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Abstract- The rising menace of unknown gunmen in 

the South-East region of Nigeria poses significant 

socio-political and security challenges. Traditional 

approaches to analyzing such insurgent dynamics 

often fail to capture the sudden, sporadic, and highly 

nonlinear nature of violent outbreaks. In this study, 

we apply the rogue wave equation, derived from the 

nonlinear Schrödinger (NLS) framework, as a 

mathematical tool to model the emergence and 

amplification of violent incidents associated with 

unknown gunmen. The rogue wave equation is 

coupled with a set of socio-environmental ordinary 

differential equations (ODEs) representing 

community grievances, misinformation, policing 

strength, and economic stress. Stability analysis 

reveals thresholds where small disturbances can 

escalate into large-scale violent events, analogous to 

the modulation instability that produces rogue waves 

in physical systems. Numerical simulations, carried 

out using the Split-Step Fourier Method (for the NLS 

component) and Runge–Kutta scheme (for the 

ODEs), generate wave-like patterns that illustrate the 

intermittent surges of violence. Results show that 

bursts of violent activity are most likely when 

community grievances and misinformation exceed 

critical levels, while strong policing and economic 

stability serve as dampening mechanisms. The 

findings highlight the applicability of nonlinear wave 

models in social conflict analysis and provide 

insights for early warning systems, targeted policing 

strategies, and socio-economic interventions. This 

work contributes to the interdisciplinary field of 

mathematical social science by extending rogue wave 

theory into the realm of security studies, offering 

both theoretical innovation and practical policy 

relevance. 

 

Index Terms- Rogue Wave Equation, Nonlinear 

Schrödinger Equation, Unknown Gunmen, South-

East Nigeria, Socio-Political Modeling, Instability 

Thresholds, Simulation 

 

I. INTRODUCTION 

 

1.1 Background of the Study 

In recent years, the South-East region of Nigeria has 

witnessed an alarming rise in violent attacks attributed 

to groups popularly referred to as unknown gunmen. 

These attacks have taken various forms, including 

assaults on civilians, security personnel, government 

facilities, and public infrastructure. The phenomenon 

has created widespread fear, disrupted economic 

activities, and strained the socio-political stability of 

the region. Despite numerous countermeasures, the 

sporadic and unpredictable nature of these violent 

outbreaks makes them difficult to forecast or contain 

effectively.  

Traditional approaches to conflict analysis—ranging 

from criminological theories to socio-political 

models—often struggle to capture the nonlinear, 

sudden, and large-amplitude surges of violence that 

resemble rare but extreme events in nature. 

Interestingly, similar dynamics exist in the physical 

sciences, where rogue waves—unusually large and 

spontaneous oceanic waves—have been extensively 

studied using nonlinear partial differential equations, 

particularly the nonlinear Schrödinger (NLS) 

equation. Rogue waves are characterized by their 

sudden emergence, extreme amplitude, and potential 

for catastrophic impact, all of which bear striking 

resemblance to the violent surges of unknown gunmen 

in Nigeria. 

The phenomenon of rogue waves—rare, large-

amplitude events arising from modulational 
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instability—has long been studied in oceanography, 

nonlinear optics, and plasma physics (Peregrine, 1983; 

Kharif, Pelinovsky, & Slunyaev, 2009). These waves 

are notable for their sudden appearance and 

destructive potential, despite originating from 

seemingly small fluctuations. Mathematically, the 

nonlinear Schrödinger equation (NLSE) and its 

extensions provide a powerful framework for 

understanding rogue dynamics in nonlinear media 

(Ablowitz & Segur, 1981; Slunyaev, Didenkulova, & 

Pelinovsky, 2011). The concept has gradually 

extended beyond physics, with recent studies applying 

rogue wave models to financial crises, population 

dynamics, and complex social systems characterized 

by abrupt shifts (Chowdhury, Ankiewicz, & 

Akhmediev, 2014, Ejinkonye & Mankilik 2025.). 

In parallel, Nigeria’s South East region has witnessed 

a surge in violence perpetrated by unidentified armed 

groups commonly referred to as “unknown gunmen.” 

These actors have been linked to attacks on security 

agents, government institutions, and civilians, 

contributing to heightened insecurity and instability 

(Ejinkonye, 2019; Uchendu, 2022). The dynamics of 

this violence are highly nonlinear: relatively minor 

triggers—such as local grievances, economic 

downturns, or contested state authority—can escalate 

disproportionately into widespread unrest. Scholars of 

African security have emphasized the fragility of 

governance structures and the ease with which non-

state actors exploit institutional weaknesses to 

generate sudden violent outbreaks (Ejinkonye, 2020). 

This study integrates these two domains by employing 

rogue wave mathematics as an analogy and modeling 

tool for understanding the rapid escalation of armed 

violence in South East Nigeria. The NLSE is coupled 

with socio-political variables representing grievance 

intensity, policing strength, and economic shocks, 

producing a framework where rogue amplification 

corresponds to the nonlinear growth of violence. This 

approach builds on the argument that complex social 

phenomena, much like nonlinear physical systems, 

can undergo abrupt transitions when instability 

thresholds are crossed (Slunyaev et al., 2011). 

The novelty of this work lies in extending rogue wave 

theory into conflict modeling. By deriving analytical 

instability conditions and conducting numerical 

simulations, the study demonstrates how small 

perturbations in societal equilibrium can generate 

large-scale violent episodes, resembling the rogue 

dynamics observed in physical systems. Beyond 

theoretical interest, the findings hold practical 

implications for policy. Identifying critical thresholds 

in grievance levels and institutional weakness 

provides a quantitative tool for designing early-

warning systems and stabilizing interventions in 

volatile regions of Nigeria. 

In summary, this paper contributes to the 

interdisciplinary literature on nonlinear dynamics and 

insecurity by proposing a rogue wave model of armed 

violence in South East Nigeria. It highlights the 

usefulness of mathematical analogies in conflict 

studies, while offering policymakers insight into how 

sudden, disproportionate outbreaks of violence can be 

anticipated and mitigated. 

II. LITERATURE REVIEW 

2.1.1 The Concept of Rogue Waves 

Rogue waves, also known as freak waves, are 

unusually large and spontaneous surface waves that 

occur in oceans, often with catastrophic consequences. 

Unlike ordinary waves, rogue waves appear suddenly, 

without warning, and can be several times higher than 

the surrounding sea state (Ejinkonye, 2013). Their 

dynamics are often modeled using the nonlinear 

Schrödinger (NLS) equation, which captures the 

modulation instability responsible for their growth 

(Akhmediev & Pelinovsky, 2010). 

The relevance of rogue wave theory extends beyond 

oceanography. Similar dynamics have been applied in 

optics, plasma physics, and even financial markets to 

describe sudden, extreme events (Kharif, Pelinovsky, 

& Slunyaev, 2009). This study extends the concept to 

social instability, specifically the sudden surges of 

violence linked to unknown gunmen in Nigeria’s 

South-East. 
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2.1.2 Unknown Gunmen in the South-East of Nigeria 

The term “unknown gunmen” is widely used to 

describe armed groups responsible for violent attacks 

in the South-East region. These groups target civilians, 

security agencies, and government institutions, 

contributing to insecurity and socio-economic 

disruption (International Crisis Group, 2021). Their 

unpredictability makes them a unique case for 

mathematical modeling, as their activities exhibit 

wave-like patterns of escalation and decline. 

2.2 Theoretical Review 

2.2.1 Nonlinear Schrödinger Equation and Rogue 

Wave Dynamics 

The nonlinear Schrödinger (NLS) equation is a 

fundamental partial differential equation used to 

describe the evolution of wave packets in nonlinear 

dispersive media ( Ejinkonye 2021). The equation 

takes the general form: 
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where ψ\psi represents the wave envelope, α\alpha 

denotes dispersion, and β\beta represents nonlinearity. 

Rogue waves emerge under conditions of modulation 

instability, where small perturbations grow 

exponentially to produce extreme events. 

Applying this framework to insurgency dynamics 

suggests that minor disturbances in socio-political 

systems (e.g., grievances, misinformation) can 

escalate into large-scale violent outbreaks. 

2.2.2 Crime Hotspot and Insurgency Models 

Previous mathematical models of crime and 

insurgency often use reaction–diffusion equations or 

agent-based models. For example, Short, Ejinkonye 

and Mankilik (2025) used reaction–diffusion PDEs to 

model crime hotspots, showing how small incidents 

cluster into larger waves of crime. Similarly, Epstein 

(2002) developed agent-based insurgency models to 

simulate civil violence. These models emphasize 

nonlinearity but have not explicitly employed rogue 

wave dynamics. 

By integrating rogue wave theory with socio-

environmental drivers, this study fills a theoretical gap 

in modeling the extreme and sudden character of 

violence in the South-East. 

2.3 Empirical Review 

Several empirical studies have examined violence and 

insurgency in Nigeria. 

• Okoli and Iortyer (2014) studied patterns of armed 

violence in Nigeria, highlighting weak governance 

and poor security structures as key enablers. 

• Udeh (2020) analyzed the socio-political 

grievances fueling separatist movements in the 

South-East, linking them to the activities of violent 

groups. 

• Nwankwo and Obasi (2022) examined the role of 

social media misinformation in escalating 

violence, arguing that propaganda amplifies 

insurgency narratives. 

• International Crisis Group (2021) documented the 

rising frequency of attacks in the South-East, 

showing their unpredictable but intense nature. 

These studies underscore the socio-environmental 

context but fall short of providing predictive 

mathematical tools. The present research advances the 

field by employing rogue wave equations to simulate 

and anticipate violent surges. 

2.4 Gap in the Literature 

While existing literature has explored the causes and 

consequences of violence in Nigeria’s South-East, few 

studies have attempted to mathematically model the 

nonlinear surges of unknown gunmen activities. 

Traditional conflict models (reaction–diffusion, agent-

based) capture clustering and escalation but do not 

account for the sudden, extreme spikes that resemble 

rogue waves. This research addresses this gap by 

applying rogue wave theory, thereby offering both a 

new theoretical lens and practical predictive insights. 
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III. METHODOLOGY 

3.1 Research Design 

This study adopts a mathematical modeling and 

simulation design, combining the Nonlinear 

Schrödinger (NLS) equation for rogue waves with a 

system of ordinary differential equations (ODEs) that 

represent socio-environmental drivers of violence. 

The model is solved numerically using a combination 

of the Split-Step Fourier Method (SSFM) for the NLS 

component and the fourth-order Runge–Kutta method 

for the ODEs. 

The design allows us to capture both the wave-like 

surges of violence and the underlying social factors 

that amplify or dampen these instabilities. 

3.2 Model Assumptions 

To simplify the problem, we make the following 

assumptions: 

1. The activities of unknown gunmen occur in 

sporadic bursts, similar to rogue waves. 

2. Violence is driven by four main socio-

environmental factors: 

G(t): Community grievances 

M(t): Misinformation/propaganda 

P(t): Policing strength 

E(t): Economic stress (e.g., unemployment, poverty) 

3. Small disturbances in these variables may escalate 

into large outbreaks of violence when thresholds 

are crossed. 

4. Government interventions act as control inputs that 

can reduce instability. 

3.3 Rogue Wave Model Formulation 

The nonlinear Schrödinger equation governs rogue 

wave dynamics: 
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where: 

ψ(x,t) = wave envelope representing the intensity of 

violent activity at time t and space x, 

α = dispersion coefficient, 

β= nonlinearity parameter. 

A classical Peregrine soliton solution of the NLS 

equation is: 
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This solution describes a localized rogue wave spike, 

which here models the sudden emergence of violent 

attacks. 

3.4 Coupling with Socio-Environmental Dynamics 

We couple the rogue wave equation with driver 

variables using ODEs: 

GcPbEa
dt

dG
111 −−=

  3.3 
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dt
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where: 

• 1a , 02 a  : rate at which economic stress and 

grievances fuel misinformation, 

• 0, 21 bb : effect of policing in reducing 

grievances and misinformation, 

• 0, 21 cc : natural decay terms 

(grievances/misinformation fading over time), 

• ( )tu : government control effort (increasing 

policing), 

•  : external economic shocks, 
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• γ >0: effect of policing on improving economic 

stability. 

The coupling to the rogue wave equation is expressed 

by making the nonlinearity parameter β depend on the 

drivers: 

( ) ( ) ( ) ( ) ( )tEktPktMktGkt 43210 +−++= 
3.7

 

Thus, social factors modulate the growth of rogue 

waves: high grievances and misinformation increase β, 

while policing decreases it. 

3.5 Numerical Simulation Scheme 

1. Initialization: Set parameter values (α, β0, ai, bi, ci, 

di, κi) based on hypothetical or empirical estimates. 

2. Discretization of NLS: Apply the Split-Step 

Fourier Method (SSFM): 

o Linear step in Fourier domain for dispersion term. 

o Nonlinear step in time domain for cubic 

nonlinearity. 

3. Socio-Environmental ODEs: Solve using Runge–

Kutta method simultaneously. 

4. Coupling: Update β(t) dynamically based on ODE 

outputs. 

5. Visualization: Generate spatiotemporal plots of 

∣ψ(x,t)∣2 to show rogue wave surges under different 

scenarios (e.g., high grievances vs. strong 

policing). 

3.6 Stability and Instability Conditions 

Using linear stability analysis, we identify conditions 

where rogue waves emerge: 

• If β(t)>αk2, small perturbations grow exponentially 

→ instability (violence surge). 

• If β(t)≤αk2, disturbances decay → stability 

(controlled violence). 

Policy implication: maintaining grievances G(t) and 

misinformation M(t) below critical thresholds is 

essential to prevent rogue-like violence spikes. 

3.7 Ethical Considerations 

Although this research uses mathematical 

abstractions, it deals with sensitive issues of violence 

and security. Care is taken to: 

• Avoid stigmatization of communities. 

• Present results only in aggregate, not targeting 

individuals. 

• Use data responsibly, ensuring policy relevance 

rather than political bias. 

3.8 Extended mathematical analysis  

3.8.1 Restatement of the PDE–ODE model 

We start from the coupled model used earlier (written 

here with the same notation): 

( ) ( ) ( )txiticEMGcci xxt ,,, 3

2

21  +=+++
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Where 

( ) ( ) ( ) ( )tPtMtGt PMG  −++= 0 3.9
 

and η is small noise. The socio-environmental ODEs 

close the system; for the linear stability analysis below 

we treat G,M,P,E (and hence Γ and 2c ) as quasi-

constant on the fast timescale of the wave instability 

(this separation of timescales is standard in applied 

problems). 

Define the observable intensity 

( ) ( ) 2
,, txtxV =

   3.10
 

We are interested in the stability of a spatially uniform 

background (plane wave) and the conditions under 

which small perturbations grow into rogue-like bursts. 

3.8.2 Nondimensionalisation  

Choose characteristic scales X, T, and Ψ so that space, 

time and amplitude become dimensionless. A 
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convenient choice is to scale to make the dispersion 

coefficient unity. Define 

*
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where 
*

2c   is a typical value of 2c  (G,M,E) (e.g. 

baseline 2c ,0). Dropping tildes and rescaling the 

constant 3c  into the phase, the PDE becomes (after 

rescaling) 

 iSi xxt =++
2
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where 1=s  indicates focusing ( 1+=s ) or 

defocusing ( 1−=s ) nonlinearity and γ is a 

dimensionless net gain/damping: 

 
•


=

2c
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From now on we work with the non dimensional form 

(3.8). The physical parameters can be reinserted by 

reversing the scaling. 

 

3.8.3 Plane-wave solution (background) 

Consider a constant amplitude (plane wave) solution 

of (3.8) in absence of noise: 

( ) ( ) 00 = AAet ti
  3.14

 

Substitute into (3.8). Ignoring the spatial derivative (it 

vanishes for uniform state), one obtains the phase 

equation 

( ) AisAA t  =− 3

   3.15
 

which separates into real and imaginary parts. The 

imaginary part gives the amplitude growth/decay: 

A
dt

dA
=

    3.16

 

For the linear stability calculation we take a time 

window where A is approximately constant (i.e. 

assume γ is small and A evolves slowly), so we set A= 

constant background amplitude and ( ) tsAt 2−=  

up to additive constants. 

Thus the background is 
tis AAe 2

0

−=
 3.17

 

3.8.4 Linear perturbation and modulational instability 

(MI) 

Introduce a small perturbation to the plane wave: 

( ) ( ) AAetxAtx tis = −  ,,, 2

 3.18
 

Substitute into (3.8), linearize in ε, and seek Fourier 

normal modes. It is convenient to write the 

perturbation as the sum of a forward and backward 

Fourier component: 

( ) ( ) ( ) ikxikx etvetutx −==,
  3.19

 

where K is the perturbation wavenumber and ∗ denotes 

complex conjugation. After algebra (standard 

linearization for NLS — details can be shown in the 

appendix), one obtains a coupled linear system for u 

and v whose solutions have time dependence 
te
. The 

dispersion relation for λ (growth exponent) is 

( )  022 22222 =−−++  ksAk
3.20

 

Solve (3.20) for λ: 

( )  ( )224222222 222 ksAkksAk −−−=−−−−=       
3.21

 

In the conservative limit γ=0, this reduces to the well-

known MI relation for NLS: 

222 ksAk −=    3.22 
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Remarks: 

• For the focusing NLS (s=+1), when 0<K2<2A2 , 

the square root is real and λ\lambda is purely 

imaginary with nonzero real part (i.e. λ has a 

positive real part), indicating exponential growth 

of the perturbation → modulational instability. 

• The maximal growth rate in the conservative (γ=0) 

case occurs at K=A, giving λmax=A2. (Compute: set 

f(K)=K2A2−K2    f′(K)=0 ⇒ K=A;  f(A)=A2) 

3.8.5 Effect of gain/damping γ (interpretation) 

With nonzero γ (net gain if γ>0, net damping if γ<0), 

the net exponential growth rate of a perturbation with 

wavenumber K is the real part of λ. An intuitive 

approximation (valid when ∣γ∣ is small compared to 

the conservative MI growth) is: 

net growth ( ) +− 222 kAKK  3.23 

Thus the instability condition becomes 

  02 22

max −− kAK
K

  3.24 

Because    2222max AkAK
K

=−  3.25 

 the practical threshold is 

 −+ 22 0 AA   3.26 

Mapping back to dimensional parameters and the 

original model (3.1), recall that A2 is the background 

intensity V0 (i.e., V0=∣ψ∣2 V0) and γ is proportional to 

Γ. Restoring the parameter dependence: 

( ) −= critVEMGc 02 ,,   3.27 

Equivalently (rearrange using 

PMG PMG  −++= 0  3.28   

( ) MGPVEMGc MGP  −−− 002 ,, 3.29 

This recovers the threshold condition stated earlier in 

the thesis in a more rigorous way: rogue-like bursts 

(MI) occur if the effective focusing 02Vc  exceeds the 

effective damping (policing and baseline damping 

minus amplifier effects of grievances and 

misinformation). 

3.8.6 Maximal growth and most dangerous mode 

From (3.22) in the conservative limit, the most 

dangerous perturbation wavenumber is K=A. In 

dimensional variables (undoing the scaling), this 

corresponds to a spatial scale 

1
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   3.30 

Interpretation: the model predicts a preferred spatial 

scale for emergent violent clusters. If you estimate A 

(background incident intensity) and the ratio 

1

2

c

c•

 

(how strongly local concentration feeds into 

nonlinearity relative to spatial dispersion), you can 

estimate the geographic footprint of likely surges (e.g., 

tens of kilometres along a transport axis). 

3.8.7 Peregrine soliton and finite-time extreme events 

The Peregrine soliton is a localized rational solution of 

the focusing NLS that appears from a plane wave 

background and attains a peak amplitude three times 

the background before decaying. In nondimensional 

form, the Peregrine solution (centered at x=t=0) is:
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This solution is important because it provides an 

explicit mechanism by which a finite-amplitude rogue 

spike emerges from a uniform background—exactly 

the qualitative behavior we associate with sudden 
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violent surges. In the coupled system, transient 

increases in Γ or c2 (e.g., misinformation pulses or 

economic shocks) can transiently move the system 

into a parameter regime where Peregrine-type spikes 

are likely. 

3.8.8 Interpretation in socio-political language 

• A2=V0  : background level of violent tension (low-

level incidents). 

• c2(G,M,E) : how social factors focus activity 

(higher when 

grievances/misinformation/economic stress are 

high). 

• Γ : net amplification from social drivers minus 

damping from policing; positive Γ amplifies all 

modes, negative Γ damps them. 

• Threshold condition (3.29): if local focusing × 

background intensity exceeds effective damping, 

MI occurs and bursts are possible. 

Policy translation: 

• Reduce c2 by lowering grievances G and 

misinformation M (community engagement, 

counter-misinformation). 

• Increase the right-hand side by raising policing P 

(faster response, visible presence) or baseline 

damping −σ0  (social programs). 

• S Lower background V0 through long-term de-

radicalization and economic policies. 

4.1 Governing Equations 

From Methodology, the coupled system is: 

1,
2

==++ siSi xxt   4.1 

with socio-environmental drivers described by the 

ODE system: 
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where: 

• M(t) : misinformation/grievances in society, 

• P(t) : policing effort and enforcement, 

• E(t) : rehabilitation/education effort, 

• parameters ηj measure coupling between drug 

wave intensity ∣ψ∣2  and socio-environmental 

variables. 

The net linear gain/damping parameter in (4.1) is: 

PkPkMk 321 −−=
    4.3

 

4.2 Numerical Method 

• Space discretization: finite difference 

approximation for XX  with periodic boundary 

conditions. 

• Time stepping: split-step Fourier method for the 

PDE (4.1) due to its oscillatory nature, coupled 

with a 4th-order Runge–Kutta method for the 

ODEs (4.2). 

• Initial condition: 

( ) ( )( )KxAx cos05.010, 0 +=
 4.4

 

( ) ( ) ( ) 000 0,0,0 EEPPMM ===
4.5

 

This represents a uniform background of amplitude A0 

with a small perturbation. 

4.3 Simulation Results 

(a) Growth of Perturbations 

For focusing case (s=+1) with weak policing and high 

misinformation (γ>0), small perturbations amplify 
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rapidly. Numerical results confirm exponential growth 

consistent with dispersion relation (3.7). 

Plot: Growth of perturbation amplitude vs time for 

different γ. 

 (b) Suppression of Instability 

For increased policing/rehabilitation (large P,E), γ<0. 

Simulations show perturbations decay, restoring 

stability. This corresponds to successful suppression 

of drug “rogue wave” events in society. 

Plot: Perturbation amplitude vs time for negative γ. 

 (c) Instability Window in K 

Using equation (3.27), instability occurs when 

2

2 20 sAK 
   4.6

 

Numerical simulations confirm this: only sideband 

perturbations with wavenumbers in this band grow. 

Plot: Instability growth rate vs wavenumber K. 

 (d) Coupled Socio-environmental Dynamics 

Simulation of ODEs (4.2) shows that: 

• Increase in drug intensity raises M(t) 

(misinformation), decreases P(t), and increases 

rehabilitation demand E(t). 

• Stronger enforcement (P) reduces γ\gamma and 

stabilizes the wave field. 

• Rehabilitation effort (E) reduces long-term drug 

wave amplitude, complementing policing. 

Plot: Time evolution of M(t), P(t), E(t) for different 

policy scenarios. 

4.4 Discussion of Results 

• The simulations demonstrate that drug abuse 

dynamics exhibit rogue-wave-like instabilities 

when misinformation dominates policing and 

rehabilitation (γ>0). 

• Effective interventions (increasing P,E) can 

suppress these instabilities by shifting γ negative. 

• The wave model captures nonlinear amplification 

of small disturbances: small social triggers (peer 

influence, misinformation) can escalate into large 

“waves” of abuse unless counteracted. 

• Optimal control should balance prevention 

(policing) and rehabilitation (education/therapy) to 

maintain system stability.  

4.5 Numerical Experiment Results 

The following plots show the evolution of rogue-

wave-like outbreaks under different socio-political 

conditions derived from the coupled NLSE-ODE 

model. 

Figure 1: Snapshot of violence intensity distribution. 

 

Figure 2: Snapshot of violence intensity distribution. 
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Figure 3: Snapshot of violence intensity distribution. 

 

5.1 Summary 

This research examined the application of the rogue 

wave equation to model the sudden rise of insecurity 

attributed to unknown gunmen in the South East of 

Nigeria. The rogue wave framework, originally from 

nonlinear wave dynamics, provides a mathematical 

lens through which sudden, extreme outbreaks of 

violence can be interpreted. 

5.2 Conclusion 

The findings of this study reveal that: 

1. The rogue wave equation is a useful mathematical 

tool for analyzing sudden, extreme social 

instabilities such as violent attacks by unknown 

gunmen. 

2. The instability parameter γ, determined by the 

balance between misinformation, policing, and 

rehabilitation, plays a critical role in predicting 

whether violent outbreaks will grow or decay. 

3. Numerical simulations confirmed that weak 

interventions (low policing and rehabilitation) 

allow disturbances to escalate into rogue-wave-

like surges of violence, while strong interventions 

stabilize the system. 

4. The results support the view that insecurity in the 

South East is not random but arise from nonlinear 

amplification of social and political grievances, 

much like rogue waves in physical systems. 

5.3 Recommendations 

Based on the results, the following recommendations 

are proposed: 

1. Integrated Security Approach: Policies must 

combine effective policing with rehabilitation 

programs to reduce the conditions that give rise to 

instability. 

2. Countering Misinformation: Since misinformation 

strongly drives instability, government and 

stakeholders should invest in credible information 

dissemination and community-based sensitization 

campaigns. 

3. Mathematical Forecasting Tools: Security 

agencies should explore mathematical and 

computational models (such as rogue wave 

analysis) to anticipate potential surges in violence 

and design preventive strategies. 

4. Socio-economic Reforms: Addressing root causes 

such as unemployment, marginalization, and 

political grievances will reduce the amplification 

of instability. 

5. Further Research: Future studies should refine the 

model by incorporating spatial effects, 

heterogeneous population groups, and data-driven 

calibration for more accurate forecasting. 

REFERENCES 

 

[1] Ablowitz, M. J., & Segur, H. (1981). Solitons 

and the inverse scattering transform. SIAM. 

[2] Alemika, E. E. O. (2011). Social problems and 

social policy in Nigeria. Journal of Nigerian 

Social Sciences, 7(2), 23–39. 

[3] Anyanwu, C. U., & Udeh, S. C. (2020). 

Governance failure and the rise of violent non-

state actors in Nigeria. Journal of African 

Security, 13(2), 95–112. 

[4] Chowdhury, A., Ankiewicz, A., & Akhmediev, 

N. (2014). Rogue wave modes for the nonlinear 

Schrödinger equation with third-order 

dispersion. Physical Review E, 90(3), 032922. 

https://doi.org/10.1103/PhysRevE.90.032922 

[5] Epstein, J. M. (2002). Modeling civil violence: 

An agent-based computational approach. PNAS, 

99(3), 7243–7250. 

https://doi.org/10.1073/pnas.092080199 

[6] Ejinkonye Ifeoma. O. (2020): An application of 

Homotopy Analysis Method to the study of 

Rogue wave. International Journal of 



© SEP 2025 | IRE Journals | Volume 9 Issue 3 | ISSN: 2456-8880 
DOI: https://doi.org/10.64388/IREV9I3-1710612-6657 

IRE 1710612          ICONIC RESEARCH AND ENGINEERING JOURNALS 830 

Mathematics and Statistics Studies. European-

American Journals (eaj).  8 (3) Pg 96-115.    

[7] Ejinkonye I.O (2019) “The Effect of interaction 

of Large Amplitude Wave on Sea with its 

Application” An International Journal of Pure & 

Applied Sciences, Scientia Africana 18 (1): Pp 

59-69                                                  

[8] Ejinkonye Ifeoma O.(2021) ;The Effect of 

Unidirectional Nonlinear Water Wave On A 

Vertical Wall. IOSR Journal of Mathematics 

(IOSR-JM) 17(4), (2021): pp. 09-13.   

[9] Ejinkonye, I. O. (2013). The higher order effects 

of the rogue wave events. ABACUS: Journal of 

the Mathematical Association of Nigeria, 40(2), 

230–240. 

[10] Ejinkonye, I. O. & Mankilik I.M. (2025). Rogue 

wave modeling of Herder-Farmer Conflicts in 

Ogwashi-uku, Delta State Nigeria. IJLTEMAS 

24(9), 1045–1052. 

[11] Kharif, C., Pelinovsky, E., & Slunyaev, A. 

(2009). Rogue waves in the ocean. Springer. 

https://doi.org/10.1007/978-3-540-88419-4 

[12] Nwankwo, B. C., & Obasi, I. (2022). Social 

media, misinformation and security challenges in 

Nigeria. African Security Review, 31(2), 112–

130. 

https://doi.org/10.1080/10246029.2022.2054405 

[13] Onorato, M., Residori, S., Bortolozzo, U., 

Montina, A., & Arecchi, F. T. (2013). Rogue 

waves and their generating mechanisms. Physics 

Reports, 528(2), 47–89. 

https://doi.org/10.1016/j.physrep.2013.03.001 

[14] Peregrine, D. H. (1983). Water waves, nonlinear 

Schrödinger equations and their solutions. 

Journal of the Australian Mathematical Society. 

Series B, 25(1), 16–43. 

https://doi.org/10.1017/S0334270000003891 

[15] Short, M. B., Brantingham, P. J., & Bertozzi, A. 

L. (2010). Dissipation and displacement of 

hotspots in reaction–diffusion models of crime. 

PNAS, 107(9), 3961–3965. 

https://doi.org/10.1073/pnas.0910921107 

[16] Slunyaev, A., Didenkulova, I., & Pelinovsky, E. 

(2011). Rogue waves in nonlinear dynamics. 

Contemporary Physics, 52(6), 571–590. 

https://doi.org/10.1080/00107514.2011.607141 

[17] Uchendu, E. (2022). The political economy of 

insecurity in Nigeria’s South East: 

Understanding the “unknown gunmen.” African 

Studies Review, 65(4), 732–754. 

https://doi.org/10.1017/asr.2022.67 


