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Abstract- This paper evaluates the robustness and 

optimization of real-time facial recognition models 

deployed on mobile edge devices under varying 

environmental conditions. With the growing reliance 

on mobile platforms for authentication, surveillance, 

and security applications, ensuring reliable 

performance across diverse scenarios is critical. We 

benchmark lightweight deep learning models 

including MobileNetV2, FaceNet, and EfficientNet 

on Android devices, analyzing trade-offs between 

accuracy, latency, and energy consumption. 

Experiments were conducted under controlled 

variations in illumination, background complexity, 

and face orientation to assess model robustness. The 

results demonstrate that while MobileNetV2 offers 

superior efficiency with reduced computational 

overhead, FaceNet provides higher recognition 

accuracy at the expense of increased latency and 

battery usage. Our findings emphasize the 

importance of balancing performance and efficiency 

when deploying face recognition systems on edge 

devices. This study contributes to the ongoing 

optimization of mobile AI for real-world use cases 

such as mobile security, examination authentication, 

and smart surveillance. 
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I. INTRODUCTION 

 

Facial recognition has transitioned from a research 

novelty to a critical enabler of real-world applications, 

ranging from biometric authentication on 

smartphones, to intelligent surveillance in public 

spaces, and identity verification in examinations or 

financial services. Unlike traditional password-based 

security, facial recognition offers a non-intrusive, 

user-friendly, and relatively secure means of verifying 

identities. The global adoption of smartphones—with 

billions of active users—has further accelerated the 

push toward mobile AI deployment, making on-device 

recognition systems increasingly relevant. 

However, mobile deployment introduces a set of 

unique challenges not present in cloud-based systems. 

Firstly, resource limitations such as restricted 

processing power, constrained memory, and limited 

battery capacity demand lightweight yet accurate 

models. Secondly, real-world environmental 

variability—including inconsistent illumination, 

complex backgrounds, and diverse face orientations—

can drastically affect recognition performance. Unlike 

controlled laboratory datasets, real-world mobile use 

cases involve adverse lighting (dim or bright sunlight), 

motion blur, occlusions, and shadows, which can 

severely degrade accuracy. 

Edge computing has emerged as a promising solution, 

enabling real-time inference on devices without 

reliance on constant internet connectivity or 

centralized cloud servers. This reduces latency and 

enhances privacy, since sensitive biometric data 

remains on the user’s device. Nevertheless, the trade-

off between robustness and efficiency remains a 

critical research challenge: how can we design and 

deploy mobile facial recognition systems that are 

lightweight enough to run efficiently on edge devices, 

yet robust enough to perform reliably in diverse 

environments? 

This study addresses this question by conducting a 

performance evaluation of three prominent 

lightweight deep learning models—MobileNetV2, 

FaceNet, and EfficientNet-B0—on Android devices. 

Their recognition accuracy, latency, memory 

footprint, and energy consumption are assessed under 

multiple environmental conditions. By analyzing these 



© SEP 2025 | IRE Journals | Volume 9 Issue 3 | ISSN: 2456-8880 

IRE 1710706          ICONIC RESEARCH AND ENGINEERING JOURNALS 894 

trade-offs, this work aims to provide practical insights 

for researchers and developers seeking to deploy 

robust and optimized facial recognition systems on 

mobile platforms. 

II. RELATED WORK 

The development of efficient facial recognition 

systems has been a long-standing research focus, with 

earlier solutions relying on handcrafted features such 

as Local Binary Patterns (LBP), Histogram of 

Oriented Gradients (HOG), and Eigenfaces. While 

computationally inexpensive, these traditional 

approaches struggled with robustness under 

environmental changes such as varying illumination 

and face orientations. The advent of deep learning and 

convolutional neural networks (CNNs) transformed 

the field, enabling higher accuracy through automatic 

feature extraction. 

Several lightweight architectures have since been 

introduced for mobile deployment: 

MobileNet (Howard et al., 2017): Designed 

specifically for mobile vision applications, MobileNet 

introduced depthwise separable convolutions, which 

significantly reduced computational cost while 

maintaining competitive accuracy. This made it one of 

the most widely used backbones for mobile facial 

recognition. 

FaceNet (Schroff et al., 2015): A deep embedding-

based framework that maps faces into a Euclidean 

space, enabling efficient recognition through distance 

metrics. While FaceNet delivers high accuracy, its 

relatively large size and computational demands raise 

concerns for real-time deployment on low-power 

devices. 

EfficientNet (Tan & Le, 2019): A scalable model 

family that balances accuracy and efficiency through 

compound scaling. Its smaller versions (e.g., 

EfficientNet-B0) are optimized for mobile and 

embedded applications. 

Beyond model design, researchers have explored 

methods to improve robustness under environmental 

variability. Data augmentation, domain adaptation, 

and adversarial training have been employed to 

mitigate the effects of illumination, pose, and 

occlusion. However, most studies remain dataset-

centric and lack real-world deployment experiments 

on resource-constrained mobile devices. 

A benchmark study by [Wang et al., 2020] highlighted 

that while lightweight models achieve satisfactory 

performance on standard datasets, their performance 

degrades significantly under adverse lighting and 

background noise. This observation motivates further 

research into comprehensive evaluation across real-

world conditions. 

Thus, while prior works laid the foundation for 

efficient mobile facial recognition, this study 

contributes by systematically benchmarking models 

under real-world environmental variations directly on 

Android edge devices, highlighting trade-offs between 

efficiency, accuracy, and robustness. 

III. METHODOLOGY 

This study employed a comparative evaluation of three 

facial recognition models—MobileNetV2, FaceNet, 

and EfficientNet-B0—chosen for their balance of 

accuracy, model size, and suitability for edge 

deployment. 

3.1 Models Selected 

⚫ MobileNetV2: A lightweight CNN with inverted 

residuals and depthwise separable convolutions, 

optimized for mobile inference via TensorFlow 

Lite. 

⚫ FaceNet: A face embedding model that maps 

images into a 128-dimensional embedding space. 

Although more computationally expensive, it 

provides a benchmark for accuracy. 

⚫ EfficientNet-B0: A scaled-down version of 

EfficientNet optimized for smaller edge devices 

using compound scaling and quantization. 

3.2 Evaluation Metrics 

Four key metrics were used: 

⚫ Recognition Accuracy (%): Proportion of correctly 

identified faces under each condition. 

⚫ Latency (ms per frame): Average inference time 

per image. 
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⚫ Memory Usage (MB): RAM consumed during 

inference. 

⚫ Battery Drain (% per 30 minutes): Energy 

consumed during continuous recognition tasks. 

3.3 Environmental Conditions 

To simulate real-world deployment scenarios, tests 

were conducted under four controlled environments: 

⚫ Bright Indoor Lighting: Well-lit room with even 

illumination. 

⚫ Dim Indoor Lighting: Reduced lighting to mimic 

evening/night scenarios. 

⚫ Outdoor Daylight: Natural sunlight with dynamic 

background interference. 

⚫ Mixed Lighting: Illumination from uneven sources 

with shadows. 

3.4 Experimental Setup 

⚫ Device Used: Samsung Galaxy A52 (Snapdragon 

720G, 6GB RAM, Android 13). 

⚫ Frameworks: TensorFlow Lite (TFLite) and 

PyTorch Mobile. 

⚫ Dataset: A combination of LFW (Labeled Faces in 

the Wild) and a custom dataset of 500 images 

collected under the above conditions. 

⚫ Testing Procedure: Each model was tested on 1000 

inference samples per condition, measuring all 

four performance metrics. 

IV. SYSTEM DESIGN 

The proposed mobile facial recognition system was 

designed with efficiency, robustness, and real-time 

performance as its core requirements. Unlike server-

based systems, which rely on continuous connectivity 

and cloud computing resources, the design leverages 

edge computing principles to perform inference 

directly on the Android device. 

The architecture follows a five-stage pipeline: 

⚫ Camera Input – The device camera continuously 

captures live video frames or static face images. 

These inputs serve as the raw data for the 

recognition system. 

⚫ Preprocessing – Input frames undergo 

preprocessing, including grayscale conversion (for 

consistency), normalization (to reduce 

illumination variance), and face alignment (to 

handle rotation and pose differences). This step is 

crucial in improving recognition accuracy under 

real-world conditions. 

⚫ Face Detection – The MTCNN (Multi-Task 

Cascaded Convolutional Network) is used for 

efficient face detection and landmark localization. 

It identifies the region of interest (ROI) containing 

the face, ensuring only relevant features are passed 

forward. 

⚫ Feature Extraction – Depending on the model 

being tested (MobileNetV2, FaceNet, or 

EfficientNet-B0), deep embeddings are generated. 

These embeddings capture high-dimensional 

feature representations of facial characteristics. 

⚫ Matching & Decision – The extracted embeddings 

are compared with stored templates using a 

Euclidean or cosine similarity metric. If the 

similarity score exceeds a predefined threshold, the 

identity is confirmed; otherwise, access is denied. 

 

V. EXPERIMENTAL SETUP 

The experiments were carefully structured to ensure 

validity, reliability, and replicability of the results. 

5.1 Hardware and Software 
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⚫ Device Used: Samsung Galaxy A52 (Snapdragon 

720G, Octa-core CPU, 6 GB RAM, 128 GB 

storage). 

⚫ Operating System: Android 13. 

⚫ Frameworks: TensorFlow Lite (for MobileNetV2 

and FaceNet deployment) and PyTorch Mobile 

(for EfficientNet-B0). 

⚫ Development Environment: Android Studio (for 

integration), Google Colab (for preprocessing, 

training, and analysis). 

5.2 Dataset 

The evaluation utilized a combination of: 

⚫ LFW (Labeled Faces in the Wild): A benchmark 

dataset containing 13,000+ face images with 

variations in pose, lighting, and expression. 

⚫ Custom Dataset: A collection of 500 face images 

captured under different lighting conditions using 

the device camera. This ensured that results 

reflected real-world deployment scenarios beyond 

standard datasets. 

5.3 Testing Procedure 

Each model was deployed in its quantized mobile-

friendly format. 

For each environmental condition (bright indoor, dim 

indoor, outdoor daylight, mixed lighting), 1000 

inference samples were processed per model. 

The following metrics were measured: 

⚫ Accuracy (%): Correctly identified faces / total test 

samples. 

⚫ Latency (ms): Average time to process one frame. 

⚫ Memory Usage (MB): Peak RAM consumption 

during continuous inference. 

⚫ Battery Drain (%): Energy consumed over a 30-

minute continuous recognition session. 

5.4 Environmental Conditions Simulated 

⚫ Bright Indoor: Fluorescent lighting in an evenly lit 

room. 

⚫ Dim Indoor: Minimal artificial light, simulating 

low-light scenarios. 

⚫ Outdoor Daylight: Natural sunlight with varying 

background clutter. 

⚫ Mixed Lighting: Presence of uneven illumination, 

glare, and shadows. 

VI. RESULTS AND ANALYSIS 

The results highlight the performance trade-offs 

between accuracy, efficiency, and energy usage for 

each model. 

6.1 Model Parameters 

Table 1: Model Characteristics 

Model Si

ze 

Parame

ters 

Framewor

k 

Optimiz

ation 

MobileN

etV2 

14

.0 

3.4 TensorFlo

wLite 

Quantize

d 

FaceNet 90

.0 

22.0 TensorFlo

wLite 

FP32 

Efficient

Net-BO 

17

.8 

5.3 PyTorch 

Mobile 

Quantize

d 

 

6.2 Accuracy Across Lighting Conditions 

Table 2: Model Accuracy (%) 

Model Brigh

t 

Indoo

r 

Dim 

Indoo

r 

Outdoo

r 

Mixed 

Lightin

g 

MobileNetV

2 

91.5

% 

85.2

% 

89.7% 83.6% 

FaceNet 95.3

% 

90.6

% 

94.2% 89.8% 

EfficientNet

-B0 

92.1

% 

87.5

% 

91.0% 85.4% 

 

6.3 Graphical Analysis 
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6.5 Key Insights 

⚫ MobileNetV2: Best suited for resource-

constrained devices due to its efficiency, though 

accuracy declines significantly in mixed lighting. 

⚫ FaceNet: Delivers the highest accuracy, especially 

in challenging environments, but is resource-

intensive. 

⚫ EfficientNet-B0: A balanced compromise, offering 

moderate efficiency and robustness. 

CONCLUSION 

This study demonstrated that lightweight deep 

learning models can achieve reliable facial recognition 

performance on mobile and edge devices, even under 

challenging real-world conditions. While FaceNet 

offered the highest accuracy, MobileNetV2 proved 

more suitable for resource-constrained environments 

due to its balance of speed and efficiency. Results also 

highlighted that environmental factors such as lighting 

and motion significantly affect recognition accuracy, 

emphasizing the need for continued optimization of 

mobile AI models. Future work should focus on 

adaptive algorithms that can dynamically adjust to 

environmental variations while maintaining real-time 

performance and low energy consumption. 
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