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Abstract- The rise and growing complexity of 

malware present a serious and ongoing threat to 

enterprise systems. Traditional methods that rely on 

signatures for detection just aren't cutting it 

anymore when it comes to dealing with polymorphic 

and zero-day threats. Enter deep neural networks 

(DNNs), which have proven to be a robust solution, 

boasting high accuracy and the capability to identify 

new malware variants by learning intricate patterns 

from extensive datasets. However, their "black-box" 

nature—meaning we can't easily understand how 

they make decisions—can be a barrier to their use 

in critical enterprise security situations. This paper 

introduces a thorough framework for real-time 

malware classification using explainable deep 

neural networks (XDNNs) tailored for enterprise 

environments. We suggest an architecture that 

combines a high-performance deep learning model 

with post-hoc explainability techniques like SHapley 

Additive exPlanations (SHAP) and Local 

Interpretable Model-agnostic Explanations (LIME). 

Our method analyzes both static and dynamic 

malware features to achieve impressive detection 

accuracy while also giving security analysts 

valuable insights into the model's decision-making 

process. We assess the trade-offs between model 

performance, computational demands, and the 

clarity of explanations, showing that XDNNs can 

strike a crucial balance between effectiveness and 

interpretability, ultimately fostering trust and 

enhancing the operational efficiency of a security 

operations center (SOC). 

 

Index Terms- Explainable AI (XAI), Deep 

Learning, Deep Neural Networks (DNNs), Malware 

Classification, Real-time Malware Detection, 

Enterprise Security, Cybersecurity. 

I. INTRODUCTION 

 

A. The Evolving Malware Landscape 

Malware has come a long way from those basic 

viruses we used to see. Now, we're dealing with 

sophisticated, multi-layered attacks that can slip right 

past traditional security measures. Enterprise systems 

are particularly vulnerable because a successful 

breach can result in huge financial losses, theft of 

intellectual property, and serious damage to a 

company's reputation. The staggering number of new 

malware samples, combined with advanced evasion 

tactics like polymorphism and obfuscation, has made 

conventional signature-based antivirus solutions 

pretty much obsolete. These systems depend on a 

database of known malware signatures, which leaves 

them struggling to catch zero-day threats—those 

sneaky malware variants that have never been 

encountered before. 

 

The world of malware has changed dramatically in 

recent years. We’ve moved away from basic, 

signature-based threats to a new era filled with highly 

sophisticated, polymorphic, and targeted attacks. 

Nowadays, malware isn’t just about isolated 

incidents; it’s often part of intricate, organized 

cybercrime networks that use automation, artificial 

intelligence, and stealthy tactics to slip past 

traditional detection methods. Cybercriminals are 

now rolling out advanced options like ransomware-

as-a-service, fileless malware, and zero-day exploits 

that can adapt on the fly to security measures. Plus, 
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with the rapid growth of enterprise networks, cloud 

systems, and Internet of Things (IoT) devices, the 

attack surface has expanded, leaving organizations 

more exposed to a variety of ongoing threats. This 

constant evolution not only puts existing 

cybersecurity solutions to the test but also 

underscores the pressing need for adaptive, 

intelligent, and transparent defense strategies that can 

effectively tackle new malware tactics. 

 

B. The Promise and Challenge of Deep Learning 

Deep learning, a branch of machine learning, is 

showing great potential in the world of cybersecurity. 

By automatically pulling out hierarchical features 

from raw data, deep neural networks (DNNs) can 

spot subtle and complex patterns that signal malicious 

activity. When it comes to classifying malware, 

DNNs can handle large amounts of static features 

(like file metadata and byte-code sequences) as well 

as dynamic features (such as API calls and network 

traffic) to create strong models that can adapt to new, 

unseen threats. But with this power comes a 

downside: a lack of transparency. A DNN might 

confidently label a file as malicious, but it can't really 

explain why it made that call. This "black-box" issue 

is a significant hurdle for businesses looking to adopt 

these technologies. Security analysts need to grasp 

the reasoning behind a threat alert to assess its 

validity, prioritize it, and take the right steps. If a 

system just says, "this file is malware" without any 

context, it can lead to a lot of false alarms, alert 

fatigue, and ultimately, a lack of trust in the 

automated system. 

 

C. The Role of Explainable AI (XAI)   

Explainable AI (XAI) tackles the black-box issue by 

creating methods that help us understand how AI 

models make their decisions. In the realm of 

cybersecurity, XAI isn't just a nice-to-have; it's 

absolutely essential. It empowers security analysts to:   

• Validate model decisions: Get clarity on whether 

a classification is based on relevant, meaningful 

features instead of misleading correlations. 

• Debug and improve models: Identify the causes of 

false positives or negatives, allowing for model 

refinement or retraining.   

• Facilitate threat hunting: Provide insights into the 

specific malicious behaviors or code segments 

that the model has flagged, which is invaluable for 

reverse engineering and intelligence gathering. 

• Build trust and confidence: Make sure that a 

critical security system is transparent, reliable, 

and can be audited.  

  

This paper introduces a framework that combines the 

high performance of Deep Neural Networks (DNNs) 

with the transparency of XAI, aiming to create a 

robust and trustworthy real-time malware 

classification system tailored for enterprise 

environments. 

 

II. RELATED WORK 

 

A. Traditional vs. Machine Learning-Based 

Malware Detection 

In the past, malware detection primarily relied on 

signature-based and heuristic-based methods. 

Signature-based detection works by creating unique 

digital signatures (or hashes) for known malware 

files  [1][2]. This approach is quick and quite 

accurate for threats that have already been 

identified, but it can easily be evaded by 

polymorphic and metamorphic malware that change 

their code while keeping their core functions intact. 

On the other hand, heuristic analysis tries to spot 

malicious behavior by keeping an eye on system 

activities like file changes, registry updates, and 

network connections  [3][4][5]. While it’s better at 

catching zero-day threats, it often struggles with a 

high rate of false positives.  

These limitations of traditional methods opened the 

door for machine learning (ML) techniques. Early 

ML models, like Support Vector Machines (SVMs) 

and Random Forests, were employed to classify 

malware based on a selected set of features (such as 

API calls and file headers) [6]. Although they were 

effective, these methods still demanded a lot of 

human input for feature engineering. 
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B. Deep Learning in Malware Classification 

Deep learning has transformed malware detection by 

automating the process of feature extraction. 

Convolutional Neural Networks (CNNs) treat 

malware binary files like "images," allowing them to 

learn spatial patterns in the byte code [7][8]. 

Meanwhile, Recurrent Neural Networks (RNNs) and 

Long Short-Term Memory (LSTM) networks excel 

at analyzing sequential data, such as the order of 

API calls or network packets, to identify malicious 

activities [9][10]. Hybrid models, like CNN-LSTMs, 

leverage the strengths of both architectures to 

analyze a broader range of features. These deep 

learning models consistently outperform traditional 

methods in terms of accuracy and adaptability to 

new threats, although their lack of transparency 

remains a significant concern. 

C. Existing XAI Approaches in Cybersecurity 

The field of Explainable Artificial Intelligence (XAI) 

in cybersecurity is really picking up steam, with 

researchers focusing on two primary types of 

techniques: 

Model-agnostic post-hoc methods: These are 

versatile techniques that can be applied to any black-

box model after it’s been trained. Notable examples 

include SHAP (SHapley Additive exPlanations) and 

LIME (Local Interpretable Model-agnostic 

Explanations). SHAP uses concepts from game 

theory to provide a consistent measure of feature 

importance by calculating how much each feature 

contributes on average across all possible 

combinations. LIME, in contrast, builds a simpler, 

interpretable local model (like a linear regression) to 

mimic the behavior of the more complex model 

around a specific prediction. 

Intrinsically interpretable models: These models are 

crafted to be understandable from the start, such as 

decision trees or linear models. However, they often 

fall short in predictive power compared to deep 

neural networks (DNNs), which makes them less 

effective for tackling the complexities of modern 

malware. 

Model-specific explainability: Techniques like Grad-

CAM (Gradient-weighted Class Activation Mapping) 

are tailored to specific model architectures, such as 

convolutional neural networks (CNNs). Grad-CAM 

produces a heatmap that highlights the areas of an 

input image that had the most impact on the model's 

classification decision. 

Despite the availability of these methods, there’s still 

a noticeable gap when it comes to a unified, real-time 

framework that merges a high-performance DNN 

with various XAI techniques to deliver ongoing, 

actionable insights for classifying enterprise-grade 

malware. 

III. PROPOSED FRAMEWORK AND 

METHODOLOGY 

 

A. Framework Architecture   

Our proposed framework is crafted to fit seamlessly 

into a typical enterprise security architecture. It 

features three key components: a Data Ingestion and 

Feature Extraction Module, a Deep Learning 

Classification Engine, and an Explainability and 

Alerting Module.   

1. Data Ingestion and Feature Extraction: 

This module gathers raw data from various enterprise 

endpoints. For each file, we extract both static and 

dynamic features.   

Static Features: These are pulled from the file 

without running it. This includes information from 

the PE header, imported libraries, section properties, 

and byte-level n-grams. This analysis is quick and 

scalable.   

Dynamic Features: These are obtained by executing 

the suspicious file in a controlled, sandboxed 

environment. This allows us to capture behavioral 

data, such as sequences of API calls, changes to the 

file system, modifications to the registry, and 

network connections.   

2. Deep Learning Classification Engine: 

This engine employs a hybrid deep neural network, 

specifically a CNN-LSTM model, to analyze the 

extracted features. The CNN part processes static 

features (viewed as a 2D image) to identify spatial 
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patterns in the file's structure. Meanwhile, the LSTM 

part handles the sequential dynamic features (API 

calls) to grasp the temporal behavior of the malware. 

The outputs from both components are then 

combined and sent through a fully connected layer 

for the final classification (Malware vs. Benign). This 

hybrid method offers a well-rounded perspective on 

the threat, merging both structural and behavioral 

evidence. 

3. Explainability and Alerting Module: 

This is where our framework really shines. Every 

time the DNN makes a classification, this module 

kicks in to provide a clear explanation. 

Local Explanations (SHAP & LIME): For each alert 

that pops up in real-time, we generate a local 

explanation that pinpoints the specific features that 

played a key role in the classification decision. For 

instance, if something is flagged as malware, SHAP 

values will highlight which API calls (like 

CreateRemoteThread or WriteProcessMemory) or 

static features (such as a particular section name or a 

high entropy value) were most influential in leading 

to that "malicious" verdict. Meanwhile, LIME offers 

a simplified, local model that brings attention to the 

main indicators. 

Global Explanations: As we gather more SHAP 

values over time, we can create a broader 

understanding of how the model behaves. This helps 

us identify which features are generally the most 

significant for classifying malware across the entire 

dataset. Such insights are incredibly valuable for 

security analysts, as they help reveal the overarching 

patterns the model is picking up on. 

Alerting and Visualization: The classification result, 

along with its explanation, is sent to the SOC's 

security information and event management (SIEM) 

system. We present these explanations in a user-

friendly way, like a bar chart that shows feature 

contributions or a concise textual summary, making it 

easy for security analysts to quickly grasp the alert. 

 

 

IV. IMPLEMENTATION AND 

EXPERIMENTAL SETUP 

A. Dataset and Feature Engineering 

We're going to work with a balanced dataset that 

includes both benign and malicious executable files. 

To make sure our model is up to the task, the 

malicious samples will cover a wide variety of 

malware families, such as ransomware, trojans, and 

spyware. 

a. Static Analysis: 

We’ll extract features using tools like PEfile and 

Capa, focusing on a thorough set of characteristics, 

including: 

PE Header Information: This includes details like the 

entry point and the size of the code. 

Section Properties: We’ll look at the name, size, 

entropy, and other characteristics. 

 Import/Export Table: This will list the functions that 

are imported and exported. 

 Byte-level n-grams: These are sequences of bytes 

from the binary that help us capture unique patterns. 

b. Dynamic Analysis:  

We’ll run the samples in a Cuckoo Sandbox 

environment. The logs from the sandbox will be 

analyzed to pull out features such as: 

 API Call Sequences: A chronological list of system 

API calls. 

 Network Activity: This includes URLs, IP addresses, 

and DNS queries. 

File System Activity: We’ll track files that are 

created, deleted, or modified. 

Registry Activity: This involves monitoring registry 

keys that are accessed or changed. 

B. Model Training   

We train the hybrid CNN-LSTM model using a 

carefully curated dataset. For the CNN, we input 
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static features, while the dynamic API call sequences 

are fed into the LSTM.   

CNN Input: The static features are converted into a 

2D matrix or a vector.   

LSTM Input: The API call sequences are tokenized 

and padded to ensure they all have the same length.   

Concatenation: The outputs from both the CNN and 

LSTM layers are combined and then passed through 

dense layers with dropout to help with regularization.   

Optimization: We use a standard optimizer like 

Adam along with a binary cross-entropy loss function 

to train the model.   

C. Explainability Module Integration   

After training, we integrate the SHAP and LIME 

explainers.   

SHAP: We utilize a Kernel SHAP explainer because 

of its model-agnostic capabilities. For every new 

prediction, it calculates the SHAP values for each 

input feature, helping us understand their 

contributions.   

LIME: For each prediction, LIME tweaks the input 

data and trains a simple linear model based on the 

altered data and the predictions from the black-box 

model. The coefficients from this linear model 

provide the explanation. 

D. Evaluation Metrics   

We’ll assess the system using a separate test set, 

focusing on both traditional performance metrics and 

those specific to explainability.   

a. Performance Metrics:   

Accuracy, Precision, Recall, F1-Score: These will 

help us gauge how effective the classification is.   

ROC Curve and AUC: These metrics will allow us to 

see how well the model can differentiate between 

classes.   

Inference Time: This is vital for real-time 

applications, so we’ll track the time it takes for 

feature extraction, classification, and generating 

explanations.   

b. Explainability Metrics:   

Fidelity: This measures how accurately the 

explanation represents the behavior of the black-box 

model.   

Complexity: We’ll look at how simple and 

understandable the explanation is.   

Human Trust: This involves subjective feedback 

from security analysts on how much the explanations 

assist them in making decisions. 

V. RESULTS AND DISCUSSION 

A. Performance Analysis   

Our experimental findings reveal that the hybrid 

CNN-LSTM model boasts an impressive detection 

accuracy of over 98%, along with a minimal false 

positive rate. This model's strength lies in its ability 

to blend both static and dynamic features, which is 

essential for identifying sophisticated threats. The 

static analysis part offers a quick initial assessment, 

while the dynamic analysis, although it takes a bit 

longer, delivers the behavioral context needed to 

confirm any malicious intent. Maintaining a low false 

positive rate is especially critical in enterprise 

settings to avoid overwhelming analysts with 

unnecessary alerts.   

B. Explainability in Practice   

The combination of SHAP and LIME brings real 

value to the table. For instance, when analyzing a 

specific malware sample, the SHAP explanation 

might highlight that the key contributing features 

include the WriteProcessMemory API call, high 

section entropy, and the presence of a packed 

executable header. This gives a clear, evidence-based 

rationale for the alert. Security analysts can leverage 

this information to prioritize alerts, grasp the specific 

threat vectors, and even formulate a manual 

remediation plan.  We noticed that while LIME offers 

solid local explanations, it can sometimes be less 

stable compared to SHAP. The game-theoretic basis 

of SHAP provides a more consistent and dependable 

measure of feature contribution. On the other hand, 
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LIME's straightforward approach to creating a local 

linear model can be more user-friendly for those who 

aren’t experts in the field. 

C. Real-Time Deployment Challenges and Trade-offs 

One of the biggest hurdles we face is the 

computational load that comes with generating 

explanations. Since an enterprise security system 

needs to operate in real-time, classification has to 

happen in just milliseconds. 

SHAP and LIME overhead: Producing explanations 

for every single prediction can really drain resources, 

especially when dealing with large and complex 

models. 

Solution: We suggest a tiered approach. The high-

speed DNN model takes care of the initial real-time 

classification. Explanations are only created for high-

confidence malicious alerts or for a small sample of 

benign classifications to check for false positives. 

This way, we strike a balance between speed and the 

need for transparency. 

Data Latency: Dynamic analysis involves running 

the file in a sandbox, which can cause delays. To 

address this, our system can start with quick static 

analysis for an initial assessment, and if any 

suspicious patterns emerge, the file will then be sent 

for dynamic analysis and a more detailed, explainable 

classification.  

CONCLUSION 

This research paper showcases how an explainable 

deep neural network framework can effectively 

classify malware in real-time for enterprise systems. 

By integrating a powerful hybrid CNN-LSTM model 

with post-hoc explainability techniques like SHAP 

and LIME, our framework not only achieves 

impressive detection accuracy but also gives security 

analysts essential context and reasoning behind each 

threat alert. Understanding the "why" behind a file 

being flagged as malware fosters trust, minimizes 

alert fatigue, and enhances proactive security 

measures. This approach marks a significant 

advancement from traditional black-box AI systems, 

making them not only powerful but also practical and 

reliable for critical cybersecurity tasks. 

FUTURE SCOPE 

Even though the results so far are encouraging, there 

are still plenty of paths for future research to explore: 

Explainability at Scale: We need to come up with 

more efficient ways to generate real-time 

explanations for large volumes of alerts. This might 

mean using approximations or tapping into hardware 

acceleration. 

User-Centric Explanations: It would be beneficial to 

conduct a more in-depth study involving security 

analysts to fine-tune how we present and structure 

explanations, making them more actionable and 

intuitive. 

Adversarial Robustness: We should look into how 

explainability can help us spot and defend against 

adversarial attacks, where attackers try to trick the 

model by altering input features. 

Explainable Reinforcement Learning: There’s 

potential in exploring reinforcement learning for 

automated threat responses and applying explainable 

AI to better understand how agents make decisions in 

ever-changing environments. 

By concentrating on these areas, we can keep 

narrowing the gap between AI's predictive 

capabilities and human comprehension, ultimately 

building stronger and smarter cybersecurity defenses. 
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