Impersonation In the Digital Age: A Comparative Review of Detection Techniques Against Deepfakes

OCHI VICTOR CHUKWUDI¹, TOCHUKWU CHINECHEREM NNABUIKE²

^{1, 2}Department of Computer Engineering, Enugu State University of Science and Technology, Agbani.

Abstract- Deepfakes—AI-generated or manipulated audio-visual content—pose a growing risk to identity verification, trust, and security. This comparative synthesizes state-of-the-art detection techniques across visual, audio, and multimodal pipelines, focusing on performance, generalization, robustness, and operational considerations (latency, cost, and privacy). We analyze benchmark datasets (e.g., FaceForensics++, DFDC, FakeAVCeleb, WildDeepfake, ASVspoof 2021) and evaluation metrics (AUC, EER, F1) and compare classical, deep, and hybrid approaches. We also examine adversarial pressures—including compression, unseen manipulations, and cross-domain shiftsand outline practical integration patterns for KYC/AML, exam proctoring, and access control. The review concludes with an engineering blueprint for a multimodal detection stack, emphasizing human-in-the-loop triage and risk scoring.

Index Terms- Deepfakes, Impersonation Detection, Multimodal Biometrics, Audio Spoofing, Media Forensics, Identity Verification, KYC, Liveness Detection, Robustness, Generalization

I. INTRODUCTION

The proliferation of generative AI has made it feasible to create persuasive synthetic media at scale. Impersonation has shifted from isolated image forgeries to coordinated, multi-channel campaigns that combine swapped faces, cloned voices, and text-conditioned video. Traditional single-modal defenses struggle when manipulations target multiple modalities or exploit realistic capture and transmission artifacts. This review compares detection families, datasets, and evaluation protocols, and proposes a deployment-ready multimodal architecture for real-world identity verification.

II. TAXONOMY OF DETECTION TECHNIQUES

We group methods by dominant signal and fusion strategy.

2.1 Visual (Image/Video)

- Spatial artifacts: frequency inconsistencies, upsampling traces, blending boundaries.
- Temporal cues: eye-blink irregularities, mouth-viseme desynchrony, head pose dynamics.
- Architectures: CNNs (Xception), ViTs, 3D CNNs, RNNs for temporal modeling, and frequency-domain networks.
- Localization: pixel-level tamper maps via segmentation/attention.

2.2 Audio (Speech)

- Spectral features: CQCC, LFCC, log-mels; phase-based cues.
- Countermeasures: CNN/ResNet-style CMs, ECAPA-TDNN, wav2vec2-style embeddings; domain generalization with augmentation and channel variability.
- Challenge tasks: logical access (TTS/VC), physical access (playback), and deepfake tasks.

2.3 Multimodal (Audio-Visual)

- Early fusion (feature-level): concatenation of audio/visual embeddings.
- Mid/late fusion: attention-based cross-modal transformers; decision-level ensembling.
- Audiovisual consistency: lip-audio sync, prosody-viseme alignment, cross-modal contrastive losses.

© SEP 2025 | IRE Journals | Volume 9 Issue 3 | ISSN: 2456-8880

- Text-conditioned detection: leveraging transcripts to catch semantic/phonetic mismatches.
- 2.4 Behavioral & Contextual Signals
- Active liveness: challenge-response (randomized prompts), 3D depth, rPPG heart-rate signals.
- Contextual provenance: camera attestation, watermarking, C2PA manifests; content authenticity verifiable metadata.
- Open-source threat intel: model fingerprints, gen-model class attribution.

III. BENCHMARK DATASETS

Table 1 summarizes commonly used corpora.

Table 1. Core datasets for impersonation/deepfake detection

Dataset	Modality	Scale / Clips	Key Traits	Typical Uses
FaceForensics++ (Rössler et al., 2019)	Video	>1000 videos; >1.8M frames	Multiple face-swap/reenactment methods; compression variants	Supervised training; cross-compression tests
DFDC (Dolhansky et al., 2020)	Video	>100k clips; 3426 actors	Large, diverse; hidden test set; challenge leaderboard	Generalization; at-scale training
WildDeepfake (Zi et al., 2021)	Video	707 videos (in-the-wild)	Found online; diverse artifacts; harder domain shift	Out-of-distribution (OOD) testing
FakeAVCeleb (Khalid et al., 2021)	Audio-Video	19k+ clips	Synchronized audio & lip-synced fakes; demographic variety	Multimodal detection & A/V consistency
ASVspoof 2021 (Wang et al., 2021)	Audio	LA/PA/DF tasks	Channel & playback variability; EER-focused	Audio deepfake & spoof CM evaluation

IV. EVALUATION PROTOCOLS & METRICS

- AUC / ROC: measures ranking quality under class imbalance.
- EER (Equal Error Rate): common in speaker verification and spoof CMs.
- F1 / AP: actionable thresholds for incident response.
- Cross-dataset tests: train on Dataset A, test on Dataset B to probe generalization.
- Stressors: bitrate compression, resizing, noise, re-encoding, platform filters.

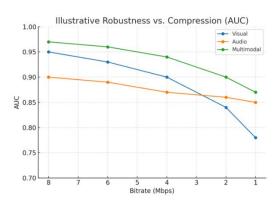


Figure 2: Robustness of Detectors Under Compression

© SEP 2025 | IRE Journals | Volume 9 Issue 3 | ISSN: 2456-8880

Table 2. Operational factors when comparing methods

	ı	ı
Factor	Why it matters	Example consideration
Latency	Real-time checks in KYC/proctorin g	<pre><250 ms per frame or <1 s per 5-sec audio</pre>
Edge deployability	Privacy & cost	INT8 quantization on mobile/NPU
Robustness	Survive unseen attacks, compression	Cross-dataset & attack-agnosti c training
Interpretabilit y	Analyst triage	Heatmaps, localized masks, audio saliency
Privacy & security	Reduce data exposure	On-device inference; encrypted transport

V. COMPARATIVE REVIEW OF TECHNIQUE FAMILIES

5.1 Visual detectors

CNN/ViT baselines on FF++/DFDC achieve strong in-domain AUC but degrade on WildDeepfake (domain shift). Common remedies include frequency-aware layers, augmentations, and self-supervised pretraining.

5.2 Audio countermeasures

ASVspoof 2021 highlights the need to handle channel, codec, and playback variability. Strong systems pair spectro-temporal features with augmentation and score calibration; EER is the main yardstick.

5.3 Multimodal fusion

Audio-visual models (e.g., on FakeAVCeleb) leverage cross-modal alignment to resist single-channel attacks, and can trigger when lip motion and phonemes disagree. Transformer-based fusion with late-stage ensembling yields robust, production-friendly behavior.

5.4 Hybrid & provenance-aware approaches

Combining content-based detectors with active liveness and provenance (C2PA) provides layered defense; even if generative models erase pixel traces, provenance or challenge-response can still raise risk scores.

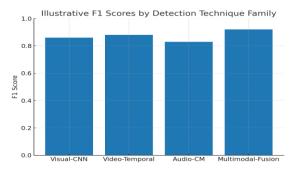


Figure 3: Comparative F1 Scores of Detection Techniques

VI. DEPLOYMENT BLUEPRINT: MULTIMODAL IDENTITY VERIFICATION STACK

- Acquisition: capture RGB video + mic audio; collect device/channel metadata (fps, bitrate, codec).
- Preprocessing: face tracking, voice activity detection (VAD), diarization if multi-speaker.
- Per-modality detectors:

Visual: frame & clip-level scores (spatial + temporal).

Audio: CM score for LA/PA/DF threats.

 Consistency checks: lip-audio sync, viseme-phoneme alignment, transcript-prosody agreement.

© SEP 2025 | IRE Journals | Volume 9 Issue 3 | ISSN: 2456-8880

- Fusion & risk scoring: late-fusion ensemble with calibrated thresholds; risk bands (Low/Medium/High).
- Human-in-the-loop: analyst UI with saliency maps, keyframes, and snippets.
- Controls: adaptive liveness challenge when risk ≥ Medium; provenance validation if available.
- Logging & feedback: hard-negative mining; periodic re-training with drift monitoring.

VII. FLOWCHART

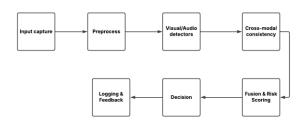


Figure 3: Multimodal Detection Flowchart

VIII. LIMITATIONS & RESEARCH GAPS

- Generalization to novel generators and unseen codecs remains the hardest problem.
- Multilingual audio and code-switching challenge audio CMs trained on narrow phonetic inventories.
- Privacy-preserving training (federated, differential privacy) is under-explored for detection.
- Attribution (which model generated the fake) is useful but fragile across versions.

REFERENCES

- Dolhansky, B., Bitton, J., Pflaum, B., Lu, J., Howes, R., Wang, M., & Canton Ferrer, C. (2020). The DeepFake Detection Challenge (DFDC) dataset. arXiv:2006.07397.
- [2] Khalid, H., Woo, S., Choi, J., Shon, S., & Kim, J. (2021). FakeAVCeleb: A novel audio-video multimodal deepfake dataset. NeurIPS Datasets and Benchmarks Proceedings.
- [3] Rössler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., & Nießner, M. (2019). FaceForensics++: Learning to detect

- manipulated facial images. Proceedings of ICCV.
- [4] Yi, J., Wang, C., Tao, J., Zhang, X., Zhang, C. Y., & Zhao, Y. (2023). Audio deepfake detection: A survey. arXiv:2308.14970.
- [5] Wang, X., et al. (2021). ASVspoof 2021: Accelerating progress in spoofed and deepfake speech detection. arXiv:2109.00537.
- [6] Zi, B., Chang, M., Chen, J., Ma, X., & Jiang, Y.-G. (2021). WildDeepfake: A challenging real-world dataset for deepfake detection. arXiv:2101.01456.
- [7] Fu, X., Yan, Z., Yao, T., Chen, S., & Li, X. (2025). Exploring unbiased deepfake detection via token-level shuffling and mixing. arXiv:2501.04376.
- [8] Zhang, H., et al. (2025). A survey on multimedia-enabled deepfake detection: State-of-the-art, challenges, and future trends. Information Retrieval Journal (Springer).
- [9] Al-Rubaye, W., et al. (2025). Audio-visual multimodal deepfake detection leveraging emotional cues. International Journal of Advanced Computer Science and Applications, 16(6), (details in paper).