
© SEP 2025 | IRE Journals | Volume 9 Issue 3 | ISSN: 2456-8880 

IRE 1710715          ICONIC RESEARCH AND ENGINEERING JOURNALS 898 

AI-Driven Smart Connectivity and Sustainable Energy 

Model for Rural Agricultural Communities  

 

TERRY EDA OKWARI1, MATTHEW EHIKHAMENLE2  
1Centre for Information and Telecommunication Engineering, University of Port Harcourt, Nigeria 

2Electrical/Electronic Department, University of Port Harcourt, Nigeria 

 

Abstract- Rural agriculture, vital to global food 

security and livelihoods, continues to face persistent 

challenges of weak connectivity, unreliable energy 

access, and inefficient data management, all of 

which constrain productivity and economic growth 

in underserved regions. This study introduces an AI-

driven smart connectivity and sustainable energy 

model that integrates solar-based energy 

management, AI-optimized signal amplification, and 

IoT-enabled precision farming into a unified off-grid 

framework. Field deployment in Agbanganam 

village, Nigeria, demonstrated that intelligent solar 

management sustained IoT and communication 

services for up to four days under limited sunlight, 

while adaptive amplification improved average 

reference signal received power by ≥10 dB, raising 

levels from below –110 dBm to above –85 dBm, 

extending coverage from 0.3 km² to over 5 km², and 

boosting throughput by 28%. On the agricultural 

front, smart farming validation using an LSTM 

model achieved an F1-score of 0.87 in predicting 

irrigation events, enabling more efficient water use 

and reducing irrigation by 15%. Statistical analysis 

further confirmed that AI-assisted plots yielded 

significantly higher cassava output than control plots 

(ANOVA, p < 0.01), with yield improvements of up to 

22%. These outcomes demonstrate that the proposed 

AHOM framework not only enhances network 

accessibility and energy reliability but also delivers 

measurable gains in agricultural efficiency and 

productivity. Overall, the findings affirm that 

strategically combining AI, IoT, and renewable 

energy within a community-centered platform can 

sustainably bridge the digital divide, improve food 

security, and empower rural economies. 

 

Index Terms- Smart Agriculture, Sustainable 

Energy, Signal Boosting, Internet of Things (IoT) 

Artificial Intelligence (AI) 

I. INTRODUCTION 

 

Agriculture is undergoing rapid transformation 

through the convergence of Information and 

Communication Technologies (ICTs), wireless 

connectivity, the Internet of Things (IoT), and 

Artificial Intelligence (AI), driving productivity, 

sustainability, and environmental protection [1]– [5]. 

Modern wireless technologies such as 4G/5G/6G, Li-

Fi, Gi-Fi, and Wi-Fi 6/6E provide high-speed, low-

power connectivity for large-scale data exchange, 

which enable real-time IoT applications that enhance 

worker safety, regulate environments, and ensure 

compliance with safety protocols – demonstrating 

versatility across domains such as industrial 

monitoring, agriculture, and healthcare [6] – [9]. 

Beyond productivity gains, these innovations to 

reduce the digital divide between urban and rural 

regions [10][11]. 

  

Figure 1 illustrates the concept of smart agriculture, 

enabled by AI–IoT convergence, redefining 

agriculture through precision farming, irrigation 

automation, blockchain-enabled supply chains, and 

real-time resource monitoring of crops, livestock, soil, 

and resources; addressing challenges related to climate 

change, food insecurity, and labor shortages [12] – 

[14].  When integrated with renewable energy and AI-

driven analytics, these solutions can support resilient, 

scalable infrastructures and connectivity essential for 

rural farming [15].  

 

Despite progress in urban areas, rural agriculture 

remains constrained by unreliable power supply, weak 

digital connectivity, limited access to digital tools, and 

dependence on traditional practices, which undermine 

food security, economic growth, and farm information 

management [7][15] – [17]. Globally, combined with 

limited internet access, 666 million people lack 
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electricity in rural areas [18]. In many regions of Sub-

Saharan Africa, only 28% of rural households have 

electricity, while internet penetration remains below 

30% [19][20]. This digital divide prevents farmers 

from accessing real-time forecasts, market data, and 

modern farm management tools [16]. 

 

This study proposed solution that address these 

challenges by developing an AI-enabled platform that 

integrates solar energy, signal amplification, and IoT-

based farming tools. The framework aligns with the 

UN Sustainable Development Goals (SDG 2, SDG 7, 

SDG 9) [21] – [23] and demonstrates how converged 

digital and energy infrastructures can accelerate 

sustainable rural farming transformation 

 

 
Figure 1: Concept of smart Agriculture [5] 

 

II. RELATED WORKS AND RESEARCH 

GAP 

 

Prior studies have examined behavioral [16][24], 

interoperability [17], and security barriers [11] to 

technology adoption, but lack context-specific 

frameworks in rural settings. Real-world initiatives 

underscore the timeliness of AI–IoT integration. 

Africa’s Rural Electrification Programs [15] and 

India’s Digital Agriculture Mission [25] demonstrate 

government recognition of technology’s role in rural 

farming transformation. Field evidence further shows 

IoT-enabled solar irrigation increased yields by 40% 

[26], AI-optimized microgrids reduced energy costs 

[27], AI-based weather prediction reached 85% 

accuracy and reduced crop losses by 25% [28], AI 

insect surveillance reduced pesticide application by 

30%, and IoT-based smart irrigation achieved 40% 

water savings [29] and AI-powered rural connectivity 

boosters have improved digital access [30]. Other 

studies explore AI, IoT, and renewable energy in 

advancing rural agriculture. The research in [4] 

developed AI models optimized for resource-

constrained rural contexts, but their solutions lacked 

scalability for farmers with limited technical expertise. 

The research in [6] proposed hybrid frameworks 

combining LPWAN and 5G for agricultural 

connectivity, yet the long-term scalability and 

affordability of such models remain uncertain. In 

addressing energy challenges, [14] introduced solar-

powered IoT systems for agricultural monitoring, yet 

their work did not optimize energy management for 

AI-driven processes. Complementary efforts by [31] 

and [32] explored the potential of predictive 

maintenance with machine learning, but lacked real-

time IoT integration and adaptation to low-resource 

environments.  

 

From the reviewed literature, most studies focus on 

isolated applications of IoT in agriculture, AI in 

connectivity, or solar power in rural electrification. 

What is lacking is a converged framework that unifies 

cellular signal boosting, renewable energy 

optimization, and IoT-based farming. This study 

proposes an integrated solution comprising  

(i) AI-optimized signal boosters for resilient 

connectivity,  

(ii) solar energy management for sustainable power, 

and 

(iii) IoT-enabled smart farming for precision 

agriculture.  

 

This unified framework is an effort to promote 

interoperability, affordability, and scalability in rural 

farming, while advancing digital inclusion. In doing 

so, it aims improve agricultural productivity, and 

empower rural communities through sustainable and 

intelligent infrastructure. 

 

III. MATERIALS AND METHODS 

 

Figure 2 shows the system block diagram used in this 

study. the diagram represents the concept of AI-based 

smart agriculture and connectivity, showing key 

components of the system. 
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Figure 2: Block Diagram of the AI-IoT based smart 

agriculture. 

 

A. Study Area and Experimental Setup 

Table 1 below present the summary of the 

experimental setup. The study was conducted in 

Agbanganam village (9.0820° N, 8.6753° E), a semi-

rural agrarian community in southern Nigeria 

representative of many Sub-Saharan farming 

settlements. Agriculture in the area relies on seasonal 

rainfall, traditional tools, and low technology 

adoption, making it suitable for testing affordable, 

intelligent farming solutions. The landscape comprises 

loamy soils and sparse vegetation, supporting crops 

such as cassava, maize, yam, and vegetables. The 

climate is tropical with a dry season (November–

March) and wet season (April–October). A six-month 

trial (January–June 2025) was selected to capture the 

transition between seasons and evaluate system 

performance under varying soil moisture and solar 

conditions.  

 

Table 1:  Summary of Study Area and Experimental 

Setup 

Aspect Description 

Location Agbanganam village, southern 

Nigeria (9.0820° N, 8.6753° E) 

Community 

Profile 

Semi-rural, smallholder and 

subsistence farmers, low 

exposure to technology 

Soil & 

Vegetation 

Loamy soils; sparse vegetation 

(grasses, shrubs); supports 

cassava, maize, yam, vegetables 

Climate Tropical: Dry season (Nov–Mar), 

Wet season (Apr–Oct) 

Trial Period Six months (Jan–Jun 2025), 

covering dry-to-wet season 

transition 

Connectivity MTN, GLO, and Airtel 4G LTE 

(700–2600 MHz); varying 

coverage enabled signal analysis 

Experimental 

Area 

~2 hectares, divided into 

Treatment Zone (smart system) 

and Control Zone (conventional 

farming) 

IoT 

Deployment 

Sensor nodes for soil moisture, 

temperature, and humidity; 

strategically distributed 

Power Source Solar-powered system with 

ESP32 microcontroller for 

control, logging, and irrigation 

Edge 

Computing 

Local data center for low-latency, 

near real-time analytics 

Farmer 

Involvement 

Surveys and interviews to capture 

usage patterns and community 

feedback 

 

B. Signal Optimization 

Agbanganam village experiences weak and fluctuating 

signals which hinder efficient data transmission. To 

address this weak cellular coverage, a signal 

optimization protocol was implemented to enable 

reliable communication between farm sensors, user 

terminals, and cloud-based analytics platforms. 

 

Baseline Measurement phase: Signal mapping was 

performed within a 200-meter radius from the centre 

of the deployment area. RSRP (for signal strength) and 

SINR (for signal quality) were measured at 50-meter 

intervals in four directions (north, south, east, and 

west) via the OpenSignal app, generating a 25-point 

spatial grid, and were cross-validated with a 

professional-grade LTE Cell Scanner for accuracy. 

Figure 3 shows sample for field measurements of poor 

and strong signals using the OpenSignal mobile app. 

 

RL-Based Boosting: Once the baseline measurement 

was established, a signal booster system was deployed 

using an ESP32-controlled motorized antenna 

regulated by a Reinforcement Learning (RL) 

algorithm. Guided by the reward function expressed in 

Equation 1, the algorithm adaptively adjusted antenna 

orientation to maximize signal quality while 
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minimizing energy use, aligning with the system’s 

sustainability goals for off-grid operation 

 

𝑅𝑒𝑤𝑎𝑟𝑑 = ∆𝑅𝑆𝑅𝑃 − 0.1 ×  [𝐸𝑛𝑒𝑟𝑔𝑦]𝑢𝑠𝑒𝑑           (1) 

Where: ΔRSRP represents the change in signal 

strength due to antenna movement; [𝐸𝑛𝑒𝑟𝑔𝑦]𝑢𝑠𝑒𝑑  

represents the incremental energy consumed during 

antenna rotation and signal processing; RSRP is 

Reference Signal Received Power (dBm), SINR is 

Signal-to-Interference-plus-Noise Ratio (dB).  

 

 
Figure 3: Sample Signal Detection on the OpenSignal 

Mobile App. 

 

C. Hardware Design of the Smart Agric System  

The system circuit diagram in Figure 4 illustrates the 

hardware configuration and electrical interconnections 

of the smart agricultural connectivity system. At the 

core of the design is the ESP32 microcontroller, which 

integrates inputs from several environmental sensors: 

i. Capacitive soil moisture sensors connected to 

analog pins for monitoring soil water content. 

ii. DHT22 sensor, interfaced via a digital pin with a 

pull-up resistor for stable operation. 

iii. Analog temperature sensor to complement 

DHT22 readings and improve accuracy. 

iv. GL5528 LDR with LM393 connected through 

digital pins to measure ambient light intensity. 

 

The microcontroller used embedded logic with AI 

models to process the components’ inputs, while a 

signal enhancement module (encoder, 9 dBi 

directional antenna, 20 dB LTE repeater) extends 

communication coverage.  

 

Energy Management: Power distribution was 

governed by a priority-based mechanism. Power is 

managed by a PWM charge controller regulating a 150 

W solar panel and 12 V, 40 Ah LiFePO4 battery, with 

optional 500 W inverter support. To optimize energy 

usage, the ESP32 applies load prioritization to ensure 

critical sensing and communication remain 

operational when battery capacity drops below 30%, 

in other words, non-critical loads (e.g., phone 

charging) were automatically disabled, ensuring 

uninterrupted operation of essential components such 

as sensors and the network signal booster. 

 

System performance was modeled using energy, 

storage, and signal equations (see Equation 2 to 

Equation 4) that guided power allocation, efficiency, 

and connectivity optimization.  These models were 

embedded in the control logic to forecast power 

demand, assign load priorities, and optimize signal 

performance under varying field conditions. 

 

For solar energy generation: 

𝐸𝑠𝑜𝑙𝑎𝑟 = 𝑃𝑝𝑎𝑛𝑒𝑙 × 𝐻𝑠𝑢𝑛 × 𝜂  (2) 

 

For battery runtime:  

𝑇𝑏𝑎𝑐𝑘𝑢𝑝 =  
𝐶𝑏𝑎𝑡𝑡𝑒𝑟𝑦 × 𝑉

𝑃𝑙𝑜𝑎𝑑

                                    (3) 

 

For signal gain function: 

𝐺𝑡𝑜𝑡𝑎𝑙 = 𝐺𝑎𝑛𝑡𝑒𝑛𝑛𝑎 + 𝐺𝑟𝑒𝑝𝑒𝑎𝑡𝑒𝑟 − 𝐿𝑝𝑎𝑡ℎ (4) 

 

Where: 𝑃𝑝𝑎𝑛𝑒𝑙  is panel wattage(150W); 𝐻𝑠𝑢𝑛 

represents peak sun hour per day; 𝜂 is efficiency 

(22%); 𝐶𝑏𝑎𝑡𝑡𝑒𝑟𝑦  represents battery capacity (Ah); V is 

voltage (12v); 𝑃𝑙𝑜𝑎𝑑  represents the average system 

load; 𝐺𝑎𝑛𝑡𝑒𝑛𝑛𝑎  represents antenna gain (9 dBi); 

𝐺𝑟𝑒𝑝𝑒𝑎𝑡𝑒𝑟  is repeater gain (20 dB) and 𝐿𝑝𝑎𝑡ℎ is the 

estimated path loss. 

 

Agricultural Monitoring: Soil temperature and 

moisture data were logged hourly from sensors 

deployed at 12 units per hectare. Irrigation was 

triggered automatically when moisture dropped below 

30%, a threshold determined through gravimetric 

analysis. An LSTM model, trained on three months of 
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sensor data in TensorFlow, forecasted irrigation 

demand, optimizing water management and 

sustainable farm operations. 

 

 
Figure 4: Circuit Diagram of the system 

 

 

Figure 5: The IoT implementation for Smart Agric 

 

Figure 5 shows the circuit implementation of the 

system enclosed in box case for security and easy 

mobility.  

 

D. Software architecture of the Smart Farm 

Monitoring Application  

The smart farm monitoring platform is structured as a 

layered architecture integrating frontend visualization, 

backend processing, cloud aggregation, analytics, 

security, and deployment pipelines. Each layer is 

supported by specific technologies and mechanisms 

designed to ensure real-time responsiveness, 

scalability, and robustness. The complete architecture 

is summarized in Table 2, which captures the 

technologies, functions, reliability measures, and 

security strategies employed. 

 

 

Table 2: Smart Farm Monitoring System Architecture

  

Layer Technologies / 

Components 

Functions / Features Reliability / 

Optimization 

Security Measures 

Frontend EJS (Embedded 

JavaScript Templates), 

Bootstrap 5, Chart.js, 

AJAX polling, custom 

CSS (glassmorphism) 

Responsive UI, real-time 

visualization, AJAX 

polling (15s) 

synchronization, color-

coded alerts (green–

normal, yellow–warning, 

red–critical, gray–offline) 

Responsive 

flexbox grid, <1.2 

s render time, 

caching of sensor 

values during 

interruptions 

Input sanitization 

for forms, 

validation of 

entries 

Backend Node.js v18, Express.js 

4.x (middleware 

routing), REST APIs, 

worker threads 

Device management, 

monitoring services, 

modular routing and 

request handling, anomaly 

detection, AI 

recommendations, strict 

separation of concerns 

Asynchronous 

event handling, 

worker threads, 

connection 

pooling 

API key 

authentication, 

schema validation 

for backend inputs 

Cloud/IoT 

Integration 

Blynk IoT platform, 

custom API client, token 

authentication, pooled 

connections (×5), 5s 

Centralized data 

aggregation, reliability via 

retry/backoff, scalable 

mapping of sensors to 

Graceful 

degradation 

protocol with 

cached values, 

Token-based 

authentication, 

encrypted HTTPS 

abstraction layer 
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timeouts, virtual pin 

mapping logic 

virtual pins (e.g., Device 1: 

v0–v5, Device 2: v6–v11), 

continuity via cached 

values during outages 

exponential 

backoff retry for 

unstable links 

Analytics & 

AI/Decision 

support 

Multi-stage validation 

pipeline, threshold-

based classification with 

±20% buffer bands, 

knowledge-based 

recommendation engine, 

anomaly detection (>2 

min). 

Validation of raw readings, 

Data integrity checking, 

context-sensitive decision 

support (irrigation, 

fertilization), cultivation 

guidance 

Buffer thresholds 

prevent false 

alerts, anomaly 

persistence 

ensures stable 

alerts 

Internal validation 

rules prevent 

injection of invalid 

data 

Security HSTS-enabled HTTPS, 

API key validation, 

schema-based input 

sanitization, rate 

limiting (100 

requests/15 min), audit 

logging, OWASP ZAP 

testing 

End-to-end protection of 

data integrity and platform 

access, system resilience, 

forensic traceability, no 

major exposures confirmed  

Audit logging with 

device context, 

penetration testing 

validation 

Multi-layer 

defense (transport 

encryption, 

authentication, 

sanitization, 

request throttling) 

Quality 

Assurance & 

Deployment 

Actions CI/CD, ESLint, 

Jest (85%-unit test 

coverage), Docker 

containerization, canary 

deployment (10%), 

Grafana + monitoring 

Continuous delivery 

pipeline, automated builds 

& validation automated 

testing, system monitoring, 

stable rollouts with zero 

downtime 

Deployment 

success, zero 

downtime, canary 

deployments for 

controlled 

updates. 

CI/CD enforced 

checks and 

monitoring protect 

from malicious or 

faulty updates 

E. Proposed System Framework 

The overall system-level framework (Figure 6) 

illustrates the complete workflow of the Smart Farm 

Monitoring System, integrating sensing, 

communication, processing, storage, power, and user 

interface layers into a unified framework. The 

communication subsystem, comprising an LTE 

repeater, directional antenna, and signal quality 

monitoring tools via OpenSignal App, was optimized 

to enhance internet connectivity and supports seamless 

remote monitoring of farm conditions via cloud-based 

platforms. At the foundation of the system, IoT 

devices equipped with environmental sensors 

(temperature, humidity, soil moisture, and light) 

capture real-time data from the farm (see Figure 7). 

This data is transmitted via Wi-Fi to the backend 

server, where it is processed, validated, and mapped to 

virtual pins for traceability. The backend connects 

with the Blynk IoT cloud for storage and 

synchronization while hosting essential business logic 

such as device management, alert generation, and 

recommendation services. On the frontend, a 

responsive dashboard visualizes this information 

through plant monitoring cards, offers AI-driven 

insights, and provides users with device control tools. 

Powering the entire system is a renewable energy 

setup consisting of a 150W monocrystalline solar 

panel, PWM charge controller, and 12V 40Ah 

LiFePO4 battery, ensuring independent and off-grid 

operation. 
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Figure 6: System-Level Architecture of the Smart 

Farm IoT Platform 

 

 
Figure 7: IoT System Installed 

 

IV. DISCUSSION OF RESULTS 

 

Before deployment, farmers in Agbanganam village 

provided informed consent after receiving 

explanations of the study’s objectives, limitations, and 

outcomes in the local language, with signed 

acknowledgements ensuring transparency and clarity.   

 

Post deployment evaluation: Following the 

installation of the signal optimization system, the same 

geographic grid was re-surveyed to evaluate 

improvements in connectivity. Post-deployment 

measurements on the same grid were compared with 

baseline (pre-deployment) data using paired t-tests 

(significance level α = 0.5). 

 

A. Signal Boosters for Resilient Connectivity 

Figure 8 shows the Signal Booster. Performance was 

validated using RSRP, SINR, and throughput in line 

with 3GPP standards. Successful boosting was defined 

as RSRP>−85 dBm and ΔRSRP>10 dB improvement 

after booster deployment. 

 

Figures 9, 10, and 11 presents the signal strength 

measurement log for three carriers (GLO, AIRTEL, 

and MTN before and after signal booster installation. 

These results shows that the deployment of cellular 

signal boosters significantly improved performance 

across all three carriers (GLO, AIRTEL, and MTN). 

Pre-deployment signals were weak (<5 Mbps, –111 to 

–115 dBm), while post-deployment gains of 20–41 dB 

raised download rates by 10–100×, peaking at 97 

Mbps (GLO East 0 m) and maintaining >44 Mbps at 

200m. RSRP consistently surpassed –85 dBm, 

ensuring reliable 4G/5G connectivity. Directional 

disparities evident before installation were eliminated, 

with stable coverage in all directions. Carrier-specific 

observations showed MTN recording the highest gain 

(41 dB), GLO the fastest speed (97 Mbps), and 

AIRTEL demonstrating consistent performance, 

though one dataset revealed irregularities in gain 

calculations and speed outliers (44 Mbps at South 200 

m). Dead zones up to 200 m were eliminated, with 

coverage expanding from 0.2 km² to 5 km² (16.7× 

improvement). Heatmap analysis confirmed RSRP > –

85 dBm across 92% of the farm. The AI-driven booster 

outperformed static systems by dynamically adjusting 

gain (76–83 dB), prioritizing the 2100 MHz band 

during peak hours (28% throughput increase), and 

incorporating noise suppression (12% higher stability 

in rain) while operating at only 4 W, enabling solar 

power. Fuzzy logic–based energy allocation sustained 

94% uptime despite voltage dips, with solar buffering 

displacing ~90% of diesel reliance. Limitations remain 

in the southern canopy zones, where dense vegetation 

reduced gain (~9%, beamwidth 15°). Raising antenna 

height is projected to restore ~3 dB, pushing RSRP 

above the –82 dBm threshold.  

 

The connectivity upgrade has practical implications: 

reliable calls, fast IoT uploads (<8 s), and improved 

market coordination. Previously, poor connectivity led 

to up to 35% post-harvest losses, as farmers could not 

reach buyers or schedule transport. With stable 

networks, real-time buyer engagement, mobile 

payments, and coordinated cold-chain logistics have 

reduced spoilage to <10% for perishable crops. In 

general, results showed average RSRP gain of ≥10 dB 
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and improved SINR values across multiple locations, 

confirming enhanced mobile coverage, data 

throughput, IoT transmission stability and overall 

improved resilience of the system in weak-signal rural 

environments. Figure 12 shows the signal gain 

radiation pattern for the baseline and AI-Optimized 

signal before and after deployment of the signal 

booster. 

 

 
Figure 8: Signal Amplifier/Booster device 

 

 
Figure 9: Signal Strength Measurement Log for 

Airtel Before and After Boster Installation 

 

 
Figure 10: Signal Strength Measurement Log for 

MTN Before and After Boster Installation 

 

 
Figure 11 Signal Strength Measurement Log for GLO 

Before and After Boster Installation 

 

 
Figure 12: Signal Gain Radiation Pattern AI-

Optimized Vs Baseline 
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B. Solar Energy System Performance 

The solar-powered hub provided continuous 

autonomy for the smart farm, reliably supporting IoT 

sensors, the ESP32 controller, the AI-driven signal 

booster, the cloud dashboard, and community 

charging ports. Table 3 presents the performance 

result of the solar power optimization for energy 

management and sustainable power. 

 

High-efficiency 150 W monocrystalline panels, 

operating under 6–7 peak sun hours/day, consistently 

met rated capacity and generated an average of 6.2 

kWh/day—exceeding the 5.8 kWh design target by 

6.9%. Energy storage was managed by a 12 V, 40 Ah 

sealed lead-acid battery with low-voltage disconnect 

(LVD) protection, delivering ~12.2 h of autonomy at 

87% depth of discharge. Intelligent prioritization by an 

ESP32-based fuzzy logic controller enabled direct 

solar operation during daylight, hybrid mode at dusk, 

and battery reserves overnight. Real-time load 

balancing preserved critical services, with 14 voltage 

dips (>5%) recorded during testing effectively 

buffered by the battery. Figure 13 shows the solar 

charge controller and the battery used in the 

experiments. 

 

From the results, the solar hub also displaced 90% of 

prior diesel generator reliance—significantly above 

the 70% reduction target—yielding direct energy cost 

savings (~₦2,800/month) and lowering emissions. 

Limitations emerged during a 72-h overcast period, 

when system availability declined to 68% and grid 

support was required for 22% of nighttime loads. 

Nevertheless, platform-wide uptime averaged 98.3%, 

exceeding the 95% design requirement and ensuring 

uninterrupted sensing, connectivity, and charging. 

Planned enhancements include parallel battery banks 

(~30 h autonomy), dynamic current limiting for 

peripherals exceeding 2 A per branch, and coulomb 

counting for more accurate state-of-charge estimation 

under shading conditions. The network booster, with a 

modest 96 Wh/day demand (4 W, 76–83 dB 

amplification), achieved 99.7% uptime and stable 

connectivity even under cloud cover, outperforming 

AC-coupled alternatives and reducing maintenance 

events by 93%. IoT sensors (10 W) and the distributed 

controller consumed an average of 27 Wh/day, while 

priority-based load shedding below 30% state-of-

charge prevented brownouts. Mobile charging cycles 

reached 213/day, 42% above projections, confirming 

strong community uptake without compromising core 

farm services. Overall DC system efficiency was 

measured at 87–88%, surpassing the ≥85% benchmark 

by minimizing AC conversion losses and wiring 

inefficiencies. The connectivity upgrade has practical 

implications: reliable calls, fast IoT uploads (<8 s), 

and improved market coordination. 

 

Table 3: Performance Result for Solar Energy 

Management 

Componen

t/Metric 

Specificati

on/Target 

Meas

ured 

Value 

Remarks 

Solar 

Panel 

Capacity 

150W 150

W 

(STC

) 

Monocrystalli

ne; 6–7 peak 

sun hours/day 

Battery 

Capacity 

12V, 40Ah 

(480Wh) 

12V, 

40Ah 

Sealed lead-

acid with 

LVD 

protection 

Charge 

Controller 

PWM PW

M 

Simple but 

effective 

under 

consistent 

irradiance 

Daily 

Energy 

Output 

≥5.8 kWh 6.2 

kWh 

Surpassed 

generation 

target by 

6.9% 

Network 

Booster 

Power 

Consumpti

on 

~4W × 24h 

= 96Wh 

Fully 

sustai

ned 

Operated 

continuously 

ESP32 + 

Sensor 

Load 

~1.5W avg. 

× 18h = 

27Wh 

Fully 

sustai

ned 

Includes 

soil/temp/hu

midity/light 

sensors 

Mobile 

Charging 

Cycles 

150/day 213/d

ay 

42% above 

expected use 

Energy 

Efficiency 

(Solar-to-

Load) 

≥85% 88% Minimal 

wiring/contro

ller loss 
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Diesel 

Generator 

Displacem

ent 

≥70% 90% Based on 

usage logs 

and 

interviews 

Voltage 

Dip Events 

(>5%) 

≤10/month 14/m

onth 

Buffered 

using 480Wh 

battery bank 

System 

Uptime 

(Platform-

wide) 

≥95% 98.3

% 

Signal + IoT + 

Charging 

stayed online 

almost 

continuously 

 

 
Figure 13: Solar Charge Controller and Battery 

 

C. User Interface for the IoT-enabled smart farming 

App.  

For the smart farming, validation was done by 

comparing irrigation events predicted by the LSTM 

model with actual outcomes, yielding an F1-score of 

0.87. Crop yield from AI-assisted plots was 

significantly higher than control plots (ANOVA, p < 

0.01). Impact on Farming: The soil alerts helped us 

avoid overwatering during July rains.  

 

For the App architecture, the Smart Farm Monitoring 

App’s User Interface (UI) was structured to balance 

usability, scalability, and responsiveness. A modular, 

card-based layout was employed, enabling dynamic 

monitoring of multiple plants and seamless integration 

of additional devices. Each interface element was 

carefully designed to support data clarity, decision 

support, and robust operation under varying network 

conditions. The key UI components and their 

functions are summarized in Table 4. While Figures 

14 and 15 shows the monitoring interface of smart 

farm app for the plants.  

 

Table 5 provide the overall performance metric results 

for the integrated smart agricultural system proposed 

in this paper. This architecture ensures system 

robustness by integrating error detection, scalability 

through modular layout, and decision support through 

AI-driven recommendations. The emphasis on 

performance optimization and accessibility enhances 

usability across device types while maintaining 

reliable real-time monitoring. 

 

 
Figure 14: System Configuration with Software to 

Installed Location and Selection of Plant being 

Monitored 

 

 
Figure 15: System Monitoring Plants 
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Table 4: Components and Functionality of the Smart 

Farm App’s UI. 

UI Component Functionality 

Navigation Bar Displays system name; 

manages device registration 

with a 5-device limit 

Device-to-Plant 

Mapping 

Assigns devices to specific 

crops (cassava, maize, 

melon, palm) via dropdown 

menus 

Plant Monitoring 

Cards 

Shows real-time sensor data 

(temperature, humidity, soil 

moisture, light). 

Color-coded indicators 

(green, yellow, red, gray); 

responsive grid alignment 

AI 

Recommendation 

Module 

Generates context-sensitive 

advisories for crops based 

on sensor states. Structured 

list output; 

Offline Detection 

Mechanism 

Identifies delayed data 

updates and flags inactive 

devices 

Visual & 

Interaction Design 

Modern glassmorphism 

interface with icons for 

sensor categories 

Responsiveness & 

Performance 

Ensures real-time updates 

and mobile compatibility. 

Lightweight rendering, 

CDN-optimized Bootstrap, 

<1.5 s dashboard load time 

 

Table 5: Performance Metrics for the Integrated 

Smart Agricultural System 

Categ

ory 

Metri

c 

Befor

e 

Imple

menta

tion 

After 

Imple

menta

tion 

Impr

ovem

ent 

Meas

ureme

nt 

Meth

od 

Conn

ectivit

y 

Cove

rage 

Area 

0.5 

km² 

5.0 

km² 

+900

% 

GPS-

based 

signal 

mappi

ng 

Data 

Trans

missi

on 

68% 99.7% +31.

7 pp 

(46% 

↑) 

Packe

t loss 

analys

is 

Relia

bility 

Energ

y 

Daily 

Ener

gy 

Acce

ss 

4 

h/day 

(diesel

) 

24/7 

(solar) 

+500

% 

Energ

y 

usage 

logs 

Diese

l 

Displ

acem

ent 

100% 

relian

ce 

90% 

reduct

ion 

−90

% 

Fuel 

consu

mptio

n 

record

s 

Solar 

Gene

ratio

n 

N/A 6.2 

kWh/

day 

– Solar 

invert

er 

logs 

Agric

ultura

l 

Effici

ency 

Wate

r 

Savin

gs 

– 15% 

reduct

ion 

−15

% 

Irrigat

ion 

meter 

data 

Pesti

cide 

Redu

ction 

– 35% 

reduct

ion 

−35

% 

Purch

ase/us

age 

record

s 

Decis

ion 

Laten

cy 

3 days 

(soil 

tests) 

Real-

time 

100

% 

faster 

Farme

r 

surve

y 

report

s 

Syste

m 

Perfor

manc

e 

IoT 

Upti

me 

– 97.1% – Syste

m 

health 

monit

oring 

Boos

ter 

Upti

me 

– 99.7% – Netw

ork 

diagn

ostics 

Solar 

Upti

me 

– 98.3% – Contr

oller 

logs 

Envir

onme

ntal 

CO₂ 

Redu

ction 

– 1.2 

tons/

month 

Redu

ced 

footp

rint 

Emiss

ion 

factor 



© SEP 2025 | IRE Journals | Volume 9 Issue 3 | ISSN: 2456-8880 

IRE 1710715          ICONIC RESEARCH AND ENGINEERING JOURNALS 909 

Impac

t 

analys

is 

Che

mical 

Runo

ff 

High Signif

icant 

reduct

ion 

Low

er 

pollu

tion 

Water 

qualit

y tests 

 

CONCLUSION 

 

This study demonstrated the design, implementation, 

and evaluation of an AI-powered smart energy and 

connectivity model tailored for rural agriculture, 

integrating intelligent solar management, AI-

optimized signal amplification, and IoT-based 

precision farming into a unified off-grid framework. 

the AHOM framework was introduced as a novel 

approach that combines renewable energy, AI, and 

wireless connectivity, achieving a 16.7× coverage 

extension and offering a replicable paradigm for 

digital agriculture in underserved regions. signal 

booster gave average RSRP gain of ≥10 dB, improving 

SINR values across multiple locations. The system 

sustained IoT and communication services for up to 

four days under limited sunlight, while AI-driven 

amplification significantly improved signal quality, 

extended coverage from 0.3 km² to over 5 km², and 

increased throughput by 28%, thereby enabling 

reliable data-driven farming. Edge-based IoT further 

reduced irrigation water use and boosted cassava 

yields, underscoring the transformative value of 

localized intelligence in areas with intermittent 

internet access. Building on these outcomes, 

Nevertheless, challenges such as vegetation-induced 

signal losses, limited energy autonomy under 

prolonged cloud cover, and digital literacy barriers 

highlight the need for taller antennas, hybrid power 

sources, and more inclusive interfaces. Addressing 

these gaps through modular design, hybrid energy 

integration, mesh-based connectivity, and user-

friendly multimodal dashboards, alongside alignment 

with agricultural extension and ICT policies, will 

enhance scalability and adoption. Overall, the findings 

confirm that embedding AI, IoT, and renewable 

energy within a community-centered framework can 

substantially improve rural connectivity and 

agricultural productivity, offering a pathway toward 

more resilient and inclusive digital agriculture. 
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