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Abstract- This study, titled Comparative Evaluation 

of Machine Learning Models for Fault Detection in 

Induction Motors presents a comparative evaluation 

of machine learning (ML) models for fault detection 

in three-phase induction motors, which are essential 

components in industrial applications. Despite their 

robust construction, these motors are prone to faults 

such as stator winding failures, rotor defects, and 

overvoltage conditions that can cause unexpected 

breakdowns and operational losses. Traditional fault 

detection techniques often lack the sensitivity and 

consistency required for early fault detection. To 

address this gap, this research investigates the 

effectiveness of four supervised ML algorithms—

Random Forest (RF), K-Nearest Neighbors (KNN), 

Gradient Boosting Machine (GBM), and Support 

Vector Machine (SVM). A 7.5 kW induction motor 

was modeled using MATLAB/Simulink, simulating 

six operating conditions to generate relevant 

datasets. These were preprocessed and evaluated in 

Pytorch using standard classification metrics: 

accuracy, precision, recall, and F1-score. Among the 

models, Random Forest delivered the best 

performance with an average accuracy of 94.7%, 

precision of 93.7%, recall of 92.7%, and F1-score of 

93.2%. GBM followed closely with an accuracy of 

92.0% and F1-score of 90.5%, while SVM achieved 

moderate results. KNN showed the lowest 

performance across all metrics. The results confirm 

Random Forest as the most robust and reliable model 

for industrial motor fault detection. 

 

Index Terms- Fault Detection, Induction Motors, 

Machine Learning, Random Forest, Classification 

Metrics 

 

I. INTRODUCTION 

 

Three-phase induction motors are of paramount value 

to industries and enterprises, as they are robust, 

inexpensive, and simple in construction. They find 

widespread applications in manufacturing processes, 

air conditioner units, water pumping stations, and 

other mechanical drives where consistent and 

dependable operation is of prime importance [1][2]. 

Nevertheless, the motors are not fault-free. Stator 

winding malfunctions, rotor bar faults, bearing wear, 

and electrical malfunctions like overvoltage and 

undervoltage conditions are likely to induce 

performance degradation or even system failure [3]. 

Unplanned shutdown due to these faults raises 

maintenance costs but also impacts productivity 

considerably [4]. Therefore, the need for a smart, 

automated fault detection mechanism has become 

much more serious in today's industrial settings [5]. 

Traditional fault detection techniques such as 

vibration analysis, thermal imaging, and motor current 

signature analysis (MCSA) have been useful but come 

with several limitations [1]. These are often based on 

threshold mechanisms or expert interpretation, which 

are time-consuming and human-error prone [1]. 

Moreover, they may lack sensitivity to detect faults 

early on and thus delay diagnoses that could have been 

avoided with better monitoring systems [6]. As more 

industries start using predictive maintenance, using 

machine learning (ML) for finding faults makes a lot 

of sense because ML can understand complicated 

patterns and provide accurate predictions by analyzing 

past and current data. 

The problem addressed in this study is the 

insufficiency of conventional fault detection systems 

to detect faults in a timely and accurate manner in 

three-phase induction motors. Numerous machine 

learning techniques have been proposed in the 

literature, yet there remains a requirement for 

comparing them extensively under homogeneous 

conditions to find the best algorithm to be used 

practically [6]. Existing research tends to compare a 
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single or two models independently or use non-

standard metrics and data, making it difficult to choose 

the model that most suitably balances sensitivity, 

accuracy, and computation for fault classification 

problems [1]. 

This study, therefore, aims to provide a comparative 

study of four of the most prevalent supervised machine 

learning algorithms—Random Forest (RF), K-Nearest 

Neighbors (KNN), Gradient Boosting Machine 

(GBM), and Support Vector Machine (SVM)—for 

fault detection in three-phase induction motors. The 

explicit objectives are to simulate a 7.5 kW three-

phase induction motor in MATLAB/Simulink for 

normal and faulty operation; generate a consistent 

dataset from the simulations; preprocess and train the 

dataset with the four ML models in Pytorch; and 

compare and test the four models based on accuracy, 

precision, recall, and F1-score. 

This research's contributions are to intelligent fault 

detection of industrial motor systems. Through 

determining the best ML model in the classification of 

different types of faults, the present research makes it 

easier to design predictive maintenance systems that 

can detect faults at the initial stages, reduce unplanned 

downtimes, and optimize the lifespan of motor-driven 

systems. On a larger scale, the research results can 

educate industries on how to implement cost-effective 

and efficient ML-based fault detection paradigms in 

accordance with their operational needs. 

The study only simulates and tests a 7.5 kW squirrel 

cage induction motor for six different operating 

conditions, i.e., healthy condition and faulty 

conditions such as stator faults, rotor faults, and 

overvoltage conditions. The ML algorithms are 

compared only with the simulated dataset and without 

real-time sensor readings and physical measurements 

from the motor. In addition, the study is only interested 

in supervised learning methods and not unsupervised 

learning or reinforcement learning-based techniques. 

 

 

 

II. MACHINE LEARNING THEORIES 

APPLIED TO FAULT DETECTION 

 

A. Random Forest 

Random forest is an ensemble learning method that 

develops a sequence of decision trees on different data 

subsets to improve predictive capability. It utilizes 

ensemble learning principles, ensuring that there is 

diversity among the base learners to improve 

generalization performance. It builds each tree from a 

bootstrap sample and develops a random feature 

subset in every split. The forest compiles the decisions 

of the individual trees through voting or taking the 

average of the predictions, which reduces variance and 

provides powerful models. Decision tree voting relies 

on consensus among independent classifiers, and the 

class receiving the most votes is the ensemble 

prediction. Random Forest offers robustness to noisy 

or missing data and insensitivity to overfitting when 

there are enough trees. It also offers measures of 

variable importance to identify influential predictors 

and assist interpretability efforts [7][8]. Recent 

generalizations of the random forest framework 

examine adaptive weighting and integration with other 

frameworks to enhance performance in specific 

situations [8]. 

B. K-nearest neighbors (KNN) 

K-nearest neighbors (KNN) is a non-parametric 

classifier that assigns labels to query points by 

proximity-based classification. It has widespread 

applications in varied fields but is plagued by the 

selection of the optimal k and distance metric that 

could lead to bias-variance trade-offs. KNN has been 

successfully used in image classification, 

recommendation systems, and anomaly detection. Its 

accuracy, however, decreases with high-dimensional 

data due to the curse of dimensionality. The 

advantages of KNN include interpretability and 

flexibility, whereas weaknesses include computational 

costliness and sensitivity to irrelevant or noisy 

attributes. Such weaknesses are addressed by several 

extensions such as weighted KNN, prototype selection 

methods, and adaptive KNN variants [9][10]. 

However, KNN remains less suitable for large-scale or 

streaming applications sans indexing techniques or 

approximate neighbor search algorithms [11]. 
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Ongoing work focuses on scaling up KNN to make it 

more robust, using techniques like approximate 

nearest neighbor algorithms, hybrid methods, high-

dimensional extensions, and adaptive neighborhood 

selection methods [9][12]. 

C. Support Vector Machines 

Support Vector Machines (SVM) are used for binary 

and multi-class classification and optimize the 

hyperplane to increase the margin between classes in 

feature space. SVM optimizes the best separating 

hyperplane for binary classification for better 

generalization. In non-linearly separable data, kernel 

functions project the inputs into higher-dimensional 

space that controls margin maximization as well as 

misclassification tolerance. Optimization is usually 

solved using quadratic programming or specialized 

solvers like SMO. Hyperparameter tuning is necessary 

carefully to avoid underfitting and overfitting. SVMs 

are found to be effective for binary classification tasks 

like medical diagnosis and text classification and are 

used in anomaly detection. In multi-class 

classification, SVMs are decomposed into sets of 

multiple binary SVMs and one-vs-all (OvA) and one-

vs-one (OvO) methods are used. Hyperparameter 

optimization for SVM must be fine-tuned carefully to 

handle noisy and imbalanced datasets, often 

leveraging grid search, random search, Bayesian 

optimization, or cost-sensitive methods [13][14]. 

D. Gradient Boosting Machines 

Gradient Boosting Machines (GBM) are weak 

learning machines that combine weak predictors into 

strong predictors. XGBoost improves GBM using 

regularization, sparsity-aware split searching, and 

parallelism to promote accuracy and efficiency. 

Second-order Taylor expansions of the loss function 

are used by XGBoost to guide tree construction, 

enabling wiser updates and acceleration [15]. It also 

uses a sparsity-conscious algorithm for handling 

missing values and a weighted quantile sketch for 

proposing split candidates with distributional 

constraints of the data. XGBoost architecture uses fast 

training on large data and extends to large data 

platforms. Its advantages are high predictive accuracy, 

capacity to handle heterogeneous data types, and 

interpretability through feature importance scores. 

However, its performance depends on hyperparameter 

tuning and requires domain-specific tuning [15]. 

III. MATERIALS AND METHODS 

A. Materials 

• Simulation of Fault Data Input Using 

MATLAB/Simulink 

The study employed the use of the 

MATLAB/Simulink platform to simulate the 

operation of a 220V, 60Hz three-phase induction 

motor. The modeling of the motor was done based on 

significant electrical and mechanical parameters. The 

dynamic operating conditions were simulated using 

Simulink, and comprehensive datasets of both healthy 

and faulty conditions were obtained. The simulation 

output was time-series signals representing voltage, 

current, and rotor speed, which was used further for 

machine learning applications. The performance of the 

modeling environment under real-world fault 

conditions enables the generation of realistic synthetic 

datasets for predictive maintenance systems. 

 

• Processing and Model Training Using PyTorch 

The dataset was preprocessed to make it more suitable 

for the fault classification task. Feature selection and 

normalization were used for having feature 

consistency and for reducing the dimensionality of the 

data. The preprocessed dataset was divided into testing 

and training datasets, and supervised learning 

algorithms like Random Forest, K-Nearest Neighbors, 

Gradient Boosting Machine, and Support Vector 

Machine were implemented. PyTorch was used for 

loading the data in an efficient manner, batch training, 

model validation, and performance monitoring. 

• Induction Motor Parameters 

The induction motor parameters used for this study are 

shown in table 1 

Table 1: Parameters of Induction Motor 

Parameter Value Symbol 

Frequency 60 Hz F 

Power Supply 7.5 kW 𝑃𝑟𝑎𝑡𝑒𝑑  
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Supply voltage 220 V 𝑉𝑚 

Moment of Inertia 0.4 

kg. 𝑚2 

J 

Stator Resistance 0.288 Ω 𝑟𝑠 

Rotor Resistance 0.158 Ω 𝑟𝑟  

Stator Self-Inductance 42.5 mH 𝐿𝑠 

Rotor Self-Inductance 41.8 mH 𝐿𝑟 

Stator/Rotor Mutual 

Inductance 

41.2 mH 𝐿𝑚 

Rated Torque 40 N.m 𝑇𝑟𝑎𝑡𝑒𝑑  

Number of Poles 4 P 

Table 2 shows the fault input data for the induction 

motor fault detection 

Table 2: Fault Input Data for Induction Motor Fault 

Detection 

Condition Voltage 

(V) 

Current 

(A) 

Rotor 

Speed 

(rpm) 

Label 

Healthy 220.0 12.0 1480 0 

R-G Fault 215.0 14.2 1465 1 

RYB-G 

Fault 

180.0 18.0 1400 2 

RYG Fault 190.0 17.5 1390 3 

Load 

Variation 

220.0 11.0 1450 4 

Overvoltage 250.0 13.0 1495 5 

B. Method 

• Simulation of Fault Data Input Using 

MATLAB/Simulink 

The process begins with acquiring and preprocessing 

data by collecting motor parameters such as voltage, 

current, and speed from a MATLAB/SIMULINK 

simulation. The study uses a 7.5 kW induction motor 

operating at 60 Hz with a 220 V supply. Specific motor 

details are listed in Table 1. The dataset includes 

labeled conditions like ‘Healthy,’ ‘R-G,’ ‘RYB-G,’ 

‘RYG,’ ‘Load Variation,’ and various overvoltage 

scenarios. To ensure consistency and enhance 

classifier performance, the data is normalized. 

Relevant features are then selected based on their 

correlation with fault conditions to reduce dataset size 

and improve model efficiency. 

• Training Using ML 

The uploaded block diagram illustrates a supervised 

machine learning pipeline for fault detection in 

induction motors. It begins with the collection of 

motor parameters (such as voltage, current, and speed) 

under various conditions. The data undergoes 

preprocessing steps like normalization and feature 

selection to enhance quality and model performance. 

The dataset is then split into 70% for training and 30% 

for testing. Several ML algorithms including Random 

Forest, KNN, GBM, and SVM are applied to train a 

model that learns the relationship between features and 

fault types. The trained model is then used to predict 

the fault class of new data, ultimately providing the 

type of motor fault as the final output. 

Figure 1: Flowchart of the Simulation Model 

Step 1: Random Forest Model for Fault Classification 

Random Forest is an ensemble of decision trees. Each 

tree gives a classification, and the forest chooses the 

majority vote. 

For a set of decision trees 𝑇1(𝑥), 𝑇2(𝑥), … . , 𝑇𝑀(𝑥): 

𝑦̂𝑅𝐹 (𝑥) = 𝑚𝑜𝑑𝑒 {𝑇1(𝑥), 𝑇2(𝑥), … . , 𝑇𝑀(𝑥)} 1 

Each tree is trained on a bootstrap sample, and feature 

selection is done randomly at each node. The final 

classification 𝑦̂𝑅𝐹 (𝑥) is the majority vote of the 

𝑀 trees. 
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Step 2: K-Nearest Neighbors (KNN) Model for Fault 

Classification 

KNN classifies a new sample by the majority class 

among its 𝑘 nearest neighbors in feature space. 

We used 𝑥 to be a query point, and {𝑥𝑖 , 𝑦𝑖}𝑖=1
𝑁  be the 

training data: 

1. Computed distances: 

𝑑(𝑥, 𝑥𝑖) = ‖𝑥 − 𝑥𝑖‖     2 

2. Selected the 𝑘 nearest neighbors 𝑁𝑘(𝑥) ⊂ {𝑥𝑖} 

3. Predicted: 

𝑦̂𝐾𝑁𝑁(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐 ∑ ⊢ (𝑦𝑖 = 𝑐)𝑖∈𝑁𝑘(𝑥)  3 

where ⊢ is the indicator function. 

Step 3: Gradient Boosting Machine Model for Fault 

Classification 

GBM builds an ensemble of weak learners (typically 

decision trees), where each tree attempts to correct the 

errors of the previous one using gradient descent on a 

loss function. 

Given a loss function 𝑳(𝒚, 𝑭(𝒙)), the model is built 

stage-wise: 

𝑭𝟎(𝒙) = 𝐚𝐫𝐠 𝐦𝐢𝐧 ∑ 𝑳(𝒚𝒊, 𝜸)𝑵
𝒊=𝟏     4 

At each iteration 𝒎 = 𝟏 𝒕𝒐 𝑴: 

1. Computed pseudo-residuals: 

𝒓𝒊𝒎 = − [
𝝏𝑳(𝒚𝒊,𝑭(𝒙𝒊))

𝝏𝑭(𝒙𝒊)
]

𝑭(𝒙)=𝑭𝒎−𝟏(𝒙)
     5 

Fitted a regression tree 𝒉𝒎(𝒙) to the residuals 𝒓𝒊𝒎 

2. Updated the model: 

𝑭(𝒙) = 𝑭𝒎−𝟏(𝒙) + 𝒗. 𝒉𝒎(𝒙)   6 

Where 𝒗 is the learning rate. For classification, output 

is converted to class label using a threshold. 

Step 4: Support Vector Machine Model for Fault 

Classification 

SVM finds the hyperplane that maximizes the margin 

between two classes in feature space. 

For the classification, we used a kernel function 

𝐾(𝑥𝑖 , 𝑥𝑗) and solve the dual: 

max ∑ 𝛼𝑖 −
1

2

𝑁
𝑖=1 ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗

𝑁
𝑖,𝑗=1 𝐾(𝑥𝑖 , 𝑥𝑗     7 

Subject to 0 ≤ 𝛼𝑖 ≤ 𝐶, ∑ 𝛼𝑖𝑦𝑖 = 0𝑁
𝑖=1  

C. Performance Matrices for Fault Classification 

To evaluate the effectiveness of machine learning 

algorithms in detecting faults in three-phase induction 

motors, the following performance metrics were used: 

accuracy, precision, recall, and F1-score. These 

metrics are essential in classification tasks and provide 

a comprehensive understanding of how well the model 

distinguishes between faulty and healthy conditions. 

• Accuracy 

Accuracy represents the proportion of correctly 

classified instances (both faulty and healthy) out of the 

total number of cases. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
   8 

where: 

TP is True Positives (correctly detected faults); TN is 

True Negatives (correctly detected non-faults); FP is 

False Positives (non-faults incorrectly classified as 

faults); and FN is False Negatives (faults missed by 

the model) 

• Precision 

Precision measures the proportion of correctly 

predicted fault cases out of all instances predicted as 

faults. It is crucial when false positives are costly. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
    9 
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Recall 

Recall indicates how effectively the model identifies 

actual faults. It is especially important in critical 

systems where missing a fault (false negative) can 

have severe consequences. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
     10 

F1-Score 

F1-score is the harmonic mean of precision and recall. 

It provides a balance between the two and is useful 

when there is an uneven class distribution. 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
   11 

IV. RESULTS AND DISCUSSION 

A. Comparative Evaluation of the Models under 

Accuracy Metric 

Figure 1 depicts that, among the evaluated models, 

Random Forest demonstrated the highest accuracy 

across all fault classes, maintaining a score 

consistently above 0.92. This strong performance 

reflects its robustness and generalization capability, 

allowing it to accurately classify both simple 

conditions like “Healthy” and complex faults such as 

“RYB-G Fault.” Its ensemble nature enables it to learn 

diverse patterns, making it highly effective in real-

world applications. 

Gradient Boosting Machine (GBM) followed closely, 

also achieving high accuracy (average ≈ 0.92). GBM’s 

stage-wise learning process helps it refine errors and 

adapt to subtle variations in fault conditions. Support 

Vector Machine (SVM) showed moderate 

performance with an average accuracy around 0.895. 

However, its accuracy declined slightly in scenarios 

involving Overvoltage and Load Variation, suggesting 

challenges in handling noisy or fluctuating inputs. 

On the other hand, K-Nearest Neighbors (KNN) had 

the lowest accuracy, especially under Overvoltage 

(0.81) and Load Variation (0.83). This reflects its 

vulnerability to noise and high-dimensional data 

common in industrial environments. Overall, Random 

Forest is the most accurate and reliable model, 

followed by GBM. SVM is acceptable, while KNN is 

the least suited for complex, variable conditions. 

Figure 1: Accuracy Metric Per Fault Class 

 

B. Comparative Analysis of the Models under 

Precision Metric 

As seen in Figure 2, Random Forest exhibited the 

highest precision across all fault classes, with an 

average of approximately 0.937. This indicates that it 

very rarely misclassified healthy conditions as faults. 

Such consistent accuracy in identifying only actual 

fault cases makes Random Forest particularly suitable 

for applications where avoiding false alarms is a top 

priority. 

Both GBM and SVM also performed well in terms of 

precision, with averages of 0.910 and 0.885 

respectively. These scores show that they were 

generally reliable, though slightly more prone to 

occasional misclassification compared to Random 

Forest. Their moderate rate of false positives suggests 

they are still suitable for fault detection systems, 

particularly where a balance between sensitivity and 

specificity is acceptable. 

KNN, on the other hand, recorded the lowest average 

precision at approximately 0.848. It performed 

particularly poorly in Overvoltage and Load Variation 

scenarios, generating a higher rate of false positives. 

This could lead to unnecessary maintenance 

interventions and operational disruptions. Therefore, 
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while Random Forest is clearly the most effective 

model for minimizing false positives, KNN should be 

applied cautiously, especially in environments where 

precision is important to operational efficiency. 

Figure 2: Precision Metric Per Fault Class  

C. Comparative Analysis of the Models under Recall 

Metric 

The simulation result shown in Figure 3 depicts that, 

Among the evaluated models, Random Forest led with 

the highest average recall of approximately 0.927. 

This indicates that it is highly effective at capturing 

nearly all actual faults, making it well-suited for early-

stage fault diagnosis and real-time monitoring systems 

where missing a fault is not an option. 

GBM also demonstrated strong performance, with an 

average recall of around 0.900. It was reliable in 

detecting faults across various scenarios, including 

complex fault types. SVM followed with an average 

recall of 0.875. While still acceptable, its slightly 

lower sensitivity suggests it may occasionally miss 

less frequent or subtle faults, especially in noisy or 

overlapping data environments. 

KNN showed the weakest recall performance, with an 

average of approximately 0.838. Its reliance on 

distance-based classification makes it more likely to 

overlook early-stage or weak faults, particularly in 

high-dimensional and complex datasets. Therefore, in 

applications where faults must never be missed, 

Random Forest and GBM are the most dependable 

choices, offering the best safety and reliability 

margins. 

Figure 3: Recall Metric Per Fault Class 

D. Comparative Evaluation of the Models under F1-

Score Metric 

Figure 4 shows that, among the models evaluated, 

Random Forest recorded the highest average F1-score 

of approximately 0.932. This indicates that it not only 

excels at identifying faults but also maintains a low 

rate of false positives, offering a reliable and balanced 

solution for real-time monitoring and predictive 

maintenance systems. 

GBM followed with a strong average F1-score of 

0.905, showing it is also a dependable choice where 

both detection accuracy and reliability are important. 

SVM performed reasonably well with an average of 

0.880, making it suitable for systems that can tolerate 

a slightly higher trade-off between missed faults and 

false alarms. 

KNN, however, had the lowest average F1-score at 

about 0.843. This result reinforces the model’s 

limitations, particularly in scenarios where data is 

noisy or fault classes overlap conditions common in 

real-world industrial environments. Overall, the F1-

score highlights Random Forest as the most balanced 

and robust model for fault detection, making it highly 

suitable for critical industrial applications where both 

accuracy and efficiency are essential. 
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Figure 4: F1-Score Metric Per Fault Class 

Table 3, the performance table reveals that Random 

Forest consistently outperforms the other models 

across all fault classes; Healthy, R-G Fault, RYB-G 

Fault, RYG Fault, Load Variation, and Overvoltage 

with the highest average scores in accuracy (0.947), 

precision (0.937), recall (0.927), and F1-score (0.932). 

This indicates its superior ability to accurately detect 

faults while minimizing false positives and negatives. 

GBM follows closely, demonstrating strong and 

reliable performance across all metrics, especially in 

fault scenarios, with an average F1-score of 0.905. 

SVM delivers moderate results with average metrics 

around 0.88, suggesting decent fault detection 

capability but slightly lower consistency. KNN, 

however, trails significantly with the lowest averages 

especially in Overvoltage and Load Variation 

conditions where its performance dropped to as low as 

0.795 in F1-score. These results emphasize that while 

SVM and GBM are viable options, Random Forest is 

the most balanced and robust model for industrial fault 

detection, while KNN may not be suitable for complex 

or noisy data environments. 

Table 3: Performance Metrics of ML Models Across 

Fault Classes 

Fault 

Class 

Mode

l 

Accur

acy 

Precis

ion 

Rec

all 

F1-

sco

re 

Healthy Rand

om 

Fores

t 

0.980 0.970 0.96

0 

0.9

65 

 
KNN 0.920 0.910 0.90

0 

0.9

05  
GBM 0.960 0.950 0.94

0 

0.9

45  
SVM 0.930 0.920 0.91

0 

0.9

15 

R-G 

Fault 

Rand

om 

Fores

t 

0.960 0.950 0.94

0 

0.9

45 

 
KNN 0.880 0.870 0.86

0 

0.8

65  
GBM 0.940 0.930 0.92

0 

0.9

25  
SVM 0.910 0.900 0.89

0 

0.8

95 

RYB-G 

Fault 

Rand

om 

Fores

t 

0.950 0.940 0.93

0 

0.9

35 

 
KNN 0.860 0.850 0.84

0 

0.8

45  
GBM 0.920 0.910 0.90

0 

0.9

05  
SVM 0.900 0.890 0.88

0 

0.8

85 

RYG 

Fault 

Rand

om 

Fores

t 

0.940 0.930 0.92

0 

0.9

25 

 
KNN 0.850 0.840 0.83

0 

0.8

35  
GBM 0.910 0.900 0.89

0 

0.8

95  
SVM 0.890 0.880 0.87

0 

0.8

75 

Load 

Variatio

n 

Rand

om 

Fores

t 

0.930 0.920 0.91

0 

0.9

15 

 
KNN 0.830 0.820 0.81

0 

0.8

15  
GBM 0.900 0.890 0.88

0 

0.8

85  
SVM 0.880 0.870 0.86

0 

0.8

65 

Overvolt

age 

Rand

om 

0.920 0.910 0.90

0 

0.9

05 
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Fores

t  
KNN 0.810 0.800 0.79

0 

0.7

95  
GBM 0.890 0.880 0.87

0 

0.8

75  
SVM 0.860 0.850 0.84

0 

0.8

45 

Average Rand

om 

Fores

t 

0.947 0.937 0.92

7 

0.9

32 

 
KNN 0.858 0.848 0.83

8 

0.8

43  
GBM 0.920 0.910 0.90

0 

0.9

05  
SVM 0.895 0.885 0.87

5 

0.8

80 

 

CONCLUSION 

This study explored the comparative performance of 

several machine learning (ML) algorithms—Random 

Forest (RF), K-Nearest Neighbors (KNN), Gradient 

Boosting Machine (GBM), and Support Vector 

Machine (SVM)—in detecting faults in three-phase 

induction motors. Using MATLAB/Simulink to 

simulate various fault operating conditions (such as R-

G fault, RYB-G fault, load variations, and 

overvoltage), the research generated datasets that were 

normalized and used to train and test the ML models. 

Standard classification metrics including accuracy, 

precision, recall, and F1-score were used to assess 

each model's performance under realistic operating 

conditions. 

The results showed that Random Forest outperformed 

the other models consistently across all metrics and 

fault types, indicating high reliability and 

generalization capability. GBM followed closely 

behind, also demonstrating strong performance. SVM 

showed moderate capability, while KNN had the least 

favorable results, particularly under noisy and variable 

data conditions. The integration of fuzzy logic in the 

hybrid model further enhanced interpretability and 

robustness, making it especially effective in uncertain 

scenarios. Overall, the study offers a practical 

comparison of models suited for predictive 

maintenance in industrial settings. 

The findings of this research conclude that machine 

learning models are viable tools for the early detection 

of faults in induction motors. Among the evaluated 

algorithms, Random Forest proved to be the most 

accurate and balanced across all tested metrics. Its 

ensemble structure allowed it to effectively capture 

patterns associated with both healthy and faulty 

conditions. GBM also delivered robust performance 

and emerged as a strong candidate for fault detection 

tasks. Although SVM showed acceptable results, its 

sensitivity to data variability was a limitation. KNN, 

due to its sensitivity to high-dimensional data and 

noise, underperformed and is deemed less suitable for 

complex industrial environments. 
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