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Abstract- This paper investigated the dynamic 

response of a simply supported uniform Bernoulli–

Euler beam resting on a variable Pasternak 

foundation under the action of a concentrated 

moving load with a damping term. To solve the 

fourth order partial differential equation that 

describes the beam’s behaviour, the Dirac delta 

function was expressed as a Fourier cosine series 

and the Galerkin method, the Struble’s asymptotic 

technique and the Laplace transform method were 

used. Thereafter, the deflection profiles of the beam 

were determined for several values of the parameters. 

The findings revealed that, the moving force problem 

is structurally unsafe to approximate the moving 

mass problem in the design of the dynamical system. 

Furthermore, as the values of the damping term, 

axial force, foundation modulus and shear modulus 

increases, the deflection profiles of the beam 

decreases with that of the damping term showing a 

far higher effect on the beam’s deflection. This 

implies that the beam’s functional performance are 

ensured when the values of each parameter is 

increased.  

 

Index Terms- Bernoulli-Euler Beam, Damping 

Term, Simply Support Condition, Variable 

Pasternak Foundation 

 

I. INTRODUCTION 

 

The study of dynamic responses of structural members 

such as beams resting on elastic foundation subjected 

to moving loads such as train and vehicles, is 

important by virtue of the relevance it has on the 

design and construction engineering, especially with 

bridges, rails, roadways and airport runways. These 

moving loads were quickly reported, to have a great 

effect on dynamic stresses in such structures, which 

cause them to vibrate intensively, especially at high 

velocities (Willis, et al., 1851) since moving load 

induces larger deflections and stresses on the structure 

on which it moves than does an equivalent static load.  

In most cases, these vibrations create dynamic stresses 

and strains which can cause corrosion between 

contacting elements and lead to the failure of such 

structural members. Thus, vibration of structures has 

continued to attract the interest of engineers, physicists 

and applied mathematicians over the years due to the 

devastating effects.  

One of the earliest works in available literature on the 

dynamic response of a simply supported beam is that 

of Krylo (1905), who investigated the dynamic 

response of a simply supported beam, traversed by a 

constant force moving at a uniform speed. His results 

were obtained by using the method of expansion of 

eigen-functions. In a related study, Timoshenko 

(1921) used energy methods to obtain solutions in 

series form for simply supported finite beam on an 

elastic foundation subjected to time dependent point 

loads moving with uniform velocities across the beam. 

Inglis (1934), limited his discussions to analyzing 

transverse oscillations induced by a uniform. He 

assumed that the beam is simply supported. Much 

later, Oni and Ayankop-Andi (2017) investigated the 

problem of a simply supported non-uniform Rayleigh 

beam under travelling distributed loads. Analytical 

and numerical solutions showed that, resonance was 

reached earlier in the moving distributed mass system 

than in the moving distributed force system. Still 

considering distributed loads, Onyia and Kwaghvihi 

(2020) investigated the dynamic response of a simply 

supported beam resting on elastic foundation 

subjected to a moving uniformly distributed load. The 

results showed that increase in the dynamic load 

length, moving at constant speed leads to higher 

deflections and bending moments of the beam, and 
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decreases with increasing foundation modulus. 

Thereafter, Ogunbamike (2021) presented a complete 

information on how to use MA to derive the forced 

vibration responses of a simply thick beam subjected 

to harmonic moving loads. He investigated the 

dynamic response of the Timoshenko beam resting on 

an elastic foundation subjected to harmonic moving 

load using modal analysis (MA).  

In the research works above on the dynamic responses 

of beams, the foundations have been on one parameter. 

In particular, they lie on the Winkler foundation model 

with foundation stiffness 𝐾. However, the Winkler 

foundation model has been criticized because it 

predicts discontinuities in the deflection of the surface 

of the foundation at the ends of a finite beam, which is 

a contradiction to observation made in practice. In an 

attempt to eliminate this shortcoming, an improved 

theory called a two-parameter foundation model was 

proposed by Pasternak (1954) for the analysis of the 

dynamic behavior of beams under moving loads. 

Pasternak improved this model by adding a shear 

spring to simulate the interactions between separate 

springs in the Winkler model. For this model, aside the 

foundation stiffness K, a second foundation parameter, 

the shear modulus G, enters the analysis. 

The dynamic analysis of simply supported beam 

resting on two parameters foundation models under 

moving loads has been investigated. Ojih, et al. (2013) 

investigated   the dynamic response of non-uniform 

Rayleigh beam resting on Pasternak foundation and 

subjected to concentrated loads travelling at varying 

velocity with simply supported boundary condition. 

The study showed that, we cannot guarantee safety for 

a design based on the moving force solution since 

resonance is reached earlier in the moving mass 

problem than in the moving force problem. By 

considering the inertia effect of the load also, Oni and 

Jimoh (2016) investigated the dynamic response to 

non-uniform simply supported prestressed Bernoulli 

Euler beam. It was found that as the parameters 

increases, the displacement responses of the beam 

decreases. Furthermore, the moving force solution is 

not an upper bound for an accurate solution of the 

moving mass problem. The beam rests on a Pasternak 

foundation and traversed by concentrated moving 

loads. By considering a distributed moving load, 

Awodola, et al. (2019) investigated the dynamic 

response to variable magnitude moving distributed 

masses of simply supported non-uniform Bernoulli–

Euler beam resting on Pasternak elastic foundation. 

The displacement response for moving distributed 

force and moving distributed mass models for the 

dynamical problem are calculated for various time 𝑡 

and presented in plotted curves. Still on distributed 

loads, Jimoh and Ajoge (2020) investigated the 

dynamic analysis of non-uniform Bernoulli-Euler 

beam resting on bi-parametric foundations and 

traversed by constant magnitude moving distributed 

load with simply supported ends conditions. Damping 

term effect was incorporated into the model. The 

deflection of the beam under moving loads is 

calculated for several values of damping coefficient, 

shear modulus, axial force and foundation modulus. 

Others who used the two parameter foundations are 

Abbas, et al. (2021), Akhazhanov, et al. (2023), 

Awodola, et al. (2024), Sulaiman, et al. (2024).  

Although all the researchers above achieved 

tremendous feat in the dynamic study of structures 

they considered, all the foundations were constant. 

However, this is not always the case in practice where 

such foundations may vary spatially. A variable 

foundation means that the stiffness of the foundation 

varies along the length of the beam. In the governing 

equation of a variable foundation, the foundation 

stiffness and the shear modulus vary. This renders the 

exact solution for the dynamical problem difficult to 

obtain as the governing partial differential equation 

now has variable coefficients.  Interestingly, there are 

researchers who tackled problems with variable elastic 

foundations that got wonderful results. Some of the 

researchers are Oni and Awodola (2003) who 

proposed an elegant method based on the generalized 

Galerkin’s method and Struble’s asymptotic technique 

to assess the vibration under a moving concentrated 

load of a simply supported non-uniform Rayleigh 

beam on variable elastic foundation.  Later, 

Abdelghany, et al. (2015) investigated the response of 

non-uniform Euler– Bernoulli simply supported beam 

which is subjected to moving load. The beam is rested 

on a nonlinear viscoelastic foundation. The influences 

of variations of the traveling velocity and the effect of 

increase in the magnitude of the moving load on the 

dynamic response were studied. In addition, Ogunyebi 

and Adedowole (2017) in a study obtained analytical 

solutions to the non-homogeneous fourth order partial 
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differential equation governing simply supported 

Rayleigh Beam with an accelerating distributed mass 

on elastic foundation. The dynamic effects of vital 

parameters such as elastic foundation, rotatory inertia 

correction factor, axial force, distance and load 

parameters were obtained. Saurabh (2021) analysed an 

axially functionally graded Euler-Bernoulli beam 

resting on variable Pasternak foundation. The simply 

supported was used in the analysis. The problem was 

formulated using Rayleigh-Ritz method and governing 

equations are derived with the help of Hamilton’s 

principle. Other researchers who considered cases of 

variable foundation are Kacar, et al. (2011), 

Mirzabeigy and Madoliat (2016), Zhang, et al. (2016), 

Ogunyebi (2017) and Yas, et al. (2017). 

From the works reported so far and to the authors’ 

knowledge from available literature, cases where the 

damping term is considered are fewer. In addition, 

where the damping term was considered, the inertia 

effect of the moving load was generally not 

considered. Specifically, the case of a simply 

supported uniform Bernoulli-Euler resting on a 

variable Pasternak foundation under the action of a 

concentrated moving load with damping term, where 

the initial effects of the load is incorporated in its 

analysis has not been considered. In this study 

therefore, this case is considered to provide valuable 

insights for designing and optimizing such dynamical 

systems. Thus, this paper investigated a simply 

supported uniform Bernoulli-Euler beam resting on a 

variable Pasternak foundation subjected to a 

concentrated moving load with damping term, when 

the inertia effect of the moving load is considered. 

II. METHOD 

2.1. Formulation of the Governing Equation 

The governing equation for a uniform Bernoulli Euler 

beam resting on constant Pasternak foundation 

subjected to concentrated moving load with damping 

term is given as: 

 

𝐸𝐼
𝜕4𝑊(𝑥,𝑡)

𝜕𝑥4 +  𝑚̅
𝜕2𝑊(𝑥,𝑡)

𝜕𝑡2 +  𝛼
𝜕𝑊(𝑥,𝑡)

𝜕𝑡
−  𝑁

𝜕2𝑊(𝑥,𝑡)

𝜕𝑥2  + 

𝐾𝑊(𝑥, 𝑡) −  𝐺
𝜕2𝑊(𝑥,𝑡)

𝜕𝑥2  = 

𝑚𝑔𝛿(𝑥 − 𝑐𝑡) [1 − 
1

𝑔

𝑑2𝑊(𝑥,𝑡)

𝑑𝑡2 ]           (1) 

where 𝑥 is the spatial coordinate, 𝑡 is the time, 

𝑊(𝑥, 𝑡) is the transverse displacement, 𝐸 is the 

Young’s modulus, 𝐼 is the moment of inertia, 𝐸𝐼 is the 

flexural rigidity of the structure, 𝑚̅  is the mass per unit 

length of the beam, 𝛼 is the damping term coefficient, 

𝑁 is the axial force, 𝐾 is the foundation modulus and 

𝐺 is the shear modulus, 𝑚 and 𝑐 are the mass and the 

speed of the moving load respectively, 𝑔  is the 

acceleration due to gravity, 𝑚𝑔𝛿(𝑥 − 𝑐𝑡) is the 

continuous  moving force acting on the beam. 

Where 
𝑑2

𝑑𝑡2  is a convective acceleration given by Fryba 

(1972) as  

𝑑2

𝑑𝑡2 =  
𝜕2

𝜕𝑡2 + 2𝑐
𝜕2

𝜕𝑥𝜕𝑡
+ 𝑐2 𝜕2

𝜕𝑥2            (2) 

when the operator, 
𝑑2

𝑑𝑡2 acts as the transverse deflection 

𝑊(𝑥, 𝑡) of the beam, the first term in the right-hand 

side of the equation (11), measures the effect of the 

acceleration on the deflection, the second term 

measures the effect of complementary acceleration 

(coriohs force) and the third term measures the effect 

of the path curvature (centripetal force). 

The boundary conditions of the structure are arbitrary 

while the initial condition is given as: 

𝑊(𝑥, 0) =  0 =  
𝜕𝑊(𝑥,𝑡)

𝜕𝑡
            (3)   

For the variable Pasternak foundation,  

𝐾(𝑥)𝑊(𝑥, 𝑡) −
𝜕

𝜕𝑥
[𝐺(𝑥)

𝜕𝑊(𝑥,𝑡)

𝜕𝑥
]   =  

𝐾(𝑥)𝑊(𝑥, 𝑡) − 𝐺′(𝑥)
𝜕𝑊(𝑥,𝑡)

𝜕𝑥
− 𝐺(𝑥)

𝜕2𝑊(𝑥,𝑡)

𝜕𝑥2          (4) 

Where 𝐾(𝑥) is the variable foundation stiffness, 

𝐺(𝑥) is the variable shear modulus and they are given 

as: 

𝐾(𝑥) = 𝑘0 (4𝑥 − 3𝑥2 + 𝑥3)           (5) 

𝐺(𝑥)  = 𝐺0 (12 − 13𝑥 + 6𝑥2 −  𝑥3)            (6) 

𝐺′(x) = 𝐺0 (−13 + 12𝑥 − 3𝑥2)           (7) 

where  
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Using equations (2), (4), (5), (6) and (7) in equation 

(1), after simplifications, we obtain: 

𝐸𝐼

𝑚̅ 

𝜕4𝑊(𝑥,𝑡)

𝜕𝑥4 + 
𝜕2𝑊(𝑥,𝑡)

𝜕𝑡2 − 
𝑁

𝑚̅ 

𝜕2𝑊(𝑥,𝑡)

𝜕𝑥2 +

 
𝑘0 (4𝑥−3𝑥2+ 𝑥3)

𝑚̅ 
𝑊(𝑥, 𝑡) −

𝐺0 (−13+12𝑥 −3𝑥2)

𝑚̅ 

𝜕𝑊(𝑥,𝑡)

𝜕𝑥
−

 
𝐺0 

𝑚̅ 
(12 − 13𝑥 + 6𝑥2 − 𝑥3)

𝜕2𝑊(𝑥,𝑡)

𝜕𝑥2  + 
𝛼

𝑚̅ 

𝜕𝑊(𝑥,𝑡)

𝜕𝑡
+

 
𝑚 

𝑚̅ 
𝛿(𝑥 − 𝑐𝑡) {

𝜕2𝑊(𝑥,𝑡)

𝜕𝑡2 +  2𝑐 
𝜕2𝑊(𝑥,𝑡)

𝜕𝑥𝜕𝑡
+

𝑐2  
𝜕2𝑊(𝑥,𝑡)

𝜕𝑥2 } =  
𝑚𝑔 

𝑚̅ 
𝛿(𝑥 − 𝑐𝑡)          (8) 

where 

𝛿(𝑥 − 𝑐𝑡) represents the dira delta function defined as 

𝛿(𝑥 − 𝑐𝑡) = {
0, 𝑥 ≠ 𝑐𝑡
∞, 𝑥 = 𝑐𝑡

                (9) 

with property  

∫ 𝛿
𝐿

0
(𝑥 − 𝑐𝑡)𝑓(𝑥)𝑑𝑥 = {

0; 𝑐𝑡 < 0            
𝑓(𝑥); 0 < 𝑐𝑡 < 𝐿 
0; 𝑐𝑡 > 𝐿              

}  

                             (10) 

Equation (8) is the simplified governing equation for 

uniform Bernoulli Euler beam resting on variable 

Pasternak foundation subjected to concentrated 

moving load with damping term, when the initial 

effect of the moving load is put into consideration. 

2.2 Solution of the Problem 

For the variable foundation, the approximate method 

best suited for solving diverse problems in dynamics 

of structures generally referred to as Galerkin’s 

method is used. It has a solution of the form: 

𝑊(𝑥, 𝑡) =  ∑ 𝑌𝑚 (𝑡)𝑈𝑚 (𝑥)𝑛
𝑖=0                               (11) 

is sought, where 𝑈𝑚(𝑥) is chosen as a suitable kernel 

of the Galerkin method in Eq. (8).  

 

𝑈𝑚(𝑥) = Sin
𝜆𝑚𝑥

𝐿
+ 𝐴𝑚𝐶𝑜𝑠

𝜆𝑚𝑥

𝐿
+ 

𝐵𝑚𝑆𝑖𝑛ℎ 
𝜆𝑚𝑥

𝐿
+ 𝐶𝑚𝐶𝑜𝑠ℎ 

𝜆𝑚𝑥

𝐿
                   (12) 

is chosen such that the boundary conditions are 

satisfied. Where 𝜆𝑚 is the mode frequency. Am, Bm, 

Cm are constants which are obtained by substituting 

(12) into the appropriate boundary conditions. 

Eqn (8) can be rewritten as; 

𝐻1
𝜕4𝑊(𝑥,𝑡)

𝜕𝑥4 +  
𝜕2𝑊(𝑥,𝑡)

𝜕𝑡2 − 𝐻2 
𝜕2𝑊(𝑥,𝑡)

𝜕𝑥2 + 𝐻3 (4𝑥 −

3𝑥2 + 𝑥3) 𝑊(𝑥, 𝑡)  

−𝐻4 (−13 + 12𝑥 +  3𝑥3) 
𝜕𝑊(𝑥,𝑡)

𝜕𝑡
− 𝐻4 (12 − 13𝑥 +

 6𝑥2 −  𝑥3)
𝜕2𝑊(𝑥,𝑡)

𝜕𝑥2 + 𝐻5  
𝜕𝑊(𝑥,𝑡)

𝜕𝑡
  

−
𝑀

𝑚̅
 𝛿(𝑥 − 𝑐𝑡) [

𝜕2𝑊(𝑥,𝑡)

𝜕𝑡2 + 2𝑐
𝜕2𝑊(𝑥,𝑡)

𝜕𝑥𝜕𝑡
+

 𝑐2 𝜕2𝑊(𝑥,𝑡)

𝜕𝑥2 ] =
𝑀𝑔

𝑚̅
 𝛿(𝑥 − 𝑐𝑡)                                 (13) 

Where: 

𝐻1 =
𝐸𝐼

𝑚̅
;   𝐻2 =

𝑁

𝑚̅
;   𝐻3 =

𝐾0

𝑚̅
;   𝐻4 =

𝐺0

𝑚̅
;   𝐻5 =

𝛼

𝑚̅
 

Using equation (8) on (13), substitutions, 

simplifications, and using the generalized Galerkin 

method, we get; 

∑ {𝐺𝐴0𝑌̈𝑚(𝑡) + 𝐻5𝐺𝐴0 𝑌̇𝑚(𝑡) + [𝐻1𝐺𝐴4 −  𝐻2𝐺𝐴2
𝑛 
𝑚=1  

+𝐻3(4𝑥 − 3𝑥2 + 𝑥3) 𝐺𝐴0 −  

𝐻4(−13 + 12𝑥 −  3𝑥2)𝐺𝐴1

−  𝐻4 (12 − 13𝑥 +  6𝑥2

−  𝑥3)𝐺𝐴2 }𝑌𝑚(𝑥)  + 
𝑀

𝑚̅
[𝐺𝑓𝑜(𝑡) 

𝑌̈𝑚(𝑡) + 2𝑐𝐺𝑓1 𝑌̇𝑚(𝑡) + 𝑐2𝐺𝑓2(𝑡)𝑌𝑚(𝑥)]
𝑀𝑔

𝑚̅
𝐺𝐻(𝑡)    

                                       (14) 

Where: 

𝐺𝐴0 = ∫ 𝑈𝑚(𝑥)𝑈𝑘(𝑥) 𝑑𝑥
𝐿

0
;𝐺𝐴1 = ∫ 𝑈′

𝑚(𝑥) 𝑑𝑥
𝐿

0
;   

𝐺𝐴2 = ∫ 𝑈′′
𝑚(𝑥)𝑈𝑘(𝑥) 𝑑𝑥

𝐿

0
 

𝐺𝐴4 = ∫ 𝑈𝑚
(iv)(𝑥)𝑈𝐾(𝑥) 𝑑𝑥

𝐿

0
;    

𝐺𝑓0(𝑡) = ∫ 𝛿(𝑥 − 𝑐𝑡) 𝐺𝐴0
𝐿

0
;   𝐺𝑓1(𝑡) =  ∫ 𝛿(𝑥 −

𝐿

0

𝑐𝑡)𝐺𝐴1  = 
𝐺𝐴1

𝐿
+

2𝐺𝐵1

𝐿
;   𝐺𝑓2(𝑡) = ∫ 𝛿(𝑥 − 𝑐𝑡)𝑈𝑘(𝑥) 

𝐿

0
;   

𝐺𝐻(𝑡) = ∫ 𝛿(𝑥 − 𝑐𝑡)𝑈𝑘(𝑥) 
𝐿

0
 

Equation (14) is the transformed equation governing 

the problem. This non-homogeneous 2nd order ODE 
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holds for all variants of the classical Boundary 

Conditions. 

2.3 Case 1: Uniform Bernoulli Euler Beam Traversed 

by Concentrated Moving Force 

Equation (14) can be rewritten as: 

∑ [𝑄𝐴(𝑚, 𝑘)𝑌̈𝑚(𝑡) + 𝑄𝐵(𝑚, 𝑘)𝑌̇𝑚(𝑡)

𝑛

𝑚=1

+  𝑄𝐶(𝑚, 𝑘)𝑌𝑚(𝑡)] 

+𝜀0(𝑄𝐷(𝑚, 𝑘)𝑌̈𝑚(𝑡) + 𝑄𝐸(𝑚, 𝑘)𝑌̇𝑚(𝑡)

+ 𝑄𝐹(𝑚, 𝑘)𝑌𝑚(𝑡)] 

= [
𝑀𝑔

𝑚̅
] 𝑄𝐺(𝑚, 𝑘)            (15) 

Where 𝑄𝐴(m,k), 𝑄𝐵(m,k), 𝑄𝐶(m,k), 𝑄𝐷(m,k), 

𝑄𝐸(m,k), 𝑄𝐹(m,k), 𝑄𝐺(𝑚, 𝑘) are solutions of 

respective integrals.  

For this case, we assume that the inertia effect of the 

moving mass is negligible and set ε0 = 0 in equation 

(15), only the force effect of the moving concentrated 

load is considered.   

Eqn (15) reduces to: 

𝑌̈𝑚(𝑡) +
𝑄𝐵(𝑚,𝑘)

𝑄𝐴(𝑚,𝑘)
 𝑌̇𝑚(𝑡) +

𝑄𝐶(𝑚,𝑘)

𝑄𝐴(𝑚,𝑘)
𝑌𝑚(𝑡) =

 
𝑀𝑔

𝑚̅
 .

𝑄𝐺(𝑚,𝑘)

𝑄𝐴(𝑚,𝑘)
                                               (16) 

This represents the classical case of a moving 

concentrated force problem associated with the 

dynamical system. Evidently, an exact analytical 

solution to this equation is not possible, though the 

equation yields readily to numerical solution, an 

analytical methods is desirable as the solution so 

obtained often shed light on the vital information 

about the vibrating system. To this end, a modification 

of the asymptotic method due to Struble, often used in 

treating weakly homogeneous and non-homogeneous 

non-linear oscillatory systems shall be used to solve 

the problem. Consequently equation (16) can be 

rearranged to take the form: 

𝑌̈𝑚(𝑡) + 𝑈2
𝑚𝑓 (𝑡)(𝑡) 𝑌̇𝑚(𝑡) + 𝑉2

𝑚𝑓(𝑡)𝑌𝑚(𝑡) =

 
𝑀𝑔

𝑚̅
𝑊2

𝑚𝑓(𝑡)              (17)  

Where  

𝑈2
𝑚𝑓 (𝑡) =

𝑄𝐵(𝑚, 𝑘)

𝑄𝐴(𝑚, 𝑘)
 , 𝑉2

𝑚𝑓(𝑡)

=  
𝑄𝐶(𝑚, 𝑘)

𝑄𝐴(𝑚, 𝑘)
, 𝑊2

𝑚𝑓(𝑡)

=  
𝑄𝐺(𝑚, 𝑘)

𝑄𝐴(𝑚, 𝑘)
                                                           

To obtain the solution to (17), it is subjected to Laplace 

transform defined as 

𝐹(𝑠) =  ∫ 𝑒−𝑠𝑡∞

0
𝑓(𝑡)𝑑𝑡 ; 𝑠 > 0             (18) 

where s is the Laplace parameter in conjunction with 

initial conditions defined on 𝑌𝑚(𝑡), one obtains: 

ℒ[𝑌̈𝑚(𝑡)] +  𝑈2
𝑚𝑓  (𝑡)ℒ [𝑌̇𝑚(𝑡)] +

 𝑉2
𝑚𝑓(𝑡)ℒ[𝑌𝑚(𝑡)] = ℒ [

𝑀𝑔

𝑚̅
𝑊2

𝑚𝑓(𝑡)]           (19) 

By evaluating 19, finding the Laplace inversion, 

making use of the convolution integral defined as 

f(t) * 𝑔(t) = ∫ 𝑓(𝑢)𝑔(𝑡 − 𝑢)𝑑𝑢
𝑡

0
         (20) 

we obtain 

𝑌𝑚(𝑡) = 𝑅𝐴[𝐹𝑓(𝑠) ∗  𝐺1𝑓(𝑠) − 𝐹𝑓(𝑠) ∗  𝐺2𝑓(𝑠)]   (21) 

𝑤ℎ𝑒𝑟𝑒 

𝑅𝐴 = 
𝑅

𝛼1−𝛼2
 

𝐹𝑓 (t) = ℒ−1[𝐹𝑓(𝑠) = 𝐹𝐴 + 𝐹𝐵 cos 𝜃𝑛𝑡         (22) 

𝑔1𝑓(t)  = ℒ−1[𝐺1𝑓(𝑠) = 𝑒−𝛼2𝑡         (23) 

𝑔2f (t) = ℒ−1[𝐺2𝑓(𝑠) = 𝑒−𝛼1𝑡         (24) 

where 

FA= 
1

𝐿
[𝐼𝑎 +  𝐴𝑚𝐼𝑏  + 𝐵𝑚𝐼𝑐  + 𝐶𝑚𝐼𝑑];    

𝐼𝑎 =  
𝐿(1−𝑐𝑜𝑠𝜆𝑚)

𝜆𝑚
;   𝐼𝑏  =  

𝐿𝑠𝑖𝑛𝜆𝑚

𝜆𝑘
;   𝐼𝑐  =  𝐿

(−1+𝑐𝑜𝑠ℎ𝜆𝑚)

𝜆𝑚
 

𝐼𝑑 =  
𝐿𝑠𝑖𝑛ℎ𝜆𝑚

𝜆𝑚
;    

FB = 
2

𝐿
[F1 + Am F2 + Bm F3 + Cm F4] cos (

𝑛𝜋𝑐𝑡

𝐿
);  
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FB = FB1 cos (
𝑛𝜋𝑐𝑡

𝐿
);     

FB1 = 
2

𝐿
[F1 + Am F2 + Bm F3 + Cm F4];   

 F1 = 
𝐿(𝜆𝑘−𝜆𝑘 cos𝜆𝑘𝑐𝑜𝑠 𝑛𝜋 − n𝜋sin 𝜆𝑘 sin 𝑛𝜋)

𝜆𝑘
2− 𝑛2𝜋2 ;  

  

F2 = 
𝐿(𝜆𝑘 cos 𝑛𝜋 sin 𝜆𝑘−nπ cos 𝜆𝑘 sin 𝑛𝜋)

𝜆𝑘
2− 𝑛2𝜋2  ;    

F3 = 
𝐿(−𝜆𝑘+ 𝜆𝑘 cos 𝑛π cosh 𝜆𝑘  + nπ sin 𝑛𝜋 sinh 𝜆𝑘)

𝜆𝑘
2+ 𝑛2𝜋2   

F4 = 
𝐿(nπ cosh 𝜆𝑘  sin nπ+ 𝜆𝑘 𝑐𝑜𝑠 nπ sinh 𝜆𝑘 

𝜆𝑘
2+ 𝑛2𝜋2 ;    

𝛼1 = −
1

2
  [𝑈2

𝑚𝑓 + √𝑈4
𝑚𝑓 −  4𝑉2

𝑚𝑓] ;   

 𝛼2 = −
1

2
  [𝑈2

𝑚𝑓 − √𝑈4
𝑚𝑓 −  4𝑉2

𝑚𝑓] 

Applying (20), substitutions equations and after some 

simplification, with substitution into equation (11), we 

obtain 

W(x,t) = ∑ 𝑅𝐴
𝑛
𝑚=1 [𝐹𝐴 (

1−𝑒−𝛼2𝑡

𝛼2
− 

1−𝑒−𝛼1𝑡

𝛼1
)] 

+𝐹𝐵1 (
𝜃𝑛

𝜃2
𝑛+ 𝛼2

2 [sin 𝜃𝑛𝑡 + 
𝛼2

𝜃𝑛
(cos 𝜃𝑛𝑡 − 𝑒−𝛼2𝑡)] −

𝜃𝑛

𝜃2
𝑛+ 𝛼1

2 [sin 𝜃𝑛𝑡 + 
𝛼1

𝜃𝑛
(cos 𝜃𝑛𝑡 − 𝑒−𝛼1𝑡)])      (25) 

Equation (25) above represents the transverse 

displacement response of the uniform Bernoulli-Euler 

beam under the action of moving concentrated force 

resting on a variable Pasternak foundation. 

2.4 Case Two: Uniform Bernoulli Euler Beam 

Traversed by Concentrated Moving Mass 

Retaining 𝜖0 in equation (14) and simplification, we 

have 

𝑌̈𝑚(𝑡) + 𝑈2
𝑚𝑓 (𝑡)(𝑡)𝑌̇𝑚(𝑡) + 𝑉2

𝑚𝑓(𝑡)𝑌𝑚(𝑡) +

 𝜀0[ 𝐻1(𝑚, 𝑘) 𝑌̈𝑚(𝑡) + 𝐻2(𝑚, 𝑘)𝑌̇𝑚(𝑡) + 𝐻3(𝑚, 𝑘)𝑌𝑚(𝑡)] 

 =  
𝑀𝑔

𝑚̅ 𝑄𝐴(𝑚,𝑘)
𝑄𝐺(𝑚, 𝑘)         (26) 

Simplifying 26, we get 

𝑌̈𝑚(𝑡) + 
[𝑈2

𝑚𝑓+𝜀0𝐻2]

1+𝜀0𝐻1
𝑌̇𝑚(𝑡) +

[𝑉2
𝑚𝑓+𝜀0𝐻3(𝑡)]

1+𝜀0𝐻1
𝑌𝑚(𝑡) =

𝑅

1+𝜀0𝐻1
𝑄𝐺(𝑚, 𝑘)          (27) 

Where 

𝑈2
𝑚𝑓  (𝑡) =

𝑄𝐵(𝑚, 𝑘)

𝑄𝐴(𝑚, 𝑘)
 ;   𝑉2

𝑚𝑓(𝑡)
𝑄𝐶(𝑚, 𝑘)

𝑄𝐴(𝑚, 𝑘)
;  

 𝐻1(𝑚, 𝑘) =
𝑄𝐷(𝑚, 𝑘)

𝑄𝐴(𝑚, 𝑘)
;  

𝐻2(𝑚, 𝑘) =
𝑄𝐸(𝑚,𝑘)

𝑄𝐴(𝑚,𝑘)
;  𝐻3(𝑚, 𝑘) =

𝑄𝐹(𝑚,𝑘)

𝑄𝐴(𝑚,𝑘)
 ;   𝜀0 =

𝑀

𝑚̅
;     

R = 
𝑀𝑔

𝑚𝑄𝐴(𝑚,𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅;    𝑅1(𝑡) = 1 + +𝜀0𝐻1 

By considering parameter 𝜖 < 1, for any arbitrary 

mass ratio 𝜀0 and by simplifying,  

𝜀0 = 𝜖 (1 − 𝜖)−1                (28)  

Expanding (28) using the theory of binomial 

expansion of integers, using 27 and after substitution 

and simplification, we obtain 

𝑌̈𝑚(𝑡)+(𝑈2
𝑚𝑓

+ 𝜖𝐻2)(1 +  𝜖𝐻1)𝑌̇𝑚(𝑡) + (𝑉2
𝑚𝑓 +

𝜖𝐻3)(1 + 𝜖𝐻1)𝑌𝑚(𝑡) = 

(1 + 𝜖𝐻1)𝑅𝑄𝑔(𝑚, 𝑘)                    (29) 

Expanding (29) and considering only up to 𝑜(𝜖), we 

obtain 

𝑌̈𝑚(𝑡) +[𝑈2
𝑚𝑓

+ 𝜖(𝐻1𝑈2
𝑚𝑓 + 𝐻2] 𝑌̇𝑚(𝑡) + [𝑉2

𝑚𝑓 +

𝜖(𝐻1𝑉2
𝑚𝑓 + 𝜖𝐻3)]𝑌𝑚(𝑡) = (1 + 𝜖𝐻1)𝑅𝑄𝑔(𝑚, 𝑘)  

(30) 

Setting 𝜖 = 0, in equation (30), a situation 

corresponding to the case in which the inertial effect 

is regarded as negligible is obtained, then the solution 

can be written as: 

𝑌𝑚𝑓(𝑚, 𝑡) = 𝛽𝑚𝑓 cos(𝛼𝑚𝑓𝑡 − 𝑤𝑚𝑓)        (31) 

Where 𝛽𝑚𝑓, 𝛼𝑚𝑓, 𝜔𝑚𝑓 are constants 
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Since 𝜖 < 1, an asymptotic expansion of the 

homogenous part of the expression (30) can be written 

as 

𝑌𝑚(𝑡) = 𝜙(𝑚, 𝑡) Cos[𝑉𝑚,𝑓𝑡 − Ω(𝑚, 𝑡)] +

𝜖 𝑌1𝑚(𝑡) + 0(𝜖2)           (32) 

Where 𝜙(𝑚, 𝑡), and Ω(𝑚, 𝑡) are slowly tone varying 

functions or equivalently  

In view of (32) and after some simplification, 

neglecting 𝑂(𝜖2) parts, we have 

𝑌̇𝑚(𝑡) = 𝜙̇(𝑚, 𝑡) Cos(𝑉𝑚𝑓𝑡 − Ω(𝑚, 𝑡)

− 𝜙(𝑚, 𝑡)𝑉𝑚,𝑓𝑆𝑖𝑛 𝑡 − Ω(𝑚, 𝑡)

+ 𝜙(𝑚, 𝑡)Ω̇(𝑚, 𝑡) 

𝑆𝑖𝑛(𝑉𝑚𝑓𝑡 − Ω(𝑚, 𝑡) + 𝜖𝑌̇𝑖𝑚(𝑡)         (33) 

and  

𝑌̈𝑚(𝑡) = −2𝜙̇ (𝑚, 𝑡)𝑉𝑚𝑓 Sin(𝑉𝑚𝑓𝑡 − Ω(𝑚, 𝑡) −

2𝜙(𝑚, 𝑡)𝑉𝑚,𝑓 − Ω̇(𝑚, 𝑡) 𝐶𝑜𝑠(𝑉𝑚𝑓𝑡 − Ω(𝑚, 𝑡) −

𝜙(𝑚, 𝑡)𝑉𝑚𝑓
2 𝐶𝑜𝑠(𝑉𝑚𝑓𝑡 − Ω(𝑚, 𝑡) + 𝜖𝑌̈𝑖𝑚(𝑡)        (34) 

Substituting (32), (33) and (34) into the homogenous 

part of (30) and considering only 𝑂(𝜖), we have 

−2𝜙̇(𝑚, 𝑡)𝑉𝑚𝑓𝑆𝑖𝑛 (𝑉𝑚𝑓𝑡 − Ω(𝑚, 𝑡)) +

2𝜙(𝑚, 𝑡)  𝑉𝑚𝑓Ω̇ (𝑚𝑡)  Cos(𝑉𝑚𝑓𝑡 − Ω (𝑚, 𝑡))-

𝜙 (𝑚, 𝑡)𝑉𝑚𝑓
2  cos (𝑉𝑚𝑓𝑡 − Ω (𝑚, 𝑡) + 𝜖𝑌̈1𝑚(𝑡)-

𝜙 (𝑚, 𝑡)𝑈𝑚𝑓
2

 
𝑆𝑖𝑛 (𝑉𝑚𝑓𝑡 − Ω (𝑚, 𝑡)+𝜖𝑈𝑚𝑓

2 𝑌𝑖𝑚̇(𝑡) - 

𝜖𝑍1𝜙 (𝑚, 𝑡)𝑉𝑚𝑓𝑆𝑖𝑛(𝑉𝑚𝑓𝑡 − Ω (𝑚, 𝑡))+ 

𝜖𝑍2𝜙(𝑚, 𝑡)𝐶𝑜𝑠 (𝑉𝑚𝑓𝑡 − Ω (𝑚, 𝑡) = 0        (35) 

Where   

Z1 = H1𝑈𝑚𝑓
2  +H2  ,   Z2 = H1𝑉 𝑚𝑓

2  + H3  

In order to obtain the modified frequency, we extract 

only the variational parts of equation (35) that describe 

the behaviour of 𝜙(𝑚, 𝑡) and Ω(𝑚, 𝑡) during the 

motion of this mass. That is, neglecting terms without 

Sin(𝑉𝑚𝑓𝑡 − Ω (𝑚, 𝑡) and Cos(𝑉𝑚𝑓𝑡 − Ω (𝑚, 𝑡) 

Hence, we have 

[−2𝜙(𝑚, 𝑡) 𝑉𝑚𝑓 − 𝜙(𝑚, 𝑡)𝑈2𝑉𝑚𝑓 −

 𝜖Z1 𝜙(𝑚, 𝑡)𝑉𝑚𝑓] 𝑠𝑖𝑛(𝑉𝑚𝑓𝑡 − 𝛺(𝑚, 𝑡)+ 

[2𝜙(𝑚, 𝑡) 𝑉𝑚𝑓𝛺̇(𝑚, 𝑡)   − 𝜙(𝑚, 𝑡)𝑉2
𝑚𝑓 +

𝑉2
𝑚𝑓𝜙(𝑚, 𝑡) +  𝜖Z2 𝜙(𝑚, 𝑡)] 𝐶𝑜𝑠(𝑉𝑚𝑓𝑡 − 𝛺(𝑚, 𝑡) 

(36) 

Equating the coefficient of Cos  (𝑉𝑛,𝑓𝑡 − 𝛺(𝑚, 𝑡)) and 

Sin (𝑉𝑛,𝑓𝑡 − 𝛺(𝑚, 𝑡)) to zero, we obtain: 

[2𝜙̇(𝑚, 𝑡) + 𝜖𝑍1 + 𝑈2
𝑚𝑓 𝜙(𝑚, 𝑡)] 𝑉𝑚𝑓 = 0        (37) 

And 

 [2𝑉𝑚𝑓Ω̇(𝑚, 𝑡)+𝜖𝑍2𝜙(𝑚, 𝑡) = 0          (38) 

From (37) and 38, we obtain 

𝜙(𝑚, 𝑡)= A 𝑒
−[

𝜖Z1 + 𝑈𝑚𝑓
2

2
]𝑡

          (39) 

∴ 𝛺(𝑚, 𝑡) = −
𝜖𝑍2

2𝑉𝑚𝑓
 +Cm                            (40) 

 Where Cm is a constant of integration  

Given that:  

𝑌𝑚(𝑡) = 𝜙(𝐶𝑚,𝑡) Cos  (𝑉𝑚𝑓𝑡 − 𝛺(𝑚, 𝑡))        (41) 

Substituting (39) and (40) into (41) and after 

substitution and some simplification, we get 

 𝑉2
𝑚𝑚 =   𝑉𝑚𝑓 (1 + 

𝜖𝑍2

2𝑉𝑚𝑓
)                        (42) 

Equation (42) is called the modified natural frequency, 

representing the frequency of the free system due to 

presence of the moving force. Thus, to solve the non-

homogenous equation (17), the differential operator in 

𝑌𝑚(𝑡) is replaced by 𝑉𝑚𝑚
2   Hence, one obtains 

𝑌̈𝑚(𝑡) + 𝑈2
𝑚𝑓(𝑡) 𝑌̇𝑚(𝑡) +  𝑉2

𝑚𝑚(𝑡) 𝑌𝑚(𝑡)   

=  𝑅𝑄𝑔(𝑚, 𝑘)          (43) 

After some substitution and using Laplace transform 

method and after some substitution into equation (11) 
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    𝑊(𝑥, 𝑡) = ∑ RA
n
m=1   {𝐹𝐴 [

1−𝑒−𝑟2𝑡

𝑟2
−

1−𝑒−𝑟1𝑡

𝑟1
] +

 + 𝐹𝐵1[ 
𝜃𝑛

𝜃𝑛
2+ 𝑟2

2 [𝑆𝑖𝑛𝜃𝑛𝑡
 

+
𝑟2

𝜃𝑛
 (Cos𝜃𝑛𝑡 −  𝑒−𝑟2𝑡)] −

      
𝜃𝑛

𝜃𝑛
2+ 𝑟1

2
  [𝑆𝑖𝑛𝜃𝑛𝑡 +

𝑟1

𝜃𝑛
 (𝐶𝑜𝑠𝜃𝑛𝑡 −  𝑒−𝑟1𝑡]} 𝑈𝑚(𝑥) 

(44) 

r1 =− 
1

2
[𝑈2

𝑚𝑓  + √𝑈4
𝑚𝑓 −  4 𝑉2

𝑚𝑚 
];    

r2 =− 
1

2
[−𝑈2

𝑚𝑓 + √𝑈4
𝑚𝑓 −  4𝑉2𝑚𝑚]  

Equation (44) above represents the transvers 

displacement response of the uniform Bernoulli-Euler 

beam resting on a variable Pasternak foundation under 

the action of a moving mass. 

III. APPLICATION OF THE SIMPLY 

SUPPORTED BOUNDARY CONDITION 

The simply supported boundary conditions are 

𝑊(0, 𝑡) = 𝑊(𝐿, 𝑡) = 0,
𝜕2𝑤(0,𝑡)

𝜕𝑥2 = 0 =
𝜕2𝑤(𝐿,𝑡)

𝜕𝑥2  

           (45)  

Consequently, for the normal modes 

𝑈𝑚(0) = 𝑈𝑚(𝐿) = 0,
𝜕2𝑈𝑚

(0)

𝜕𝑥2 = 0 =
𝜕2𝑈𝑚

(𝐿)

𝜕𝑥2        (46) 

It is also clear that  

𝑈𝑘(0) = 𝑈𝑘(𝐿) = 0,   
𝜕2𝑈𝑘

(𝑜)

𝜕𝑥2 = 0 =
𝜕2𝑈𝑘(𝐿)

𝜕𝑥2        (47) 

Using the above Boundary Condition in equation 

(12), results to  

𝐴𝑚 = 𝐵𝑚 = 𝐶𝑚 = 0 

and𝐴𝑘 = 𝐵𝑘 = 𝐶𝑘 = 0 

and the frequency equation is obtained as: 

𝑆𝑖𝑛𝜆𝑚 = 0  ,  

Thus, 𝜆𝑚 = 𝑚𝜋   

Similarity ,𝑆𝑖𝑛𝜆𝑘 = 0   then  𝜆𝑚 = 𝑘𝜋   

Substituting the 𝐴𝑚 = 𝐵𝑚 = 𝐶𝑚 = 0 into equation 

(25) and (44),  we obtain the equation that describes 

the dynamic response of a simply supported uniform 

Bernoulli Euler beam resting on a variable Pasternak 

foundation subjected to a concentrated moving force 

and moving mass respectively  with a damping term. 

IV. NUMERICAL ANALYSIS AND 

DISCUSSION OF RESULTS 

4.1. Numerical Analysis  

Numerical analysis for both moving concentrated 

force and moving concentrated mass problems for the 

simply supported uniform Bernoulli-Euler beam were 

simulated using MATLAB. This was done by 

considering a homogenous beam of modulus of 

elasticity 𝐸 = 2.02 × 1011  𝑁/𝑚2, the moment of 

inertia  𝐼 = 2.87698 × 10−3𝑚4, the beam span 𝐿 =

100𝑚, the mass per unit length of the beam 𝑚̅ =

2758.291 𝐾𝑔/𝑚 .  

With respect to the four parameters, the values of axial 

force 𝑁 was varied between 0𝑁 𝑎𝑛𝑑 20000000𝑁, the 

values of the shear modulus 𝐺 varies between 

0 𝑁/𝑚3𝑎𝑛𝑑 50000000 𝑁/𝑚3, the values of 𝑘 varies 

between 0 𝑁/𝑚3𝑎𝑛𝑑 50000000 𝑁/𝑚3  and the 

values of the damping coefficient α varied between 0 

and 6. The results were shown in graphs for the simply 

supported boundary condition considered for varied 

and fixed values of the four parameters.  

𝐹𝑖𝑔𝑢𝑟𝑒 1: Transverse displacement of the beam for 

various values of damping coefficient and fixed 

values of other parameters traversed by a moving 

concentrated force  
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𝐹𝑖𝑔𝑢𝑟𝑒 2: Transverse displacement of the beam for 

various values of damping coefficient and fixed 

values of other parameters traversed by a moving 

concentrated mass 

𝐹𝑖𝑔𝑢𝑟𝑒 3: Transverse displacement of the beam for 

various values of shear modulus and fixed values of 

other parameters traversed by a moving concentrated 

force  

 

𝐹𝑖𝑔𝑢𝑟𝑒 4: Transverse displacement of the beam for 

various values of shear modulus and fixed values of 

other parameters traversed by a moving concentrated 

mass  

 

𝐹𝑖𝑔𝑢𝑟𝑒 5: Transverse displacement of the beam for 

various values of foundation modulus and fixed values 

of other parameters traversed by a moving 

concentrated force 

 

𝐹𝑖𝑔𝑢𝑟𝑒 6: Transverse displacement of the beam for 

various values of foundation modulus and fixed values 

of other parameters traversed by a moving 

concentrated mass 

 

𝐹𝑖𝑔𝑢𝑟𝑒 7: Transverse displacement of the beam for 

various values of axial force and fixed values of other 

parameters traversed by a moving concentrated force 

𝐹𝑖𝑔𝑢𝑟𝑒 8: Transverse displacement of the beam for 

various values of axial force and fixed values of other 

parameters traversed by a moving concentrated mass 
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𝐹𝑖𝑔𝑢𝑟𝑒 9: Comparison of the transverse 

displacement of the beam traversed by moving 

concentrated force and moving concentrated mass.  

4.2. Discussion 

The transverse displacements of the simply supported 

uniform Bernoulli-Euler beam resting on a variable 

Pasternak foundation under the action of moving load 

were presented in the figures above for values of the 

parameters. From the findings, an increase in the 

values of the damping term, shear modulus, 

foundation modulus and axial force reduced the 

deflection profile of simply supported uniform 

Bernoulli-Euler beam. In effect, their increase 

guaranteed a prolonged beam’s life. In addition, the 

damping coefficient had a more noticeable effect on 

the response amplitude of the beam when compared 

with other parameters. This suggests that, the 

introduction of the damping term will ensure safety 

more than other parameters. Furthermore, figure 9 

shows that the moving mass problem had a higher 

deflection profile than the moving force problem for 

the dynamical system. This implies that, the moving 

force problem is safer than that of the moving mass. 

However, it cannot be used as a safe approximation of 

the moving mass problem.   

CONCLUSION 

The study showed that increases in the values of the 

parameters decreased the transverse displacement of 

the simply supported beam for both moving 

concentrated force and moving concentrated mass 

cases. Thus, there increase ensured the beam’s safety 

and stability. In addition, small changes in the values 

of the damping coefficient lead to more noticeable 

effects on the beam’s displacement. Furthermore, the 

moving concentrated force problem was not a safe 

approximation for the moving concentrated mass 

problem. This work contributes to the existing 

knowledge on beam behavior on a simply support 

condition, by providing valuable insight on its 

displacement when it rests on a variable foundation. 

Its finding has implications for engineers in the design 

of such dynamical system. That is, increasing the 

values of these parameters can ensure the safety add 

longevity of the beam. Further research should explore 

cases of other classical boundary conditions. The 

results herein, were found to agree with those in 

literature.  
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