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Abstract- Risk-based monitoring (RBM) has 

emerged as a transformative approach to improving 

the quality and efficiency of oncology clinical trials, 

where traditional monitoring methods often struggle 

with complexity, high costs, and operational 

inefficiencies. In oncology studies, characterized by 

large patient populations, multiple sites, and intricate 

therapeutic regimens, RBM provides a structured 

framework for focusing oversight on areas of highest 

risk while reducing unnecessary monitoring burden. 

By integrating centralized data review, key risk 

indicators (KRIs), and advanced statistical methods, 

RBM shifts the paradigm from exhaustive source 

data verification to proactive risk detection and 

mitigation. This abstract explores the role of RBM in 

enhancing clinical trial performance, particularly in 

oncology, by streamlining data integrity processes, 

improving patient safety oversight, and optimizing 

resource allocation. It emphasizes how data-driven 

insights derived from centralized monitoring enable 

early detection of protocol deviations, adverse events, 

and data anomalies, thereby ensuring regulatory 

compliance and patient protection. Additionally, 

RBM facilitates adaptive trial management by 

allowing continuous reassessment of monitoring 

strategies based on evolving trial risks, site 

performance, and patient recruitment trends. This 

flexibility is particularly valuable in oncology, where 

trials often involve complex endpoints, biomarker-

driven subgroups, and long-term follow-up 

requirements. Evidence suggests that RBM can 

reduce monitoring costs, accelerate decision-

making, and improve overall trial quality without 

compromising regulatory standards. Furthermore, 

RBM supports broader initiatives toward digital 

transformation in clinical research by leveraging 

real-time analytics, remote monitoring technologies, 

and risk visualization dashboards. These innovations 

enhance collaboration between sponsors, sites, and 

regulatory bodies, promoting transparency and 

accountability. Ultimately, risk-based monitoring is 

not merely a cost-containment strategy but a quality-

driven framework that aligns with global regulatory 

guidance and the evolving needs of oncology 

research. Its implementation represents a critical 

step toward delivering robust, reliable, and patient-

centered outcomes in cancer clinical trials, while 

ensuring efficiency in increasingly complex research 

environments. 
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I. INTRODUCTION 

 

Oncology clinical trials are among the most complex 

and resource-intensive studies in drug development. 

Multiregional footprints, biomarker-enriched 

populations, imaging-heavy endpoints, and lengthy 

follow-up for progression-free and overall survival 

expand operational scope and data volume (Bizzo, et 

al., 2019, Gatla, 2019). Decentralized elements, 

ePRO/eCOA, wearables, and specialty lab workflows 

multiply data streams and interfaces, raising the 

probability of latency, missingness, and inconsistency. 

Protocols routinely evolve through amendments to 

accommodate emerging science and safety learnings, 

increasing site burden and deviation risk. Together, 

these forces escalate cost drivers monitoring travel, 

query resolution cycles, imaging adjudication, and 

pharmacovigilance activities while stretching 

timelines and straining site capacity in already 

competitive oncology recruitment landscapes (Haw, et 

al., 2017, Hurley, et al., 2016, Hurley, et al., 2018). 
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Traditional monitoring models centered on 100% 

source data verification and frequent on-site visits 

struggle to meet these challenges. Verifying every data 

point is expensive and slow, often detecting 

transcription errors without addressing upstream 

process or system issues that threaten patient safety 

and endpoint interpretability (Ismail, Karusala & 

Kumar, 2018, Mariscal, et al., 2019). Infrequent, 

episodic visits create long signal-to-action delays, 

while uniform monitoring intensity ignores 

heterogeneity in site performance, patient acuity, and 

data criticality. As eSource and centralized data flows 

proliferate, on-site–centric approaches become 

increasingly inefficient, producing diminishing 

quality returns for escalating costs and diverting expert 

attention from the few issues that truly matter to trial 

reliability (Arora, Maurya & Kacker, 2017). 

Risk-based monitoring offers a quality-by-design 

alternative that targets oversight to what is critical-to-

quality in oncology. Through structured risk 

assessment, centralized analytics, and continuous 

surveillance of key risk indicators and quality 

tolerance limits, RBM prioritizes patient safety, 

primary endpoint integrity, consent and eligibility 

accuracy, investigational product handling, imaging 

quality, and timely adverse event management (Asi & 

Williams, 2018, Miah, Hasan & Gammack, 2017). 

Targeted SDV/SDR is deployed where data criticality 

and performance signals warrant it, while adaptive 

triggers adjust monitoring intensity as risks evolve. 

Dashboards and cross-functional risk review enable 

earlier detection of anomalies, trend shifts, and 

potential fraud, accelerating mitigation and 

documentation for audit readiness (Hopkins, Burns & 

Eden, 2013, K Gohagan, et al., 2015, Obodozie, 2012). 

The objectives are to improve the precision and 

timeliness of risk detection, reduce unnecessary 

monitoring burden, optimize resource allocation 

across sites and processes, shorten cycle times, and 

contain costs without compromising regulatory 

compliance or scientific validity. In doing so, RBM 

aligns operational practice with the realities of modern 

oncology research, strengthening the pathway from 

complex data generation to credible, patient-centered 

evidence (Smith, et al., 2019, Thomford, et al., 2018, 

Ulrich-Merzenich, et al., 2009). 

 

2.1. Methodology 

The study applies a prospective, mixed-methods, risk-

based monitoring approach tailored to oncology 

clinical trials, integrating central statistical monitoring 

with targeted on-site and remote actions to enhance 

data quality, patient safety, and operational efficiency. 

At trial start, the protocol is deconstructed to identify 

critical-to-quality factors across safety, dosing, 

imaging-based endpoints, and patient-reported 

outcomes, and a governance charter defines roles for 

sponsor, CRO, medical monitor, DMC, site personnel, 

and data stewards. A structured risk assessment uses a 

likelihood–impact–detectability framework (RACT) 

to generate a heatmap of patient-level and site-level 

hazards, including imaging variability, investigational 

product accountability, eligibility deviations, adverse 

event and SAE under-reporting, consent quality, and 

timeliness of endpoint ascertainment. For each critical 

factor, key risk indicators and quality tolerance limits 

are defined with explicit thresholds, decision rules, 

and service-level clocks, and are tied to a sampling 

strategy for SDV/SQV that prioritizes high-risk data 

domains (e.g., first-dose safety, endpoint-defining 

measurements, concomitant medications, imaging 

time-points, and survival events). Data pipelines are 

established to ingest and reconcile EDC, ePRO/eCOA, 

lab, imaging, EHR, and wearables, enforcing data 

provenance, versioning, and privacy safeguards; 

automated checks include range, cross-field logic, 

temporal consistency, duplicate detection, 

missingness patterns, Benford/variance screens for 

fabrication risk, site-to-site outlier detection, central 

statistical monitoring (e.g., risk scoring via mixed 

effects and robust z-scores), and imaging quality 

controls aligned with oncology response criteria.  

A central signal management process triages alerts by 

domain patient safety takes precedence using severity 

and impact matrices that trigger predefined actions: 

rapid query generation, immediate safety escalation to 

the medical monitor and DMC, focused retraining, 

targeted source verification, pharmacy accountability 

checks, or protocol clarifications. Trigger algorithms 

schedule site visits only when warranted by risk (e.g., 

consecutive QTL breaches, aberrant AE/SAE profiles, 

unusual response rates, lagging data entry), and visit 

scopes are narrow and evidence-based to conserve 

resources while addressing root causes. Issue 
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management follows a CAPA cycle with root-cause 

analysis (five whys and fishbone), corrective steps 

(data correction, retraining, workflow adjustment), 

preventive safeguards (form redesign, edit checks, 

automated reminders), and time-bound effectiveness 

verification; all actions are documented with audit 

trails and filed to the TMF.  

Oversight occurs through periodic cross-functional 

reviews where central analytics, site metrics, and 

safety summaries are presented to governance groups, 

enabling rapid recalibration of KRIs, QTLs, and the 

monitoring plan; vendor and imaging core 

performance are scored against KPIs and contractual 

expectations. Continuous learning is embedded by 

monitoring false positive and false negative rates of 

signals, assessing model drift, refreshing thresholds as 

recruitment and case-mix evolve, and folding lessons 

learned into reusable playbooks for oncology 

indications. The approach concludes with integrated 

reporting on KRI trends, deviations, CAPA 

effectiveness, and inspection-readiness evidence, 

ensuring traceability from risk identification to 

resolution while demonstrating efficiency gains (fewer 

non-value-add visits, higher on-time data, faster safety 

detection) and sustained protection of patient welfare 

and data integrity. 

Figure 1: Flowchart of the study methodology 

2.2. Regulatory and Quality Framework 

The regulatory and quality framework underpinning 

risk-based monitoring (RBM) in oncology clinical 

trials has been shaped by a series of international 

guidelines, evolving regulatory positions, and the 

application of critical-to-quality (CtQ) principles. 

These frameworks are designed to safeguard patient 

safety, ensure data integrity, and drive operational 

efficiency while recognizing the unique complexities 

of oncology research. Unlike traditional monitoring 

approaches that relied heavily on exhaustive source 

data verification (SDV) and uniform site visits, RBM 

emphasizes proportional oversight that targets risks 

most likely to affect trial reliability and patient 

outcomes. Its success depends on alignment with 

global standards such as ICH guidance, as well as the 

regulatory expectations articulated by agencies 

including the U.S. Food and Drug Administration 

(FDA) and the European Medicines Agency (EMA) 

(Hendricks-Ferguson, et al., 2013, Liu, et al., 2015, 

Middleton, et al., 2013). 

The International Council for Harmonisation (ICH) 

has been central to establishing the quality-by-design 

paradigm that underlies RBM. The 2016 revision of 

ICH E6 to E6(R2) marked a pivotal moment by 

explicitly endorsing risk-based approaches to trial 

oversight. It encouraged sponsors to identify, evaluate, 

and manage risks across clinical development, 

embedding concepts such as centralized monitoring 

and adaptive strategies into good clinical practice 

(Leath, et al., 2018, Olu, et al., 2019). The subsequent 

draft of ICH E6(R3), released for consultation, 

continues this trajectory by reinforcing the need for 

proportionate, fit-for-purpose monitoring that 

leverages modern technology. Complementing this, 

ICH E8(R1) highlights the importance of focusing on 

elements critical to quality rather than exhaustive data 

checking, setting the stage for targeted and risk-

adaptive oversight (Atobatele, Hungbo & Adeyemi, 

2019, Gong, et al., 2017, Uwaifo, et al., 2019). For 

oncology trials, which are often complex and data-

heavy, these ICH updates establish a regulatory 

mandate to move away from rigid models and adopt 

monitoring strategies that reflect the true risks to 

patients and endpoints. Figure 2 show figure of 

Example of Clinical Trial Assessment of 

Infrastructure Matrix (CT AIM) scoring report 

presented by Dimond, et al., 2016. 
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Figure 2: Example of Clinical Trial Assessment of 

Infrastructure Matrix (CT AIM) scoring report 

(Dimond, et al., 2016). 

The FDA and EMA have each advanced RBM through 

formal guidance and pilot programs, signaling clear 

regulatory acceptance. In 2013, the FDA released its 

guidance on RBM, encouraging sponsors to use 

centralized statistical monitoring, key risk indicators, 

and targeted on-site visits to detect and address 

significant issues earlier and more efficiently 

(Campbell, et al., 2019, Goel, et al., 2017). The EMA 

has similarly supported RBM, with the Reflection 

Paper on Risk-Based Quality Management issued by 

the GCP Inspectors’ Working Group emphasizing 

proactive risk assessment and continuous data review 

(Boyer, et al., 2018, Chin & Bairu, 2011, Diani, Rock 

& Moll, 2017). Both agencies recognize that oncology 

trials, with their multifaceted endpoints and vulnerable 

patient populations, stand to benefit from RBM’s 

adaptive capabilities. Regulatory feedback from 

inspections further validates that RBM, when well-

documented, is not only acceptable but often 

preferable to legacy monitoring. The alignment of 

FDA and EMA positions reduces uncertainty for 

global oncology studies, enabling sponsors to 

harmonize trial oversight across regions and 

streamline their monitoring strategies (Enna & 

Williams, 2009, Hungbo & Adeyemi, 2019, Olaniyan, 

et al., 2018). 

Central to the implementation of RBM in oncology is 

the articulation of critical-to-quality (CtQ) factors. 

These are study-specific aspects most likely to affect 

patient safety or the reliability of trial results, and they 

serve as anchors for designing proportionate 

monitoring strategies. In oncology, CtQ factors 

typically include informed consent integrity, correct 

eligibility determination for biomarker-defined 

subgroups, accurate and timely adverse event 

reporting, appropriate handling and accountability of 

investigational product, quality of imaging and 

laboratory data, and fidelity of survival and 

progression endpoints (Alemayehu, Mitchell & 

Nikles, 2018, Barger, et al., 2019, Friedman, et al., 

2015). By identifying CtQ elements early, sponsors 

can design monitoring plans that allocate resources to 

the areas of highest potential impact. This approach 

not only protects patients and ensures scientific 

validity but also reduces unnecessary verification of 

noncritical data, thereby improving efficiency without 

compromising quality. CtQ-driven monitoring reflects 

the broader movement toward quality by design, 

ensuring that oversight is purposeful, transparent, and 

aligned with regulatory expectations. 

Together, ICH guidelines, FDA and EMA positions, 

and CtQ principles form a cohesive framework that 

legitimizes and operationalizes RBM in oncology 

clinical trials. They provide the regulatory confidence 

sponsors need to depart from costly, inefficient legacy 

approaches while maintaining rigorous safeguards. By 

embedding risk assessment, central monitoring, and 

adaptive strategies into the trial lifecycle, RBM aligns 

quality management with modern realities of oncology 

research (Lee, et al., 2015, Srivastava & Shainesh, 

2015). It enables sponsors to navigate the high cost and 

complexity of cancer trials while delivering robust, 

reliable data and safeguarding patients in accordance 

with international standards. Ultimately, this 

framework ensures that RBM is not merely a cost-

saving exercise but a regulatory-endorsed, quality-

driven model that enhances both the efficiency and the 

credibility of oncology clinical development 

(Hoffmann & Rohe, 2010, Macefield, et al., 2013, 

Nchinda, 2002). 
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2.3. RBM Fundamentals 

Risk-based monitoring (RBM) represents a paradigm 

shift in clinical trial oversight, particularly in oncology 

where complexity, cost, and patient safety 

considerations demand more adaptive and data-driven 

approaches. At its core, RBM is defined as a 

systematic method of clinical trial monitoring that 

directs resources and oversight toward processes and 

data critical to patient safety and trial integrity, while 

minimizing time spent on activities that offer limited 

value (Huang, et al., 2017, Lim, et al., 2016). Unlike 

the traditional model of exhaustive 100% source data 

verification (SDV) during routine on-site visits, RBM 

integrates centralized monitoring, targeted source data 

review (SDR), and risk-based prioritization of tasks 

(Atobatele, Hungbo & Adeyemi, 2019, Hamilton & 

Yano, 2017, Onyeji & Sanusi, 2018). This 

combination ensures trial quality by proactively 

identifying and mitigating risks while optimizing 

efficiency. Centralized monitoring lies at the heart of 

RBM, enabling near real-time data aggregation, 

statistical analyses, and anomaly detection across trial 

sites. By shifting the emphasis away from uniform 

data checking to dynamic, risk-driven oversight, RBM 

allows clinical teams to focus their attention on 

deviations, trends, or outliers that truly matter for 

decision-making in oncology trials (Haw, et al., 2017, 

Hurley, et al., 2016, Hurley, et al., 2018). 

To operationalize RBM, sponsors and clinical research 

organizations employ structured risk assessment tools 

such as the Risk Assessment and Categorization Tool 

(RACT). These tools guide teams in systematically 

identifying and classifying risks during protocol 

design and throughout trial execution. Risks are 

typically grouped into categories including patient 

safety, data integrity, protocol compliance, 

investigational product management, and site 

performance (Metcalf, et al., 2015, Utazi,et al., 2019). 

In oncology studies, patient safety risks are 

particularly pronounced due to the toxicities of 

investigational agents, the complexity of dosing 

regimens, and the vulnerable nature of the patient 

population (Essien, et al., 2019, Olaniyan, Ale, & 

Uwaifo, 2019, Taiwo, 2015). Data integrity risks are 

equally critical, especially when endpoints involve 

progression-free survival or imaging-based 

assessments that require strict standardization. The 

RACT and similar frameworks allow teams to assign 

likelihood and impact scores to each identified risk, 

prioritize mitigation strategies, and document 

rationale for regulatory compliance. This structured 

approach ensures that monitoring plans are not static, 

but dynamic and reflective of the evolving risk 

landscape inherent in oncology research. Figure 3 

shows data collection in clinical trials presented by 

Van Dam, et al., 2017. 

Figure 3: Data collection in clinical trials (Van Dam, 

et al., 2017). 

Key Risk Indicators (KRIs) and Quality Tolerance 

Limits (QTLs) are central elements of RBM, serving 

as quantifiable metrics that help detect emerging 

issues before they escalate into serious threats to trial 

quality. KRIs are predefined data points or 

performance measures monitored continuously to flag 

risks at the site, patient, or study level (Portnoy, et al., 

2015, Sim, et al., 2019). Examples in oncology trials 

include delayed adverse event reporting, protocol 

deviations in dosing schedules, missing tumor imaging 

data, or unusually high screen failure rates. Each KRI 

is tied to thresholds that, when breached, trigger 

investigation or corrective actions (Armstrong, et al., 

2009, Fenlon, et al., 2013). Quality Tolerance Limits, 

on the other hand, represent higher-level trial-wide 

benchmarks agreed upon with regulators, designed to 

ensure the study maintains acceptable quality 

standards. For instance, a QTL may define the 

maximum allowable percentage of missing primary 

endpoint data or delays in serious adverse event 

follow-up. By systematically tracking KRIs and 

QTLs, sponsors gain actionable insights into where 

intervention is most needed, thereby optimizing 

monitoring resources and reinforcing patient safety 

(Arora, Maurya & Kacker, 2017). 
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Adaptive monitoring approaches further distinguish 

RBM from traditional models by allowing oversight 

strategies to evolve as new risks emerge or old risks 

are resolved. In oncology, where trial designs are 

increasingly adaptive and endpoints may shift as 

evidence accumulates, the ability to recalibrate 

monitoring intensity is essential (Bradley, et al., 2017, 

Chopra, et al., 2019, Lee, et al., 2016). Adaptive 

monitoring uses data trends and KRI signals to adjust 

the frequency and scope of site visits, SDV, or SDR. 

High-performing sites with consistent compliance 

may receive reduced monitoring, while 

underperforming sites or those with flagged KRIs may 

warrant increased attention (Rosemann, 2017, Shyur 

& Yang, 2008, Thornicroft, et al., 2012). This 

flexibility ensures resources are deployed efficiently, 

concentrating oversight where it can have the most 

significant impact. Moreover, adaptive approaches 

facilitate rapid responses to unexpected developments, 

such as shifts in enrollment patterns, changes in 

adverse event profiles, or operational disruptions. 

Such agility is especially valuable in oncology, where 

patient safety and trial validity can be jeopardized by 

even small lapses in data integrity or reporting 

timeliness (Douthard, Whitten & Clayton, 2022, Stana 

& Miller, 2019). 

The fundamentals of RBM collectively create a 

monitoring framework that is quality-driven, risk-

informed, and aligned with regulatory expectations. 

By replacing exhaustive and uniform verification with 

targeted and centralized oversight, RBM not only 

reduces operational burden and cost but also enhances 

the ability to detect and respond to issues that truly 

matter in oncology research. The integration of risk 

assessment tools, KRIs, QTLs, and adaptive 

monitoring ensures a cycle of continuous risk 

evaluation and mitigation. This process protects 

patient safety, reinforces data reliability, and provides 

regulators with transparent documentation of quality 

oversight. In doing so, RBM transforms monitoring 

from a reactive, checklist-driven exercise into a 

proactive, dynamic component of trial management 

(Roses, 2008, Selby, et al., 2018, Timmermans, Venet 

& Burzykowski, 2016). 

In oncology clinical trials, where the stakes are high 

and complexities abound, these fundamentals are not 

merely theoretical concepts but operational 

imperatives. The success of RBM lies in its capacity 

to channel limited resources into protecting what is 

critical-to-quality, providing a regulatory-compliant 

pathway to more efficient, patient-centered, and 

scientifically valid outcomes. Its adoption reflects a 

maturation of clinical research oversight, signaling a 

move toward smarter, data-enabled practices that 

balance efficiency with rigor in one of the most 

challenging therapeutic domains (Smith, et al., 2019, 

Thomford, et al., 2018, Ulrich-Merzenich, et al., 

2009). 

2.4 Data and Analytics Infrastructure 

Data and analytics infrastructure forms the backbone 

of risk-based monitoring (RBM) in oncology clinical 

trials. Without reliable, timely, and intelligently 

processed data, the principles of RBM prioritization, 

central oversight, and adaptive action cannot be 

realized. Oncology research is data-intensive by 

nature, involving diverse modalities, long follow-up 

periods, and complex endpoints. To achieve both 

quality and efficiency, sponsors must establish an 

infrastructure capable of capturing, integrating, 

analyzing, and visualizing multidimensional data 

streams, while maintaining compliance with 

regulatory expectations and safeguarding patient 

safety (Hopkins, Burns & Eden, 2013, K Gohagan, et 

al., 2015, Obodozie, 2012). 

The data ecosystem in oncology trials is broad and 

heterogeneous. Electronic Data Capture (EDC) 

systems remain the primary repository for case report 

form data, recording demographics, baseline 

characteristics, treatment exposure, adverse events, 

and efficacy outcomes. Yet EDC is only one part of 

the picture. Electronic patient-reported outcomes 

(ePRO) and electronic clinical outcome assessments 

(eCOA) are increasingly incorporated to capture 

subjective experiences such as symptom burden, 

quality of life, and functional status measures highly 

relevant in cancer care. Laboratory systems contribute 

a separate stream of safety and biomarker data, 

including hematology, biochemistry, and molecular 

profiling, which often form eligibility criteria or 

stratification factors (Boyer, et al., 2018, Chin & 

Bairu, 2011, Diani, Rock & Moll, 2017). Imaging 

repositories are critical for endpoints like progression-
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free survival, demanding rigorous consistency in 

acquisition, transfer, and blinded independent central 

review. Newer modalities such as wearable sensors 

and remote monitoring devices generate continuous 

physiologic data, enabling real-time assessment of 

performance status or toxicity. Each of these data 

sources is valuable, but without robust integration, 

they create silos that undermine RBM’s promise of 

holistic oversight. Figure 4 shows Sankey diagram 

showing the evolution of site intervention in a single 

study (Agrafiotis, 2018 presented by Agrafiotis, 2018. 

Figure 4: Sankey diagram showing the evolution of 

site intervention in a single study (Agrafiotis, 2018). 

Data integration, timeliness, and completeness are 

therefore pivotal. An effective RBM framework 

requires pipelines that extract and harmonize disparate 

datasets into a centralized environment where cross-

source analyses can be performed. This includes 

ensuring alignment of identifiers, timestamps, and 

metadata to allow accurate patient-level and site-level 

monitoring (Perehudoff, Alexandrov & Hogerzeil, 

2019, Wang & Rosemberg, 2018). Oncology trials, 

with their reliance on longitudinal survival data, must 

also contend with missingness, delayed reporting, and 

variability in follow-up schedules. Real-time or near 

real-time data transfer is essential to detect emerging 

safety signals or operational issues promptly 

(Erickson, et al., 2003, Hungbo, Adeyemi & Ajayi, 

2019, Uwaifo, et al., 2018). For example, delays in 

serious adverse event reporting or gaps in imaging 

submission can compromise both patient protection 

and trial interpretability. Completeness checks, 

automated reconciliation across systems, and 

escalation pathways for overdue data are built into 

modern RBM infrastructures to mitigate these risks. 

Furthermore, timeliness directly influences the value 

of centralized monitoring; data arriving weeks late 

cannot trigger adaptive responses in a meaningful 

timeframe. Thus, the infrastructure must support 

continuous, reliable data inflow and validation at scale 

(Gururajan, et al., 2019). 

Advanced analytics are the engines that convert raw 

data into actionable insights within RBM. Statistical 

algorithms can flag outliers, trends, or inconsistencies 

at patient, site, or trial levels. For example, anomaly 

detection techniques may highlight an unusual pattern 

of tumor response rates at one site, suggesting 

potential errors or fraud. Predictive modeling can 

identify sites at higher risk of protocol deviations 

based on historical performance, patient mix, or KRI 

trends (Bowman, 2013, Chang, et al., 2005, Efferth, et 

al., 2017). Machine learning approaches, particularly 

supervised learning, are increasingly applied to 

classify sites by risk profiles, detect subtle deviations 

in adverse event reporting, and predict future data 

quality issues. In oncology, where adverse events are 

often severe and endpoints depend on nuanced timing 

and categorization, these advanced tools enhance 

sensitivity and specificity beyond human review 

alone. They provide a layer of proactive surveillance, 

allowing monitoring teams to intervene earlier and 

more precisely (Assefa, et al., 2017, Cleaveland, et al., 

2017). 

Visualization dashboards serve as the user interface 

for RBM, translating complex analytics into intuitive, 

actionable displays. Dashboards typically consolidate 

KRIs such as data query resolution times, adverse 

event reporting lags, imaging completeness, or site 

enrollment performance. Traffic-light indicators and 

threshold-based alerts enable quick prioritization by 

trial managers, CRAs, and data scientists. Oncology 

trials especially benefit from dashboards that integrate 

multiple data domains linking safety, efficacy, 

operational, and compliance metrics into a coherent 

view. For example, a dashboard might correlate delays 

in imaging uploads with slowed adjudication of 

progression-free survival endpoints, flagging a risk to 

trial timelines. Interactive features allow users to drill 

down from high-level summaries to patient- or visit-

level data, supporting root cause analysis. Beyond 

oversight, dashboards also improve collaboration 

between sponsors, CROs, and sites, as they provide 

transparent, real-time evidence of performance and 

risk status (Atobatele, Hungbo & Adeyemi, 2019, 

Olaniyan, Uwaifo & Ojediran, 2019). 
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Together, these elements diverse data sources, 

integrated and timely pipelines, advanced analytics, 

and visualization dashboards create the infrastructure 

that makes RBM feasible in oncology trials. The 

integration of ePRO, lab, imaging, and wearable data 

ensures comprehensive coverage of both clinical and 

patient-centered outcomes. Timeliness and 

completeness safeguards transform fragmented 

datasets into a reliable foundation for oversight. 

Machine learning and other analytics amplify human 

judgment, uncovering patterns too complex for 

manual review. Dashboards then operationalize these 

insights, empowering decision-makers to act quickly 

and confidently. 

The payoff of this infrastructure is significant. By 

enabling early detection of safety concerns, data 

anomalies, or site underperformance, RBM enhances 

patient protection and data reliability. By reducing the 

reliance on exhaustive SDV and uniform monitoring, 

it cuts costs and accelerates timelines. Most 

importantly, in the context of oncology where patients 

face life-threatening illness and experimental 

treatments carry high stakes, this infrastructure 

ensures that monitoring is both scientifically rigorous 

and operationally efficient. It balances the dual 

imperatives of protecting vulnerable patients and 

delivering credible evidence to regulators, clinicians, 

and patients alike (Hedt-Gauthier, et al., 2017, Lewis, 

et al., 2014, Pillai, et al., 2018). 

The evolution of oncology trials toward precision 

medicine, adaptive designs, and decentralized 

elements will only increase reliance on robust data and 

analytics infrastructure. Future enhancements may 

include real-time streaming data from connected 

devices, integration of genomic and imaging omics, 

and AI copilots for monitoring decision support. What 

remains constant is the foundational principle: RBM 

depends not just on the philosophy of prioritization, 

but on the infrastructure capable of implementing it. 

By investing in data and analytics that support 

continuous, comprehensive, and intelligent oversight, 

oncology trials can meet the twin goals of quality and 

efficiency, ultimately accelerating the path from 

research to life-saving therapies. 

 

2.5. Operational Models and Implementation 

Operational models and implementation practices are 

what turn the philosophy of risk-based monitoring 

(RBM) into functioning oversight in oncology clinical 

trials. At their core, they represent the translation of 

regulatory expectations, analytical capacity, and risk 

frameworks into operational workflows that can be 

sustained across diverse geographies, complex 

endpoints, and vulnerable patient populations (Beran, 

et al., 2015, De Souza, et al., 2016). Unlike 

conventional monitoring, where uniform site visits and 

exhaustive source verification dominate, RBM 

requires an adaptable infrastructure that combines 

centralized review, targeted field activity, and clearly 

defined governance. This infrastructure must be 

embedded within robust partnerships, training, and 

standard operating procedures (SOPs) so that the 

system delivers consistent, auditable outcomes that 

meet both regulatory scrutiny and the high bar of 

oncology research. 

The most defining feature of RBM’s operational 

model is the hybrid monitoring strategy, which blends 

continuous central surveillance with risk-triggered on-

site actions. Centralized monitoring provides a high-

resolution, near-real-time view of key risk indicators 

such as adverse event reporting delays, missed 

imaging uploads, or investigational product 

reconciliation discrepancies. Through statistical 

algorithms, data visualization dashboards, and 

anomaly detection methods, central reviewers can 

identify which sites or processes are trending toward 

risk (Will, et al., 2016, Zineh & Woodcock, 2013). On-

site monitoring is then deployed strategically, focused 

on validating processes that cannot be fully assessed 

remotely, such as pharmacy storage and 

accountability, informed consent procedures, and site 

adherence to imaging protocols (Agrafiotis, et al., 

2018, Bhatt, 2011, Ellenberg, Fleming & DeMets, 

2019). This hybrid approach ensures that oversight 

resources are concentrated on what is critical to quality 

rather than expended uniformly, making it particularly 

powerful in oncology trials where high-stakes 

endpoints such as progression-free survival hinge on 

timely and accurate data. 
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A successful hybrid strategy is inseparable from clear 

governance and role delineation. RBM introduces new 

functions into the operational ecosystem, such as 

centralized data monitors, risk analysts, and cross-

functional risk review boards. These boards meet at 

regular intervals to review aggregated signals, assess 

breaches of quality tolerance limits, and recommend 

adaptive changes to monitoring intensity (Kuupiel, 

Bawontuo & Mashamba-Thompson, 2017). 

Membership typically includes clinical operations, 

data management, biostatistics, medical monitors, 

safety experts, imaging specialists, and quality 

assurance professionals (Bowman, 2013, Chang, et al., 

2005, Efferth, et al., 2017). Their mandate is not only 

to react to anomalies but also to anticipate risks, 

evaluate mitigation plans, and document rationales for 

regulatory inspection. This structure avoids siloed 

decision-making and creates a culture of shared 

accountability for patient safety and data reliability. In 

oncology, where deviations in eligibility 

determination or adverse event follow-up can 

invalidate outcomes, such cross-functional 

governance ensures rapid and coordinated responses 

to risks. 

Implementing RBM also requires robust oversight of 

vendors and clear alignment of responsibilities. 

Clinical trial execution in oncology frequently 

involves contract research organizations, imaging core 

labs, specialty biomarker laboratories, and technology 

providers that supply ePRO tools or wearable devices. 

Each vendor becomes part of the RBM ecosystem, 

providing data inputs or operational outputs that 

influence quality. Sponsors must establish oversight 

frameworks that define expectations for data 

timeliness, system interoperability, and KRI reporting 

(Vogler, Paris & Panteli, 2018, Wirtz, et al., 2017). 

Service-level agreements should explicitly cover 

requirements for risk data feeds, dashboards, and 

escalation procedures. Oversight must be active, with 

periodic performance reviews, audits, and joint 

governance meetings. Without this discipline, 

fragmentation between vendors can compromise the 

central integration needed for RBM, undermining its 

ability to detect emerging risks across the trial. 

Equally important are training and capacity-building 

efforts that prepare teams for the transition from 

traditional to risk-based models. Clinical research 

associates (CRAs) accustomed to routine SDV must 

be trained to interpret KRIs, conduct targeted SDR, 

and support sites in addressing process-level 

deficiencies (Bam, et al., 2017, Nascimento, et al., 

2017). Data management staff must learn to operate 

anomaly detection tools and collaborate closely with 

statisticians to identify meaningful trends. Risk 

analysts and central monitors need skills in data 

visualization, communication, and decision-support, 

as their insights must be translated into actionable 

monitoring plans. Site staff, too, must be educated 

about the rationale and benefits of RBM to prevent 

misunderstandings that reduced on-site frequency 

implies reduced oversight (Will, et al., 2016, Zineh & 

Woodcock, 2013). In oncology, where sites are often 

stretched by demanding protocols, training fosters 

confidence that RBM enhances quality rather than 

diminishing it. 

Standard operating procedures are the scaffolding on 

which RBM rests. They codify how risk assessments 

are performed, how KRIs and QTLs are defined and 

monitored, how thresholds are set, how signals are 

escalated, and how monitoring plans are adapted. 

SOPs must ensure that documentation is clear and 

auditable, as regulators require evidence that risks 

were identified, monitored, and mitigated in a 

systematic manner. Oncology-specific SOPs may 

cover imaging transfer protocols, biomarker sample 

chain of custody, or expedited reporting of immune-

related toxicities. Flexibility must be balanced with 

structure: SOPs should empower teams to respond 

adaptively to evolving risks while still ensuring 

consistent application across studies. 

Change management represents perhaps the most 

human aspect of RBM implementation. Organizations 

deeply invested in traditional monitoring models may 

resist changes that seem to reduce the perceived 

“safety net” of exhaustive verification. Leadership 

must therefore communicate RBM’s alignment with 

international guidelines, its ability to protect patients 

more effectively, and its potential to reduce trial costs 

and timelines (Gronde, Uyl-de Groot & Pieters, 2017, 

Sayed, et al., 2018). Early pilots, carefully measured 

and transparently reported, help build confidence. 

Success stories where RBM detected issues earlier 

than traditional approaches or prevented costly 

deviations can reinforce buy-in. Oncology, with its 
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inherently complex and high-risk environment, 

provides fertile ground for demonstrating RBM’s 

advantages, since resource allocation must be smartly 

balanced against the urgency of delivering therapies to 

patients in need (Bowman, 2013, Chang, et al., 2005, 

Efferth, et al., 2017). 

The operationalization of RBM is not static but 

iterative. Hybrid monitoring strategies must be 

recalibrated as data accumulate, governance boards 

refine KRIs, vendors improve data feeds, and 

organizations learn from implementation. Over time, 

successful RBM frameworks evolve into integrated 

quality management systems where monitoring, data 

review, and risk management are seamless (Mercer, et 

al., 2019, Meyer, et al., 2017). In oncology, such 

maturity is essential because clinical development is 

increasingly global, decentralized, and reliant on 

complex data types. By embedding RBM into 

operations through hybrid strategies, strong 

governance, vendor partnerships, robust training, 

SOPs, and thoughtful change management, sponsors 

create an oversight model that is resilient, adaptive, 

and aligned with the dual imperatives of quality and 

efficiency (Hendricks-Ferguson, et al., 2013, Liu, et 

al., 2015, Middleton, et al., 2013). 

2.6. Special Considerations in Oncology Trials 

Special considerations in oncology trials make the 

application of risk-based monitoring (RBM) uniquely 

challenging and highly consequential. Unlike many 

therapeutic areas where endpoints are relatively 

straightforward, oncology research is characterized by 

complex designs, evolving biomarkers, significant 

safety concerns, and often small or vulnerable patient 

populations. To achieve both quality and efficiency 

under these circumstances, RBM strategies must be 

customized to the nuances of cancer studies, ensuring 

that the focus remains on protecting patients while 

generating reliable, interpretable data for regulatory 

decision-making (Atobatele, Hungbo & Adeyemi, 

2019, Gong, et al., 2017, Uwaifo, et al., 2019). 

One of the most critical challenges lies in managing 

complex endpoints such as progression-free survival 

(PFS) and overall survival (OS). These endpoints 

often require prolonged follow-up and depend heavily 

on accurate and consistent assessments. PFS, for 

example, is typically derived from imaging studies and 

clinical judgment regarding tumor progression. 

Variability in scan timing, image quality, or 

interpretation can significantly influence the endpoint. 

OS, while more objective, requires meticulous follow-

up to avoid missing survival events or misclassifying 

causes of death (Atobatele, Hungbo & Adeyemi, 2019, 

Olaniyan, Uwaifo & Ojediran, 2019). Risk-based 

monitoring in oncology must therefore prioritize 

oversight of imaging acquisition, transfer, and central 

review, while also maintaining robust processes for 

survival follow-up. KRIs in this context may include 

delayed imaging submissions, high rates of 

unevaluable scans, or inconsistent follow-up data. By 

focusing on these critical-to-quality factors, RBM 

ensures that endpoints central to regulatory approval 

are safeguarded from avoidable errors or delays 

(Mackey & Nayyar, 2017, Mohammadi, et al., 2018). 

Biomarker-driven studies add another layer of 

complexity. Precision oncology trials often depend on 

genetic or molecular markers for patient eligibility, 

stratification, or treatment assignment. Errors in 

biomarker testing whether due to sample collection, 

chain of custody, or laboratory processing can 

jeopardize the validity of the entire trial. RBM 

approaches must therefore incorporate KRIs and 

QTLs that specifically monitor biomarker processes, 

such as sample shipping times, assay turnaround, and 

concordance of test results across laboratories. Central 

monitoring can detect anomalies in biomarker 

distribution or unexpected failure rates, prompting 

targeted site interventions or lab audits. In trials with 

adaptive designs, where biomarkers guide enrollment 

expansions or treatment arms, real-time monitoring of 

biomarker integrity becomes essential for both 

scientific validity and patient safety (Bowman, 2013, 

Chang, et al., 2005, Efferth, et al., 2017). 

Safety oversight in oncology trials demands 

heightened vigilance, given the toxicity profiles of 

many anticancer therapies. Serious adverse events 

(SAEs) and high-grade adverse events (AEs) are not 

only common but may be life-threatening. RBM must 

therefore include continuous surveillance of AE and 

SAE reporting timeliness, completeness, and 

consistency across sites. Centralized analytics can 

highlight sites with unusual AE distributions, delayed 
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reporting, or discrepancies between narratives and 

coding (Bam, et al., 2017, Devarapu, et al., 2019). This 

allows monitoring teams to intervene quickly, 

ensuring that patients receive appropriate medical 

follow-up and that regulators are informed in 

compliance with expedited reporting requirements 

(Alemayehu, Mitchell & Nikles, 2018, Barger, et al., 

2019, Friedman, et al., 2015). Signal detection is 

especially important in oncology, where immune-

related toxicities or unexpected off-target effects may 

emerge only after treatment reaches a larger 

population. Dashboards integrating AE data with 

laboratory results and imaging findings can further 

enhance detection of safety signals. The objective is to 

shift safety monitoring from a retrospective to a 

proactive exercise, protecting patients while 

improving efficiency by reducing unnecessary source 

verification. 

Imaging quality is another domain requiring special 

attention. Oncology endpoints such as tumor response 

and disease progression depend on radiographic 

assessments that must be standardized across sites. 

Variability in equipment, protocols, or operator 

expertise can undermine comparability. RBM in this 

context involves monitoring compliance with imaging 

acquisition guidelines, ensuring timely data transfer to 

central review, and flagging sites with high rates of 

poor-quality or unevaluable images (Min, 2016, Paul 

& Venkateswaran, 2018). Central monitoring teams 

can identify systemic issues such as sites consistently 

failing to meet imaging window timelines and trigger 

targeted retraining or process adjustments. Because 

imaging is resource-intensive and central review 

costly, RBM ensures that attention is concentrated on 

those factors most likely to affect endpoint 

interpretability (Jacobsen, et al., 2016, Polater & 

Demirdogen, 2018). 

Rare cancers and pediatric oncology trials pose unique 

challenges for RBM implementation. Small sample 

sizes mean that each patient represents a significant 

proportion of the dataset, magnifying the impact of 

any error or missing data. Traditional monitoring 

models may overburden such trials with requirements 

disproportionate to their scale, while RBM offers a 

tailored approach that emphasizes what is most critical 

(Desai, et al., 2019, Khan, 2019). In rare cancer 

studies, monitoring may prioritize eligibility 

determination, informed consent, and endpoint data 

collection over exhaustive SDV. In pediatric trials, 

ethical and regulatory scrutiny is intense, requiring 

RBM to focus on parental consent processes, age-

appropriate dosing, and timely reporting of safety 

events. Central monitoring can identify unusual trends 

in small populations more quickly than dispersed on-

site visits, enabling interventions that protect these 

especially vulnerable patients (Bowman, 2013, Chang, 

et al., 2005, Efferth, et al., 2017). 

The rise of decentralized elements in oncology trials 

introduces further considerations. Remote ePRO and 

eCOA systems allow patients to report symptoms, 

adverse events, and quality of life from home, 

generating real-world insights but also introducing 

risks of missing data, device malfunctions, or 

compliance lapses. Wearables may provide 

continuous physiologic monitoring, but integration 

and interpretation require careful oversight. RBM 

must adapt by monitoring compliance rates with ePRO 

submissions, device connectivity, and data 

completeness, and by flagging patients who are 

consistently noncompliant (Aldrighetti, et al., 2019, 

Reddy, Fox & Purohit, 2019). Central teams can then 

follow up with targeted reminders or technical 

support. In decentralized oncology trials, where direct 

patient contact may be limited, RBM ensures that data 

integrity and patient safety are not compromised by 

reliance on remote technologies (Will, et al., 2016, 

Zineh & Woodcock, 2013). 

These special considerations illustrate that RBM in 

oncology cannot be a one-size-fits-all model. Its 

implementation must reflect the distinctive features of 

cancer research: complex and long-term endpoints, 

biomarker reliance, high toxicity risk, imaging 

dependency, and diverse trial populations. By tailoring 

KRIs, QTLs, and adaptive monitoring strategies to 

these realities, sponsors can achieve both efficiency 

and quality. For patients, the benefits are substantial: 

safer participation, fewer burdensome site visits, and 

confidence that their contributions are safeguarded. 

For regulators, RBM provides transparent, auditable 

evidence that monitoring has been aligned with what 

is most critical to trial reliability. For sponsors, the 

payoff includes reduced costs, faster timelines, and 

higher-quality data that supports confident decision-
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making (Hoffmann & Rohe, 2010, Macefield, et al., 

2013, Nchinda, 2002). 

Ultimately, the integration of RBM into oncology 

trials reflects a broader shift toward quality-by-design 

in clinical research. It acknowledges that not all data 

points are equally valuable, and that oversight should 

be proportionate to risk. By addressing the special 

considerations of oncology through adaptive, risk-

driven approaches, RBM advances the dual goals of 

protecting patients and delivering credible evidence 

efficiently. In a field where every delay translates into 

postponed access to potentially life-saving therapies, 

the impact of these tailored monitoring strategies 

extends far beyond trial operations it touches the lives 

of patients and families awaiting new hope. 

2.7. Impact Measurement and Challenges 

Measuring the impact of risk-based monitoring 

(RBM) in oncology clinical trials requires a structured 

approach that ties operational performance to trial 

outcomes. The primary lens for assessing this impact 

is through key performance indicators (KPIs) that 

capture quality, safety, and efficiency. In parallel, 

sponsors evaluate the financial and operational value 

of RBM by quantifying cost savings and 

improvements in data reliability. Yet the path to 

realizing these benefits is not without obstacles 

(Roski, et al., 2019, Strusani & Houngbonon, 2019). 

Data latency, cultural resistance to change, 

cybersecurity concerns, and the complexities of setting 

effective thresholds pose ongoing challenges. 

Together, these factors shape both the promise and the 

practical realities of implementing RBM in oncology 

research. 

Quality KPIs in oncology trials are centered on 

preserving patient safety and ensuring endpoint 

integrity. RBM tracks deviations related to eligibility 

criteria, informed consent accuracy, investigational 

product accountability, imaging timeliness, and 

adverse event reporting. By monitoring these critical-

to-quality elements, RBM provides early warnings 

that allow corrective action before trial integrity is 

compromised (Marda, 2018, Stanfill & Marc, 2019). 

Safety KPIs, such as the timeliness of serious adverse 

event (SAE) reporting or the completeness of follow-

up on immune-related toxicities, demonstrate RBM’s 

ability to protect participants in real time (Atobatele, 

Hungbo & Adeyemi, 2019, Hamilton & Yano, 2017, 

Onyeji & Sanusi, 2018). Efficiency KPIs measure 

aspects like the reduction in data queries, fewer 

unnecessary monitoring visits, and shorter cycle times 

from data capture to clean datasets. In oncology, 

where delays can hinder regulatory approval and deny 

patients timely access to therapies, improvements in 

these indicators represent significant gains (Blasimme 

& Vayena, 2019, Sardar, et al., 2019). 

Cost savings and improved data reliability are among 

the most widely cited benefits of RBM. Traditional 

monitoring models, with their heavy reliance on 100% 

source data verification and routine on-site visits, are 

both expensive and time-consuming. RBM allows 

sponsors to reduce the frequency of visits to high-

performing sites, redirecting resources to those with 

elevated risk signals. Centralized monitoring lowers 

the marginal cost of oversight, as statistical algorithms 

and dashboards can flag anomalies across dozens of 

sites simultaneously (Essien, et al., 2019, Olaniyan, 

Ale, & Uwaifo, 2019, Taiwo, 2015). The resulting 

efficiencies translate into millions of dollars saved 

over the course of large, multi-country oncology 

programs. At the same time, by focusing oversight on 

what matters most, RBM reduces noise in the dataset, 

leading to higher reliability of critical endpoints such 

as progression-free survival or biomarker-defined 

responses. This dual achievement lower costs and 

better data is particularly valuable in oncology, where 

trials are among the most resource-intensive in clinical 

research. 

Despite these advantages, several barriers complicate 

the measurement and realization of RBM’s full 

impact. Data latency remains a persistent challenge. 

Oncology trials generate complex data streams from 

EDC, labs, imaging systems, and ePRO platforms, and 

delays in data entry or transfer can blunt the 

effectiveness of centralized monitoring. For example, 

if serious adverse events are not entered promptly, 

central reviewers cannot intervene in time to protect 

patients. Similarly, imaging data that arrive weeks late 

prevent timely adjudication of progression events, 

undermining the value of KRIs designed to detect risks 

early. Addressing latency requires not only technical 

integration across platforms but also robust training 
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and accountability for sites and vendors (Will, et al., 

2016, Zineh & Woodcock, 2013). 

Cultural resistance also limits RBM adoption. Many 

investigators, monitors, and regulatory stakeholders 

have grown accustomed to traditional models of 

oversight, equating frequent on-site visits and 

exhaustive SDV with safety and compliance. The 

transition to RBM can generate skepticism that fewer 

visits mean less oversight or that statistical monitoring 

is less trustworthy than direct document review. 

Overcoming this resistance requires strong change 

management strategies, transparent communication, 

and evidence from pilot projects that demonstrate 

RBM’s ability to improve outcomes. Training is 

especially important to ensure that CRAs and site 

personnel understand how RBM works and why it 

strengthens rather than weakens trial integrity 

(Armstrong, et al., 2009, Fenlon, et al., 2013). 

Cybersecurity is another growing concern in the 

digital infrastructure underpinning RBM. Centralized 

monitoring relies on continuous aggregation and 

transfer of sensitive patient data across systems, 

vendors, and geographies. Each connection point 

represents a potential vulnerability, and oncology 

trials given their scale and prominence are attractive 

targets for cyberattacks. Sponsors must therefore 

invest in secure data pipelines, encryption protocols, 

and compliance with evolving data protection 

regulations such as GDPR. Breaches not only 

endanger patient confidentiality but also erode 

confidence in RBM systems, making cybersecurity a 

critical determinant of long-term viability. 

Finally, setting thresholds for KRIs and QTLs presents 

both technical and operational challenges. Too lenient, 

and the monitoring system fails to flag emerging risks 

until they become critical; too strict, and it generates 

signal overload, overwhelming teams with false 

positives. Oncology’s inherent complexity 

exacerbates this problem, as variability in endpoints, 

adverse events, and site performance is often natural 

rather than indicative of poor quality (Hodge,  et al., 

2017, Shrestha,Ben-Menahem & Von Krogh, 2019). 

Establishing meaningful thresholds requires iterative 

calibration, historical benchmarking, and cross-

functional judgment. It also demands transparency in 

documenting how thresholds were set and adjusted, 

ensuring regulatory inspectors see them as 

scientifically justified rather than arbitrary (Will, et al., 

2016, Zineh & Woodcock, 2013). 

The measurement of RBM’s impact, then, is as much 

about navigating challenges as it is about celebrating 

successes. KPIs, cost savings, and data reliability 

provide evidence of tangible benefits, but data latency, 

cultural inertia, cybersecurity risks, and threshold 

setting illustrate the operational realities that must be 

managed. In oncology clinical trials, where stakes are 

uniquely high and complexity is unavoidable, the 

ability to balance these forces determines whether 

RBM delivers on its promise. When well-

implemented, RBM transforms monitoring from a 

compliance-driven burden into a proactive, efficient, 

and patient-centered system. When poorly executed, 

its benefits are muted, and skepticism grows 

(Rosemann, 2017, Shyur & Yang, 2008, Thornicroft, 

et al., 2012). 

The future trajectory of RBM in oncology will depend 

on continuous improvement in impact measurement 

and challenge mitigation. Enhanced data integration, 

greater stakeholder education, stronger cybersecurity 

frameworks, and more refined threshold-setting 

methods will strengthen RBM’s credibility. Over time, 

as sponsors accumulate evidence of improved trial 

efficiency and patient protection, resistance will give 

way to acceptance. Ultimately, RBM’s success in 

oncology lies in its ability to demonstrate, through 

measurable outcomes, that smarter monitoring can 

indeed deliver safer patients, stronger data, and faster 

access to life-saving therapies (Roses, 2008, Selby, et 

al., 2018, Timmermans, Venet & Burzykowski, 2016). 

2.8. Future Directions and Conclusion 

The future of risk-based monitoring (RBM) in 

oncology clinical trials is being reshaped by 

technological advances, evolving regulatory guidance, 

and the rising expectations of stakeholders for trials 

that are both efficient and rigorously protective of 

patients. Continuous monitoring powered by real-time 

data streams is emerging as the next frontier. With the 

increasing deployment of wearables, ePRO platforms, 

remote sensors, and connected infusion devices, it is 
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now possible to capture patient safety and treatment 

adherence data as events occur rather than weeks later. 

This continuous inflow of information transforms 

monitoring from a retrospective activity into a 

proactive one, enabling rapid detection of anomalies 

such as dose deviations, device malfunctions, or 

unreported adverse events. For oncology patients 

whose conditions can deteriorate quickly, real-time 

oversight can significantly improve both trial safety 

and responsiveness. 

The integration of digital biomarkers and artificial 

intelligence (AI) copilots into RBM offers another 

transformative direction. Digital biomarkers, derived 

from imaging, genomics, or physiologic signals 

collected by sensors, enrich the clinical picture beyond 

traditional endpoints. Their incorporation into RBM 

frameworks enables more nuanced detection of 

efficacy and safety trends at both patient and 

population levels. At the same time, AI copilots can 

support monitoring teams by analyzing massive, 

multimodal datasets, identifying patterns of risk that 

humans might miss, and suggesting targeted 

interventions. In oncology, where trial designs are 

adaptive and data streams are highly complex, AI-

driven decision support holds the potential to extend 

RBM’s precision while reducing manual burden. By 

pairing machine learning with human oversight, 

sponsors can achieve a balance between efficiency and 

accountability, advancing trial quality to levels 

unattainable with traditional methods. 

Global harmonization and regulatory evolution will 

also shape RBM’s trajectory. ICH E6(R3) and E8(R1) 

provide the foundation for quality-by-design, but 

further alignment across FDA, EMA, PMDA, and 

other authorities will be critical for oncology programs 

that span continents. Regulators are increasingly 

encouraging innovation in monitoring while 

maintaining strict expectations for transparency and 

documentation. This dual emphasis will push sponsors 

to invest in interoperable systems, auditable analytics, 

and globally consistent SOPs. As decentralized and 

hybrid oncology trials expand, harmonization around 

data privacy, cybersecurity, and cross-border data 

transfer will become even more urgent. Regulatory 

frameworks are expected to evolve to recognize 

continuous monitoring, AI-assisted oversight, and 

digital biomarker integration, further legitimizing 

RBM as a mainstream practice. 

In conclusion, RBM in oncology clinical trials is 

solidifying its position as a quality-driven, efficiency-

enhancing framework that addresses the unique 

challenges of cancer research. By combining central 

and on-site strategies, leveraging continuous and real-

time data, incorporating digital biomarkers and AI 

copilots, and aligning with global regulatory 

standards, RBM ensures that oversight is focused 

where it matters most. The model delivers more 

reliable data, better protects vulnerable patients, 

reduces unnecessary monitoring costs, and accelerates 

trial timelines. Ultimately, RBM is not merely a 

refinement of monitoring practices it is a reimagining 

of how oncology trials are conducted, one that aligns 

scientific rigor with operational pragmatism and 

patient-centered outcomes. As adoption continues to 

expand, RBM will play a defining role in bringing new 

therapies to patients faster and with greater confidence 

in their safety and efficacy. 
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