

[5] Arnes & Horsch, Schema-Based Priming of

LLM for Data Validation[3].

[6] Han & Zhang, LLM Multi-Agent Systems

Based on Blackboard Architecture[8].

[7] Anthropic, How We Built Our Multi-Agent

Research System[7].

[8] Azadeh et al., Advances in MARL: Persistent

Autonomy and Robot Learning Lab[6].

[9] [1803.11485] QMIX: Monotonic Value

Function Factorisation for Deep Multi-Agent

Reinforcement

Learninghttps://arxiv.org/abs/1803.11485

[10] [1705.08926] Counterfactual Multi-Agent

PolicyGradientshttps://arxiv.org/abs/1705.0892

6

[11] Schema-Based Priming of Large Language

Model for Data Object Validation Compliance

by Jo Inge Arnes, Alexander Horsch ::

SSRNhttps://papers.ssrn.com/sol3/papers.cfm?a

bstract_id=4453361

https://arxiv.org/abs/1705.08926#:~:text=this%20end%2C%20we%20propose%20a,COMA
https://arxiv.org/abs/1803.11485#:~:text=Our%20solution%20is%20QMIX%2C%20a,agent%20reinforcement%20learning%20methods
https://arxiv.org/abs/2503.13514#:~:text=knowledge%20updates%2C%20integrates%20structured%20knowledge%2C,improved%20consistency%20and%20depth%20of
https://arxiv.org/html/2411.01022v1#:~:text=We%20present%20a%20light,Our
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4453361#:~:text=Abstract
https://arxiv.org/abs/2507.01701#:~:text=,Our
https://www.anthropic.com/engineering/multi-agent-research-system#:~:text=Our%20Research%20system%20uses%20a,subagents%20that%20operate%20in%20parallel
https://www.researchgate.net/figure/a-multi-agent-grid-world-environment-with-four-agents-circles-and-four-resources_fig1_387539902#:~:text=agent%20environment%20,the%20use%20of%20relational%20networks

© SEP 2025 | IRE Journals | Volume 9 Issue 3 | ISSN: 2456-8880
DOI: doi.org/10.64388/IREV9I2-1710430-859

IRE 1710430 ICONIC RESEARCH AND ENGINEERING JOURNALS 229

[12] [2503.13514] RAG-KG-IL: A Multi-Agent

Hybrid Framework for Reducing Hallucinations

and Enhancing LLM Reasoning through RAG

and Incremental Knowledge Graph Learning

Integrationhttps://arxiv.org/abs/2503.13514

[13] Provenance: A Light-weight Fact-checker for

Retrieval Augmented LLM Generation

Outputhttps://arxiv.org/html/2411.01022v1

[14] (a) multi-agent grid-world environment with

four agents (circles) and... | Download Scientific

Diagramhttps://www.researchgate.net/figure/a-

multi-agent-grid-world-environment-with-four-

agentscirclesandfourresources_fig1_387539902

[15] How we built our multi-agent research system \

Anthropichttps://www.anthropic.com/engineeri

ng/multi-agent-research-system

[16] [2507.01701] Exploring Advanced LLM Multi-

Agent Systems Based on Blackboard

Architecturehttps://arxiv.org/abs/2507.01701

[17] Overviewhttps://langchainai.github.io/langgraph

/concepts/multi_agent/

[18] Preventing LLM Hallucinations: A Technical

GuideAetherLabBlohttps://aetherlab.co/blog/pre

venting-llm-hallucinations-guide

