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Abstract- Freezing of Gait (FOG) is one of the most 

debilitating- imitating symptoms of Parkinson’s 

Disease (PD), often resulting in falls, impaired 

mobility, and loss of in- dependence. This The paper 

presents a comprehensive and wearable assistive 

system designed to detect, predict, and mitigate FOG 

episodes in real time. The proposed device 

integrates multiple sensing and feedback modalities, 

including inertial measurement units (IMUs), 

surface electromyography (sEMG), dynamic visual 

cue- ing via laser projection, and haptic feedback 

through vibratory actuators. The system leverages 

a hybrid Convolutional Neural Network - Long 

Short-Term Memory (CNN-LSTM) model to 

recognize gait phases and detect movement 

intentions, achieving a classification accuracy of 90 

percent. Simultaneously, a Random Forest classifier 

is trained on real-time sEMG signals to monitor 

dorsi flexor and plantar flexor activity, providing 

biomechanical insight into muscular performance. 

Based on this muscular feedback, the system adapts 

its visual and haptic cues dynamically to guide 

patients toward optimal step initiation and foot 

orientation. Visual cues—projected via a wearable 

laser—indicate the ideal foot placement trajectory, 

while vibratory feedback enhances proprioceptive 

awareness of foot movement, particularly aiding 

dorsi flexion. The device supports both indoor and 

treadmill- based rehabilitation, offers- In terms of 

flexibility for clinical deployment and home-based 

therapy. 

 

Index Terms- Freezing of Gait (FOG), 

Convolutional Neural Network - Long Short-Term 

Memory (CNN-LSTM), inertial measurement units 

(IMUs), surface electromyography (sEMG), 

dynamic visual cueing 

 

 

I. INTRODUCTION 

 

Parkinson’s Disease (PD) is a progressive 

neurodegenerative disorder characterized by a wide 

range of motor and non-motor symptoms. Among the 

most disabling motor impairments experienced by 

individuals with PD is Freezing of Gait (FOG)—a 

phenomenon where patients temporarily lose the 

ability to initiate or maintain forward locomotion 

despite the intention to move. FOG episodes are 

unpredictable and frequently occur during step 

initiation, turning, navigating narrow spaces, or under 

dual-task conditions, leading to increased risk of 

falls, injury, and loss of independence. It is 

estimated that over 50 percent of individuals with 

moderate to advanced PD experience FOG, 

significantly reducing their mobility and quality of 

life. Current rehabilitation strategies for managing 

FOG predominantly rely on external cueing 

techniques, such as rhythmic auditory stimulation 

(e.g., metronomes), visual stepping cues (e.g., floor 

markings), or verbal instructions [1]. While these 

methods have shown some success in temporarily 

alleviating FOG episodes, their efficacy is often 

limited by the lack of adaptability, real-time 

feedback, and personalization to the patient’s gait 

state. Moreover, these systems typically fail to 

account for the neuromuscular status or movement 

intention of the patient, thereby offering passive 

assistance that may not suit dynamic, real-world 

environments or complex gait conditions. To address 

these limitations, this study proposes a novel, AI-

driven, multimodal wearable system designed 

specifically to predict, monitor, and assist gait in 

individuals with Parkinson’s Disease experiencing 

FOG. The proposed system integrates inertial motion 

sensing (IMU), surface electromyography (sEMG), 

laser-based dynamic visual cue- ing, and vibratory 

haptic feedback into a compact wearable form factor 
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suitable for both clinical and home-based use [2]. 

The central hypothesis of this work is that real-time 

gait phase detection, muscle activity interpretation, 

and intelligent cue modulation can work 

synergistically to enhance gait initiation and reduce 

FOG occurrences. At the core of the system’s 

architecture lies a hybrid deep learning model, 

combining Convolutional Neural Networks (CNN) for 

spatial pattern extraction and Long Short-Term 

Memory (LSTM) networks for temporal modeling of 

inertial sensor data. This CNN-LSTM model is 

trained to identify gait phases and predict movement 

intention with high precision, achieving over 91 

percentage accuracy in classification tasks. Parallelly, 

a Random Forest classifier is used to analyze live 

sEMG data from the tibialis anterior and 

gastrocnemius muscles to infer the muscle activation 

profile and detect abnormal or insufficient 

dorsiflexion and plantarflexion patterns [3]. 

 

Based on these real-time predictions, the system 

dynamically adjusts laser-projected visual cues to 

guide proper foot placement and orientation, while 

vibratory actuators mounted on the lower limb 

provide tactile feedback corresponding to detected 

motor deficits. This closed-loop architecture ensures 

that feedback is not only responsive to the physical 

state of the user but also anticipatory based on neural 

and kinematic signals, thus bridging the gap between 

passive cueing and active, adaptive intervention. 

Furthermore, unlike existing commercial cueing 

systems, which often operate in isolation (e.g., only 

visual or only auditory), this device employs a 

multimodal approach that simulates the natural 

sensory- motor integration process. The simultaneous 

use of visual, tactile, and neural signals reinforces the 

proprioceptive and perceptual feedback loops, 

helping patients to regain control over movement and 

re-establish rhythmic stepping [4]. The clinical 

relevance of this approach lies in its real- time, 

non-invasive, and adaptive nature. It empowers both 

patients and healthcare providers with actionable 

feedback and performance monitoring during 

rehabilitation sessions. It is particularly suited for 

treadmill-based gait training, home exercises, or 

community mobility, offering a continuous assistive 

environment that supports habitual reinforcement and 

long-term motor re-learning [5]. 

II. PROPOSED METHODOLOGY 

 

A. System Architecture 

The proposed wearable system for real-time 

Parkinson’s gait rehabilitation is built around a 

multimodal architecture that integrates inertial 

sensing, surface electromyography (sEMG), machine 

learning, and sensory feedback into a cohesive 

platform. At its core, the system uses an Inertial 

Measurement Unit (IMU) placed near the ankle joint 

to capture three-axis accelerometer and gyroscope 

data, which provide real-time measurements of gait 

phases such as stance, swing, and heel-off. These 

motion signals feed into a hybrid Convolutional 

Neural Network–Long Short-Term Memory (CNN-

LSTM) model that classifies gait phases and predicts 

movement intentions with over 0.91 percent 

accuracy. Complementing the IMU, sEMG sensors 

are placed over the tibialis anterior (TA) and 

gastrocnemius (GA) muscles to monitor dorsiflexion 

and plantarflexion activities, capturing neuromuscular 

signatures during step initiation and transition [6]. 

These EMG signals are analyzed using a Random 

Forest classifier trained on features such as root 

mean square, zero crossing rate, and waveform 

length, enabling robust real-time classification of 

muscle activation. To provide sensory feedback, the 

system includes a laser projector mounted on the 

shoe to display dynamic visual cues on the walking 

surface, indicating optimal foot placement. The cue 

adapts based on stride length, predicted gait phase, 

and muscular readiness, helping patients initiate steps 

more confidently [7]. Additionally, vibratory actuators 

placed along the lateral ankle deliver vertical haptic 

feedback when improper foot orientation or weak 

dorsiflexion is detected, reinforcing proprioceptive 

correction. Together, these components form a closed-

loop assistive environment where sensor inputs drive 

intelligent decision-making and personalized 

feedback delivery, thus promoting improved motor 

control, step symmetry, and FOG mitigation in real 

time [8]. 

 

B. Machine Learning Model 

The system employs a dual-model machine learning 

framework to process and interpret the multimodal 

data collected from the wearable sensors in real time 

[9]. Specifically, a hybrid deep learning architecture 

combining a Convolutional Neural Network (CNN) 

and a Long Short-Term Memory (LSTM) network is 
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applied to the time-series data captured by the Inertial 

Measurement Unit (IMU) [10] [11]. The CNN 

component is responsible for extracting spatial 

patterns and localized features such as acceleration 

peaks and joint angle dynamics, while the LSTM 

layer captures long-range temporal dependencies 

across gait cycles, such as transition timing between 

stance and swing phases [12] [13]. This sequential 

model architecture enables accurate classification of 

gait phases and prediction of movement intentions, 

such as step initiation or abrupt halts, achieving a 

classification accuracy of 0.91 percentage as 

validated through cross-validation techniques. In 

parallel, surface electromyography (sEMG) signals 

obtained from the tibialis anterior and gastrocnemius 

muscles are analyzed using a Random Forest 

classifier [14] [15], which offers robustness against 

signal noise and is well-suited for modeling nonlinear 

relationships within physiological data. This 

classifier processes features such as mean absolute 

value, root mean square, zero crossing rate, and 

waveform length to determine whether the muscles 

are properly engaged during dorsiflexion or 

plantarflexion [16] [17]. The output from both 

models is synchronized and used to guide cue 

modulation, ensuring that feedback—whether visual 

or vibratory—is not only responsive to current 

motion state but also anticipatory of upcoming motor 

demands [18]. Together, this machine learning 

pipeline forms the decision-making core of the 

system, enabling real-time, personalized, and 

adaptive rehabilitation support. 

 

C. Dynamic laser Cuing Mechanism 

the dynamic cueing mechanism serves as the 

interface between the system’s predictive intelligence 

and the user’s motor response, delivering real-time 

sensory feedback to correct and enhance gait 

performance. Central to this mechanism is the visual 

cueing subsystem, which uses a shoe- mounted laser 

to project a dynamic visual marker—such as a line 

or dot—on the walking surface. This projected cue 

indicates the optimal foot placement location and 

adjusts in real time based on the gait phase 

predictions generated by the CNN-LSTM model. As 

the user transitions between stance and swing phases, 

the laser projection shifts accordingly to promote 

timely and symmetrical step initiation. 

Complementing this visual feedback, the system 

employs vibratory cueing via miniature actuators 

placed along the lateral ankle and dorsum of the foot. 

These actuators emit short pulses of vibration to 

guide vertical foot alignment, particularly targeting 

moments when insufficient dorsiflexion or improper 

foot orientation is detected [19]. The adaptive nature 

of the cueing system is achieved by integrating 

sEMG-derived muscle activity insights, processed 

through the Random Forest model, to modulate both 

the intensity and timing of visual and haptic cues. 

For instance, when the system detects delayed or 

weak dorsiflexor engagement, the vibratory motors 

activate earlier or more strongly to prompt correction. 

This closed-loop mechanism allows the cueing 

feedback to be not only reactive but also anticipatory, 

aligning closely with the user’s real-time 

biomechanical state [20]. The entire setup is 

seamlessly integrated with a treadmill-based training 

environment, where gait speed, phase transitions, and 

step length are continuously monitored and used to 

update model predictions and cue delivery. As a 

result, the system ensures precise, personalized, and 

context- aware rehabilitation support, making it 

suitable for both supervised clinical use and 

independent home therapy [21] 

 

D. Treadmill Integration 

To facilitate structured and repeatable rehabilitation 

sessions, the proposed wearable system is seamlessly 

integrated with a treadmill platform, enabling 

controlled gait training in clinical or laboratory 

settings. The treadmill provides a consistent 

walking environment where variables such as speed, 

incline, and duration can be precisely regulated. This 

controlled setup allows the machine learning models 

to operate under stable conditions, improving the 

reliability of gait phase detection and muscular 

activity interpretation [22]. As the user walks, real-

time data from the IMU and sEMG sensors are 

continuously streamed to the embedded inference 

engine [23]. Gait phase predictions generated by the 

CNN- LSTM model dynamically synchronize with 

treadmill speed, ensuring that visual and vibratory 

cues are delivered at optimal moments during the gait 

cycle. For instance, when the treadmill accelerates or 

decelerates, the system adjusts laser projection 

distance and haptic cue timing accordingly, 

preserving phase alignment and user rhythm [24]. 

The treadmill integration also enables supervised 
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therapy with clinician oversight, where clinicians can 

monitor patient progress, modify training protocols, 

and intervene if necessary. Furthermore, the setup 

supports long-duration walking trials essential for 

assessing fatigue-induced gait irregularities and late-

phase Freezing of Gait (FOG) events. This synergy 

between intelligent wearable feedback and treadmill- 

based motion control ensures a safe, adaptive, and 

effective rehabilitation experience for individuals 

with Parkinson’s Disease [25]. 

 

 
Fig. 1.  Wearable Device in Action 

 

III. RESULT 

 

The proposed system was evaluated through 

experiments integrating wearable hardware and 

machine learning models. The following results, 

illustrated in corresponding figures, highlight how the 

device’s intelligent functionality supports 

Parkinson’s Disease patients with Freezing of Gait 

(FOG) The participant is seen wearing a fully 

integrated assistive device on the right leg while 

standing on a treadmill, simulating a rehabilitation 

scenario. The setup comprises a rigid orthotic frame 

supporting the thigh, knee, and lower leg, into which 

various hardware modules are embedded which is 

the shown in the above figure 1. On the calf region, 

an Inertial Measurement Unit (IMU) continuously 

tracks angu- lar velocity and linear acceleration, 

which feeds real-time spatial information to the 

CNN-LSTM model for gait phase prediction. 

Alongside, EMG electrodes are placed strategi- cally 

to record muscle activity from the tibialis anterior 

and gastrocnemius, which the Random Forest model 

analyzes for determining dorsiflexion and 

plantarflexion activity. Mounted  on the front of the 

device is a miniature laser module, designed to 

project a dynamic visual cue on the treadmill, 

showing where the user should place their foot next. 

This visual cue changes in response to the real-time 

gait prediction and muscular activation, thereby 

guiding the user’s next step. Vibratory actuators 

embedded near the ankle region deliver vertical 

tactile feedback to orient the foot correctly during 

swing and stance phases. These cues help correct 

motor freezing and improve step symmetry. 

 

The wearable is powered by an onboard embedded 

con- troller 

 

 
Fig. 2.  Random Forest Performance Metrics 

 

 
Fig. 3.  Feature Importance (Random Forest - 

EMG) 

tions in gait initiation and improved postural 
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confidence. Observers noted consistent laser 

projection timing and timely vibration feedback that 

aligned with intended gait events. Overall, these 

images exemplify the hardware-software co- design 

and functional deployment of the proposed device in 

a real-world rehabilitation setting. Figure 2, presents 

the performance metrics of the Random Forest model 

used for EMG classification, specifically in 

distinguishing dorsiflexion from plantarflexion. The 

results reveal that both the accuracy and F1-score 

reached values extremely close to 1.00, indicating 

near-perfect performance. Such precision ensures that 

vibratory feedback is delivered precisely at the 

intended muscle activation points, thereby supporting 

the user in initiating and completing each step with 

greater motor control and less hesitation In Figure 

3, 

 

 
Fig. 4.  Confusion Matrix (EMG Classification) 

 

 

 

 

 

 

 

Fig. 5.  Normalized Confusion Matrix (CNN-LSTM 

Gait Prediction) 

 

the Random Forest model’s feature importance 

scores show that EMG-derived features such as the 

ratio and difference between the tibialis anterior (TA) 

and gastrocnemius (GA) muscles have the highest 

predictive value. These muscle groups play a crucial 

role in foot elevation and propulsion, and their 

coordinated activity is critical in overcoming the 

common gait disturbances seen in PD patients. By 

prioritiz- ing these features, the model achieves real-

time classification that directly translates to 

corrective feedback. 

 

 
Fig. 6.  Normalized Confusion Matrix (CNN-LSTM 

Gait Prediction) 

 

The confusion matrix in Figure 4, demonstrates 

flawless classification with zero false positives or 

negatives, further validating the consistency of EMG-

based state detection. This high confidence in 

classification ensures that the vi- bratory cues are 

synchronized with the physical activity of the foot, 

allowing the patient to develop a sense of rhythm and 

control that aids in breaking the freezing cycles. 

 

 



© SEP 2025 | IRE Journals | Volume 9 Issue 3 | ISSN: 2456-8880 
 

IRE 1710722          ICONIC RESEARCH AND ENGINEERING JOURNALS 1423 

Fig. 7.  Per-Class Accuracy of Gait Phases 

 

Figure 7 shows the per-class accuracy for each gait 

phase. Five of the six categories achieved 100 percent 

accuracy, while the shivering class achieved only 50 

percent, high- lighting the need for future model 

enhancements in detect- ing unstable gait phases. 

Nonetheless, this data reinforces the model’s overall 

capability to provide reliable input for dynamic laser 

cueing on the treadmill surface. 

 

Figures 8 and 9 present the cross-validation 

results for the CNN-LSTM model. With an overall 

accuracy of 91.67 percent and macro and weighted 

averages exceeding 0.90, the results confirm the 

robustness and generalizability of the model across 

different gait instances and patient trials. 

 

 
 

Fig. 8.  Validation Confusion Matrix and 

Classification Report 
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