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Abstract- The advent of 5G networks has ushered in a 

new era of communication technology characterized by 

unprecedented speed, ultra-low latency, and higher 

reliability. However, intelligent and adaptive resource 

allocation in 5G network slicing is critical to meeting 

consistent sub-10 ms latency, a value that aligns with the 

performance benchmark of ultra-reliable low-latency 

communications such as ride-hailing. This study 

deployed a hybrid Multiple Linear Regression–Linear 

Programming (MLR-LP) framework for optimizing 

bandwidth, memory, and signal strength to achieve 

latency reduction. Real-time data were collected from 

ride-hailing sessions in 5G-covered areas of Benin City, 

Nigeria, capturing latency, bandwidth, memory, and 

signal strength. The MLR model established the 

predictive relationship between network resources and 

latency, achieving a strong R² value of 0.941. The 

regression equation was embedded as the objective 

function of an iterative LP model, which optimized 

bandwidth, memory, and signal strength allocations. The 

iteration process was guided by practical feasibility and 

variability analysis, particularly the unit step standard 

deviation, to progressively expand the bounds of 

resource variables in a controlled manner until feasible 

sub-10 ms latency was consistently obtained. The results 

demonstrate that the variability-driven iterative MLR-LP 

approach effectively minimizes latency to reliably 

support latency-sensitive services and enhancing 5G 

slicing performance. The study concludes that 

integrating predictive modeling with optimization 

techniques provides both theoretical and practical 

contributions, offering a possible solution for adaptive 

5G resource management. 

Index Terms: 5G Network Slicing, Latency, Linear 

Programming, Multiple Linear Regression, Resource 

Allocation. 

I. INTRODUCTION 

5G technology offers critical advancements over 

previous mobile network generations, particularly 

through its ultra-reliable low-latency 

communications (URLLC), enhanced mobile 

broadband (eMBB), and massive machine-type 

communications (mMTC) capabilities (1), (2). 

Among these, URLLC is especially suited for 

mission-critical and latency-sensitive applications 

(3). These features make 5G particularly promising 

for industries that depend on low latency such as 

ride-hailing services by offering significantly 

improved responsiveness compared to 4G networks 

(4). 

Ride-hailing applications such as Bolt and Uber 

operate via GPS-enabled mobile platforms that 

connect passengers with nearby drivers in real time 

(5). The performance of such services depends 

critically on fast and stable network connectivity, 

with low latency being essential for functions like 

live tracking, dynamic pricing, and seamless ride 

dispatch (6). As a result, ride-hailing provides a 

practical and relevant use case for evaluating real-

time 5G performance. Excessive latency in ride-

hailing applications can cause service delays, 

mismatched driver assignments, and suboptimal 

user experience (5). While 5G network slicing offers 

the flexibility to create service‑customized virtual 

networks, network providers often struggle with 

inefficient resource allocation within slices, 

undermining the full potential of low‑latency 

performance (7), (8). 

A growing body of literature has explored various 

approaches to address these challenges, including 

machine learning models for latency prediction, 

linear and mixed-integer programming for resource 

allocation, and network slicing strategies for service 

differentiation. (9) developed a standardized Integer 

Linear Programming (ILP) model to optimize 

mobile network resource allocation. They 

emphasized the diversity of emerging 5G use cases 

including enhanced Mobile Broadband (eMBB), 

industrial automation, and critical safety 

communications which impose varying 

requirements in terms of latency, throughput, and 

reliability. To accommodate these needs, the paper 

highlighted the role of end-to-end network slicing 
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and virtualization as essential technologies for 

enabling efficient service delivery over shared 

infrastructure. The proposed ILP model specifically 

tackled the offline network slice embedding problem 

by detailing how virtual nodes and links could be 

effectively mapped onto physical infrastructure. 

Although the paper successfully presented a clear 

and standardized formulation for resource 

allocation, its scope was limited to offline scenarios, 

and it did not integrate predictive mechanisms or 

real-time adjustments. (10) used Multiple Linear 

Regression with real xHaul latency data to model 

relationships between bandwidth and load. Their 

latency estimates were feasible, but lacked 

optimization. (11) in their paper, reviewed RL 

methodologies for slice orchestration. They 

identified a lack of hybrid models involving 

regression. 

Despite the significant body of work exploring 

network slicing and resource allocation for 5G 

networks, a notable gap persists across optimization 

techniques within the context of latency 

minimization in ride-hailing services. Current 

resource allocation models rarely prioritize real‑time 

latency minimization in the context of ride‑hailing's 

operational demands (12). Furthermore, many 

models overlook local performance conditions such 

as signal strength that directly impact end-to-end 

latency (13), (14).  

In the absence of a context-specific optimization 

framework, network slicing remains largely 

theoretical and fails to meet the practical needs of 

mobility services in Nigerian urban settings. 

Therefore, there is a compelling need to develop an 

application and location-specific, regression-based 

optimization model. 

The methodological framework of this study aims to 

address these gaps by adopting the usage of real-

world primary data and recognizing that network 

latency in ride-hailing applications can be 

significantly influenced by three key 5G network 

resources: bandwidth, edge memory, and signal 

strength.  

Efficient bandwidth allocation is fundamental in 5G 

network slicing, as bandwidth directly determines 

the data rate and service quality of each slice (15). 

Edge memory allocation is equally critical and 

justifiable because 5G slices rely on virtualized 

network functions (VNFs) and Multi-access Edge 

Computing (MEC), where sufficient RAM and 

buffer allocation ensures faster packet processing 

and reduced queueing delay (16). Furthermore, 

signal strength allocation is very vital can be 

managed via transmit power control, beamforming, 

and RB scheduling to enhance reliability and reduce 

retransmissions, thereby lowering latency (17). 

Considering bandwidth, memory, and signal 

strength as allocable resources is therefore 

consistent with 5G slicing principles, as each plays 

a direct role in shaping latency performance and 

overall Quality of Service (QoS). 

II. MATERIALS AND METHODS 

 

 
Figure 1: Research methodology flowchart 

Figure 1 shows the flowchart of the complete 

research methodology. Variability analysis is first 

conducted on the primary data collected from ride-

hailing sessions within 5G-covered areas of Benin 

City, Nigeria. This step provides insight into the 

distribution and fluctuation of each resources, laying 

the foundation for both accurate modeling and 

adaptive optimization. A Multiple Linear 

Regression (MLR) model is then applied to quantify 

the relationship between the network resources and 

latency. The MLR equation estimates the extent to 

which each network resource contributes to latency 

outcomes, thereby providing a statistically validated 

basis for optimization. The resulting regression 

model is then embedded within a Linear 

Programming (LP) framework, where it serves as 

the objective function. This LP model is formulated 

to minimize latency below 10 ms target by 

identifying optimal resource allocations under 



© SEP 2025 | IRE Journals | Volume 9 Issue 3 | ISSN: 2456-8880 
DOI: https://doi.org/10.64388/IREV9I3-1710727-4766 

IRE 1710727      ICONIC RESEARCH AND ENGINEERING JOURNALS          1927 

specified constraints controlled by practical 

feasibility and the standard deviation values of each 

resources. 

A. Method for data collection 

This study utilizes primary data. It relies on a 

combination of mobile and network diagnostic tools 

installed on an android smartphone for real-time 

observations and measurements within active 5G 

network zones in Benin City. The data focuses on 

four key network performance indicators critical to 

ride-hailing service efficiency: latency, bandwidth, 

memory, and signal strength. These variables are 

monitored during live sessions of a Bolt ride-hailing 

application. Table 1 shows the diagnostic software 

for the data collection process. 

Table 1: Software for data collection. 

Ride-hailing platform Bolt App 

ISP and Server 

information 

Wi-Fi analyzer, Net 

analyzer 

Latency Data Fast.com, RF 

Benchmark 

Bandwidth Data Glasswire, Trepn 

profiler 

Memory Data Simple system 

monitor, Android 

system info 

Signal Strength Data G-CPU monitor, 

Traffic monitor 

This study adopts a purposive (judgmental) 

sampling technique to select zones where data are 

collected. From 10 bolt ride sessions, 30 sample 

points are selected across different parts of Benin 

City with confirmed presence of 5G network signal. 

Figure 2 shows the hotspots of the locations where 

data are collected. 

 

At each point, network resource data (bandwidth, 

memory allocation, signal strength) and 

corresponding latency readings are collected to build 

a comprehensive dataset for regression and 

optimization modeling. 

During a live session of Bolt app usage, 

measurements are taken in real time, under different 

network loads, resources and varying environmental 

conditions, to reflect true usage behavior. The 

collection and processing of user/driver data adheres 

to ethical standards to protect user privacy. 

B. Method for data validation 

Validity is ensured by using two independent tools 

to measure the same metric (e.g., Fast.com and RF 

Benchmark for latency, G-CPU and Traffic Monitor 

for signal strength). Average value is taken in cases 

of disparity. 

C. Data preprocessing 

The dataset undergoes systematic preprocessing to 

ensure quality and reliability before modeling. 

Obvious logging errors are identified and corrected 

by re-taking the affected ride-hailing sessions. 

Duplicate records generated by repeated logging 

during real-time collection are removed. Outlier 

capping is also applied to minimize the influence of 

unusual spikes in latency, bandwidth, or memory 

usage. Reasonable thresholds are enforced to 

prevent extreme values from distorting regression 

estimates. Signal strength values are constrained 

within the range of -120 dBm to -40dBm, consistent 

with 3GPP specifications. Sample points that fall 

outside this range are flagged as invalid, and the 

corresponding ride-hailing sessions are re-taken to 

ensure accuracy. 

Through these steps, the dataset is maintained to be 

free of duplicates, corrected for measurement 

inconsistencies, and restricted to the practical 

operational ranges of 5G network parameters, 

thereby supporting valid regression and 

optimization analysis. 

D. Variability analysis of network parameters 

To understand the behavior of key 5G network 

parameters in real-world conditions, this study 

conducts a variability analysis on the collected 

primary data. The objective of this analysis is to 

assess the degree of fluctuation, dispersion, and 

consistency in the values of bandwidth, memory, 

and signal strength during ride-hailing requests. 
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The variability analysis involves computing key 

descriptive statistics for each of the three 5G 

network parameters: bandwidth (kbps), memory 

usage (MB), and signal strength (dBm). The primary 

metrics for the assessment includes the range, 

standard deviation and the standard deviation unit 

form. These metrics provides a comprehensive 

overview of the central tendency and dispersion of 

each variable. To visually support these findings, bar 

charts is generated to display the variability in 

magnitude and distribution across the observed data 

points. The final results of the variability analyses 

are compiled into summary tables, which guided the 

construction of feasible ranges and constraint update 

logic within the LP modeling phase. 

E. MLR model formulation 

To quantify the relationship between the 5G network 

resources and latency during ride-hailing operations, 

a Multiple Linear Regression (MLR) model is 

formulated. The purpose of this model is to estimate 

the extent to which each of the three key resources, 

bandwidth, memory, and signal strength influences 

the dependent variable, latency. This step establishes 

a statistically grounded basis for subsequent 

optimization via Linear Programming (LP). 

F. Mathematical modelling of latency using MLR 

Recognizing the three independent variables, the 

Multiple Linear Regression model can be expressed 

as  

Y = 𝛽0 + 𝛽1X1 + 𝛽2X2 + 𝛽3X3 ± ε         

(1) 

Where: Y = Estimated latency (ms), 

X1 = Bandwidth (kbps), X2 = Memory (MB), 

X3 = Signal strength (dBm),  

𝛽0 = Intercept (baseline latency when all predictors 

are zero), 

𝛽1, 𝛽2, 𝛽3 = Regression coefficients representing the 

effect of each variable,  

ε = Error term 

Based on the real-time primary data collected, the 

fitted regression equation takes the form: 

Estimated latency = 𝛽0 + 𝛽1(Bandwidth) + 

𝛽2(Memory) + 𝛽3(Signal strength) ± ε                                                                     

(2) 

G. Linear programming problem and model 

formulation 

To achieve optimal 5G network performance for 

latency sensitive applications like ride-hailing, a 

Linear Programming (LP) model is developed using 

the Multiple Linear Regression (MLR) equation as 

the objective function. This model aims to identify 

the best combination of network resources; 

bandwidth, memory, and signal strength that 

minimizes latency, while adhering to real-world 

operational constraints and requirements. These 

specified boundaries define the feasible solution 

space for the LP optimization, ensuring that the 

model recommendations are constrained within 

realistic and possible limits. 

While the standard Linear Programming (LP) model 

offers a one-time optimal solution for minimizing 

latency based on fixed bounds and constraints, it 

may not always yield a feasible or practically 

deployable result within the dynamic conditions of 

real-time 5G networks. To address this, an iterative 

approach is introduced into the model to 

progressively adjust constraints until a latency (less 

than 10 ms) that meets ultra-reliable low-latency 

communication (URLLC) standards is achieved. 

The LP formulation is structured around the 

principle that latency, the dependent variable, is a 

linear function of the three independent network 

variables as modeled and expressed in the MLR 

equation (2) earlier. 

The LP problem formulation is expressed as 

follows: 

Objective Function: 

Minimize Latency (L) = β0 + β1X1+ β2X2 + β3X3                    

(3) 

Decision Variables: X1 as bandwidth, X2 as 

memory, X3 as signal strength. 

Latency Target: Latency (L) < 10 ms 

Initial Subject (Iteration 1): 

{
𝑥1𝑚𝑖𝑛 ≤  𝑥1 ≤  𝑥1𝑚𝑎𝑥
 𝑥2𝑚𝑖𝑛 ≤  𝑥2 ≤  𝑥2𝑚𝑎𝑥
 𝑥3𝑚𝑖𝑛 ≤  𝑥3 ≤  𝑥3𝑚𝑎𝑥

 

 

Consequent Subject (Iteration 1+n): 
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{
𝑥1𝑚𝑖𝑛 ≤  𝑥1 ≤  𝑥1𝑚𝑎𝑥 + 𝑎
 𝑥2𝑚𝑖𝑛 ≤  𝑥2 ≤  𝑥2𝑚𝑎𝑥 + 𝑏
 𝑥3𝑚𝑖𝑛 ≤  𝑥3 ≤  𝑥3𝑚𝑎𝑥 + 𝑐

 

The values of a,b and c in each iteration is informed 

by insights gained during the variability analysis of 

the independent variables; bandwidth, memory, and 

signal strength. The variability metrics, particularly 

the unit step standard deviation, provide a rational 

basis for incrementally relaxing or tightening 

bounds in each iteration. The goal is to find the first 

feasible and optimal combination of network 

parameters that results in latency within the target 

threshold of < 10 ms. 

III. RESULTS 

This section presents the results of all the methods 

including details of the collected data and the 

outcomes of all data analysis. The findings are 

interpreted in line with the research aim which is to 

develop a model that minimizes latency through 5G 

network slicing (allocating available network 

resources such as bandwidth, memory, and signal 

strength). 

H. Primary data overview 

This study used primary data collected in real-time 

from ride-hailing sessions using the Bolt application 

in 5G-covered areas around Benin City. The dataset 

includes four key network data; latency (ms), 

bandwidth (Kbps), memory usage (MB), and signal 

strength (dBm), recorded during ride-hailing 

sessions in 5G-enabled areas of Benin City. Latency 

values varied across sessions, with the lowest 

readings indicating near-instantaneous response 

times and the highest reflecting network delays 

during periods of fluctuating connectivity. 

Bandwidth measurements also exhibited substantial 

variation, from modest data rates during congested 

periods to peak speeds exceeding 1 Mbps, 

highlighting the dynamic nature of available 

throughput in the study area. Memory values 

generally fell within a moderate range, with 

occasional spikes while signal strength, expressed in 

dBm, showed fluctuations linked to network 

coverage zones and possible interference effects, 

ranging from strong, stable connections to 

occasional weaker signals. The interplay of these 

metrics reflects the complex, real-world conditions 

experienced by ride-hailing applications, where 

performance depends not on a single factor but on 

the combined influence of multiple network 

resources. A summary statistic of the data is shown 

in Table 2. The values of these network variables 

form the foundation for the regression, and 

optimization analyses presented in the subsequent 

sections. 

Table 2: Summary statistics of dataset 

 

I. Variability analysis results 

Table 3: Variability analysis results 

The results presented in Table 3, reveal distinct 

patterns of variability across the three resources. To 

visually reinforce these findings, Figure 3 presents a 

bar chart of the standard deviation values for each 

resource. This chart illustrates the pronounced 

variability in bandwidth compared to the other 

resources, highlighting the need to account for this 

factor in both the Multiple Linear Regression (MLR) 

and Linear Programming (LP) modeling phases. 

 

Figure 3: Bar chart of standard deviation for 

network resources. 

In addition to the raw variability measures, the 

standard deviations for bandwidth, memory, and 

signal strength were converted into unit-form to 

enable direct comparison on a uniform scale. The 

smallest observed standard deviation was for 

memory, which was assigned a value of 1 unit and 

used as the normalization baseline. Dividing the 

Metric 
Latency 

(ms) 

Bandwidth 

(kbps) 

Memory 

(MB) 

Signal 

Strength 

(dBm) 

Count 30 30 30 30 

Mean 40.23 1630.17 34.44 -79.93 

Minimum 28.00 369.00 28.90 -110.00 

Maximum 64.00 2387.00 39.60 -49.00 

 Mini

mum 

Maxi

mum 

Ra

nge 
Mean 

Standard 

Deviation 

Bandwidth 369 2387 
201

8 

1630.16

7 
539.7015 

Memory 28.9 39.6 
10.

7 

34.4366

7 
3.359134 

Signal 

Strength 
-110 -49 61 -79.9333 16.21394 



© SEP 2025 | IRE Journals | Volume 9 Issue 3 | ISSN: 2456-8880 
DOI: https://doi.org/10.64388/IREV9I3-1710727-4766 

IRE 1710727      ICONIC RESEARCH AND ENGINEERING JOURNALS          1930 

standard deviations of bandwidth and signal strength 

by this baseline yielded unit-form values as 

presented in Table 4 

 

Table 4: Unit-form Standard deviation. 

J. Multiple linear regression model results 

Multiple Linear Regression (MLR) model was 

implemented to examine the relationship between 

latency (dependent variable) and the three network 

resources; bandwidth, memory, and signal strength 

(independent variables). 

Figure 4,5 and 6 presents scatter plots showing the 

distribution of each independent variable against 

latency. These visualizations provide an initial 

indication of negative trends, suggesting that 

increases in bandwidth, memory, or signal strength 

are associated with reductions in latency. 

 

Figure 4: Scatter plots of bandwidth vs latency. 

 
Figure 5: Scatter plots of memory vs latency. 

 
Figure 6: Scatter plots of signal strength vs latency. 

Based on these observed relationships, the final 

regression equation derived from the model is: 

Latency = 69.4548 – 0.0148X1 – 0.2078X2 – 

0.0258X3       (4) 

K. Interpretation of coefficients 

i. Bandwidth: A unit increase in bandwidth 

(Kbps) results in an average reduction of 

0.0148 ms in latency, assuming other 

factors are constant. 

ii. Memory: A unit increase in available 

memory (MB) decreases latency by 

approximately 0.2078 ms. 

iii. Signal Strength: Because signal strength is 

negative (in dBm), an increase (i.e., less 

negative) improves latency. Each 1 dBm 

improvement leads to a 0.0258 ms decrease 

in latency. 

L. Model performance and validation 

The statistical performance of the multiple linear 

regression (MLR) model was evaluated using both 

coefficient specific and collective metrics. The 

performance metrics are summarized in Table 5 and 

6. 

Table 5: Metrics of individual predictors in the 

MLR model. 

The standard errors values indicate the average 

amount by which the estimated coefficients deviate 

from the true population values, with lower values 

suggesting more precise estimates. In this case, 

bandwidth had the smallest standard error, 

Variable SD (σ) Normalized Step Size 

(SD-ratio relative to 

memory) 

Bandwidth 539.70 539.70 ÷ 3.36 ≈ 160.6 

Kbps 

Memory 3.36 1.00 MB (baseline) 

Signal 

Strength 

16.21 16.21 ÷ 3.36 ≈ 4.82 

dBm 

 
Standard 

Error 
t-value 

p-

value 
VIF 

Bandwidth 0.002 -9.538 0.000 3.797 

Memory 0.154 -1.352 0.188 1.444 

Signal 

Strength 
0.050 -0.519 0.608 3.513 
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indicating a high level of precision in estimating its 

coefficient, while memory and signal strength had 

comparatively larger errors. 

The p-values describes how significant the 

independent variables are to latency. At the 

conventional 5% significance level, only bandwidth 

showed a statistically significant relationship with 

latency. However, despite the non-significance of 

two predictors, their inclusion in the model can still 

be justified if they contribute to overall explanatory 

power and better prediction accuracy when 

considered jointly. 

The variance inflation factor (VIF) values for 

Bandwidth, Memory, and Signal Strength were all 

below the conventional threshold of 5, indicating the 

absence of serious multicollinearity among the 

independent variables. This validates the stability of 

the regression coefficients and supports the 

inclusion of all three predictors in the multiple linear 

regression model. 

Table 6: Metrics of the overall MLR model. 

The regression diagnostics results confirm the 

robustness of the multiple linear regression (MLR) 

model. The model achieved a high coefficient of 

determination, indicating strong explanatory power, 

while the root mean squared error (RMSE) and mean 

absolute error (MAE) values demonstrate low 

prediction errors. Given the sub-10 ms latency 

optimization target, these low error margins validate 

the reliability of the regression equation as an 

objective function in the iterative LP framework. 

The Durbin–Watson statistic suggests mild positive 

autocorrelation, but since the regression is 

embedded in an iterative optimization framework 

rather than used for hypothesis testing, the presence 

of autocorrelation does not compromise its validity. 

Also, residual normality is largely upheld as 

reflected by the Jarque-Bera value. Collectively, 

these results validate the stability and predictive 

accuracy of the regression equation, justifying its 

integration into the optimization framework. 

M. Linear programming model results 

Following the development of the MLR model, the 

derived regression equation was integrated into a 

Linear Programming (LP) framework to optimize 

network resource allocation for achieving sub-10 ms 

latency. The LP model treats the MLR equation as 

the objective function to be minimized resulting to 

the following: 

Minimize: Latency = 69.4548 – 0.0148X1 – 

0.2078X2 – 0.0258X3 

Based on the unit-form standard deviations observed 

in Table 4, A 1 MB increase in memory corresponds 

statistically to a 160.6 Kbps bandwidth increase and 

a 4.82 dBm improvement in signal strength. 

However, due to physical and system constraints, 

especially for signal strength, the model adopts more 

conservative and realistic step sizes of 150 Kbps for 

bandwidth, 1MB for memory and 1 dBm for signal 

strength. This hybrid approach maintains statistical 

integrity while ensuring practical feasibility. 

Table 7 presents the iteration results, showing for 

each step, the bandwidth, memory, and signal 

strength combination, and the corresponding 

estimated latency. 

Itera

tion 

Band

width 

Mem

ory 

Signal 

Strength 

Estimated 

Latency 

Statu

s 

1 2387 39.6 -49 27.16252 Infea

sible 

2 2537 40.6 -48 24.70892 Infea

sible 

3 2687 41.6 -47 22.25532 Infea

sible 

4 2837 42.6 -46 19.80172 Infea

sible 

Metric Value Interpretation 

R2 0.941 Strong predictive power; 

94.1% of latency variation 

explained 

Adj-R2 0.934 The model maintains a high 

explanatory power even after 

adjusting for possible 

overfitting 

F-

statistic 

138.1 Substantially large, 

indicating that the model as a 

whole is statistically 

significant 

RMSE 

(ms) 

2.1547 Low prediction error in 

relative to latency target, 

good fit 

MAE 

(ms) 

1.6332 Small average absolute error 

Durbin-

Watson 

1.535 Mild positive autocorrelation 

in residuals 

Jarque-

Bera 

3.085 Residuals approximately 

normally distributed 
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5 2987 43.6 -45 17.34812 Infea

sible 

6 3137 44.6 -44 14.89452 Infea

sible 

7 3287 45.6 -43 12.44092 Infea

sible 

8 3437 46.6 -42 9.98732 feasib

le 

Table 7: Iterative LP model results across 

iterations. 

From the table, it is evident that latency decreases 

consistently with each iteration as resources remain 

near their upper feasible limits. The target latency 

was first achieved at iteration 8 with 3487 Kbps as 

optimal bandwidth, 46.6 MB as optimal memory, -

42 dBm as optimal signal strength and estimated 

latency of 9.99 ms. 

IV. DISCUSSIONS 

This section provides an interpretation of the study’s 

findings in relation to the objectives of resource 

allocation optimization and latency reduction in 5G 

network slicing. The data collection exercise 

provided real-time ride-hailing service 

measurements of latency, bandwidth, memory 

usage, and signal strength within 5G-covered areas 

of Benin City. Descriptive analysis revealed that 

latency values fluctuated significantly depending on 

network resource availability, with all instances 

exceeding the desired sub-10 ms threshold. This 

confirmed the necessity of a systematic optimization 

framework capable of aligning resource allocation 

with service-level requirements. The variability 

across bandwidth, memory, and signal strength also 

demonstrated that no single resource dimension 

alone could guarantee reduced latency, reinforcing 

the need for a combined approach. 

Variability analysis showed that bandwidth exhibits 

the highest standard deviation, indicating greater 

inconsistency in available throughput values during 

observations. Memory usage showed comparatively 

lower variability, suggesting that its allocation 

remained relatively stable. Signal strength 

demonstrated moderate variability, which could be 

attributed to environmental and infrastructural 

factors affecting network reception. 

The MLR model results showed that bandwidth, 

memory, and signal strength all had negative 

coefficients, indicating that increases in these 

resources were associated with reductions in 

latency. Among them, memory usage exhibited the 

strongest effect per unit, suggesting that efficient 

memory allocation plays a critical role in latency 

reduction. The model’s predictive accuracy 

confirmed its suitability for embedding within the 

LP framework as an objective function, ensuring 

that the optimization process remained grounded in 

empirical data. 

The LP model was infeasible under maximum 

observed resources as bounds, incapable of yielding 

latency below 10 ms. The results revealed that, 

starting from the maximum observed resource 

levels, an additional 1050 kbps of bandwidth, 7 MB 

of memory, and 7 dBm of signal strength were 

required to meet the latency threshold. This 

demonstrated that bandwidth is a critical 

determinant of 5G latency in ride-hailing 

applications and that multi-dimensional resource 

balancing, rather than reliance on a single parameter, 

is also essential for achieving latency levels 

supportive of ride-hailing and other low latency 

services. 

N. Limitation of the Study 

While this study provides practical insights into 

optimizing 5G network resources for latency-

sensitive ride-hailing services, it was subjected to 

several limitations that should be acknowledged. 

The data used for model development was collected 

only in Benin City, Edo state. As a result, the 

model's applicability may not generalize across 

other cities or rural areas with different 

infrastructural or environmental conditions. Also, all 

measurements were conducted using Android-based 

mobile devices, and diagnostic tools. Variability in 

hardware capabilities, software optimization, or OS 

behavior could influence recorded values, 

potentially limiting cross-device consistency. 

Lastly, the model focused solely on three network 

resource variables; bandwidth, memory, and signal 

strength as predictors of latency. Other possible 

influential factors, such as CPU performance, 

transmission power, or backhaul delay, were not 

explicitly included due to data accessibility and 

model simplification. 

V. CONCLUSION 

This research successfully developed a hybrid 

MLR–LP framework for reducing network latency 

to below 10 ms in 5G network slicing specifically 

for low sensitive services like ride-hailing 

applications, where real-time responsiveness is 
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critical to user satisfaction and operational 

efficiency. The results achieved feasible solutions 

with sub-10 ms latency, demonstrating its suitability 

for supporting latency-sensitive services and 

enhancing 5G slicing performance. The study 

concludes that integrating predictive modeling with 

optimization techniques provides both theoretical 

and practical contributions and that an iterative 

linear programming approach, guided by resource 

variability, is a viable method to adjust resource caps 

dynamically until a feasible latency solution is 

found. This offers a possible solution for adaptive 

5G resource management and can serve as an 

effective decision-support tool for telecom 

engineers, enabling targeted resource upgrades to 

meet stringent latency demands while bridging a 

critical gap in empirical 5G latency optimization for 

mobility services in emerging markets. 
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