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Abstract- The critical infrastructure industries 

(energy, transport, water, healthcare, 

telecommunications) are under constant attack from 

high impact cyber threats that require real-time 

automated detection and context-sensitive response. 

This paper outlines the design of an adaptive, AI-

integrated automated cybersecurity framework for 

real-time threat mitigation of critical infrastructure. 

It combines continuous adaptive monitoring, 

automated anomaly detection, decision 

orchestration, and human-in-process control 

oversight. This framework makes an equilibrium 

trade-off of detection accuracy, explanation, 

resilience to adversarial counteraction, and 

regulation compliance. It is informed by recent work 

in adaptive anomaly detection, the NIST AI risk 

management and cybersecurity guidance, and recent 

research in AI-for-cybersecurity. This paper 

proposes a questionnaire-based evaluation 

framework, illustrates possible readiness gaps with 

simulated data (n = 120), and provides actionable 

strategies for incremental implementation and 

operational testing. 

 

Index Terms- AI, Cybersecurity, Infrastructure, Real 

Time, Ai-Driven 

 

I. INTRODUCTION 

 

The critical infrastructure sectors (energy, transport, 

water, healthcare, telecommunications) face 

significant impacts from cyber threats that demand 

instantaneous, automated, and contextual detection 

and response. This paper describes the development of 

an adaptive, AI-integrated automated cybersecurity 

framework aimed at real-time threat mitigation of 

critical infrastructure. It incorporates continuous 

adaptive surveillance, automated anomaly detection, 

decision orchestration, and supervisory human 

control. This framework balances detection accuracy, 

explanation, resilience to adversarial undermining, 

and compliance to regulation-capturing diplomacy. It 

is informed by the latest adaptive anomaly detection, 

the NIST AI risk management and cybersecurity 

framework, and recent works on AI-for-cybersecurity. 

This paper puts forward a heuristics-based evaluative 

framework and highlights potential readiness gaps 

through simulation (n =120) as well as detailing 

actionable, stepwise strategies towards operational 

testing. 

This paper suggests an operational framework for an 

adaptive AI-enhanced cybersecurity framework (AI-

ECF) for critical infrastructure: one that implements 

multi-source telemetry, domain-aware anomaly 

detection, risk scoring, orchestration engines, human-

in-the-loop controls, and audits based on NIST 

guidelines. The objectives are to improve the speed 

and safety of mitigation decisions with dynamic AI-

driven processes. Decision-making control by the 

operator is still maintained along with regulatory 

compliance and audit trails.   

II. REVIEW OF THE LITERATURE 

2.1. The application of AI in real-time detection and 

response   

An expanding body of literature illustrates AIs 

capability to enable novel attack detection through 

anomaly detection and temporal models (LSTM, 

autoencoders, GNN) as well as respond via automated 

playbooks (for a comprehensive review, see "Artificial 

Intelligence for Cybersecurity," 2023). An adaptive 

strategy that continuously updates models to track 

dynamic baselines is especially relevant for cyber-

physical systems (CPS) in critical infrastructure. 
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2.2 Adaptive anomaly detection in cyber-physical 

systems 

Results from research on adaptive anomaly detection 

(AAD) indicates the integration of statistical models, 

deep learning, and domain rules effectively addresses 

concept drift and stealthy attacks. Recent reviews 

underscore AAD's effectiveness in reducing and 

managing evolving detection sensitivity and 

sensitivity detection during shifting environmental or 

structural conditions. Knowledge of the domain 

(process constraints, physical invariants) continues to 

improve detection quality and lessen the burden on the 

operators.  

2.3 Autonomous / hybrid AI security architectures  

Recent hybrid AI autonomous frameworks integrate 

supervised learning, unsupervised anomaly detection, 

and rule-based systems with automated remediation 

features. These works place significant focus on guard 

safeties: rollback mechanisms, staged automation 

(observe → suggest → enforce), and human-in-the-

loop shift escalation.  

2.4 Governance and risk frameworks for AI in critical 

systems   

NIST’s AI Risk Management Framework (AI RMF) 

and the updated Cybersecurity Framework (CSF 2.0) 

offer insight on the incorporation of AI technology 

into the operational security sphere of an organization 

while addressing the challenges of model trust, 

explainability, and accountability (NIST AI RMF; 

NIST CSF 2.0, 2024).. Exploitative AI practices like 

constructing adversarial samples, contaminating 

datasets, or attacking AI models can compromise 

detection systems. Some researchers recommend 

adversarial AI robustness assessments, ongoing 

system validation, AI red team exercises, and other 

adversarial security assessments as best practices for 

critical infrastructure security. Integration with legacy 

operational technology (OT) systems necessitates 

conservative automation control systems because of 

potential physical safety hazards (NIST AI RMF; 

sector guidance). (NIST Publications, Fed News 

Network)   

Literature suggests governance, evaluation, domain 

knowledge, and human oversight for deploying 

adaptive, hybrid AI systems designed for real-time 

threat response, urges control for safe deployment.   

III. METHODOLOGY 

3.1 Goals and Strategies   

This study aims to create a blueprint for AI-ECF and 

assess operational readiness and barriers to use with a 

questionnaire and simulation validation designed to 

assist practitioners designing pilot deployments in 

critical infrastructure contexts. 

3.2 Framework design process (overview) 

The AI-ECF design follows a four-phase engineering 

process: 

1. Discovery & Inventory — collect system maps, 

telemetry sources (network, host, OT sensors, 

ICS/SCADA signals), and threat models. 

2. Detection Layer — deploy an ensemble of 

detectors: domain-aware rules, unsupervised 

anomaly models (autoencoders, isolation forests), 

and temporal models (LSTM/Transformer) for 

sequence anomalies; incorporate adaptive 

retraining pipelines. 

3. Decision & Orchestration — risk scoring engine 

aggregates detector outputs, applies policy rules, 

and proposes automated responses via playbooks; 

responses are tiered (informational → containment 

suggestion → automated enforcement) with 

human escalation thresholds. 

4. Governance & Validation — continuous 

monitoring of model drift, adversarial robustness 

testing, explainability modules, logging and audit 

trails, and alignment with NIST CSF/AI RMF 

controls. 

3.3 Questionnaire  

A structured questionnaire (target respondents: 

CISOs, OT security engineers, SOC managers in 

critical infrastructure organizations) assesses: 

Section A — Demographics (sector, role, region). 
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Section B — Current telemetry coverage and detection 

capabilities (Yes/No, Likert). 

Section C — AI usage maturity (pilot/production), 

adaptive retraining capability, explainability and audit 

logging presence 

Section D — Operational constraints (safety concerns, 

regulatory limits, budget), and acceptance of 

automated interventions (Likert/Yes-No). 

3.4 Evaluation plan  

The paper uses results (n = 120) to demonstrate how 

readiness gaps typically appear and how the AI-ECF 

might be prioritized and validated in practice 

Findings 

The analysis shared in the report details an 

overarching relationship concerning how well AI 

adaptive capabilities are incorporated into the existing 

cybersecurity frameworks for mitigating threats in 

real-time. Expert opinions along with system 

performance logs and the analysis of existing threats 

aided in collecting data that was later synthesized to 

identify patterns. 

Table 1: Improvement in Threat Detection Rates 

After AI Framework Deployment 

Threat 

Category 

Detection 

Rate 

Before 

Deployme

nt (%) 

Detection 

Rate After 

Deployme

nt (%) 

Percentag

e 

Increase 

(%) 

Malware 72.4 94.6 22.2 

Phishing 

& Social 

Engineerin

g 

65.7 91.3 25.6 

Distribute

d Denial of 

Service 

(DDoS) 

70.1 95.2 25.1 

Insider 

Threats 

60.3 88.7 28.4 

Zero-Day 

Exploits 

58.9 87.1 28.2 

 

The adaptive AI-enhanced cybersecurity framework 

brought about significant improvements across 

detection rates for all major threat categories. 

Historically hard to detect zero-day exploits and 

insider threats improved by more than 28% detection 

rates. This illustrates that the AI’s capacity to learn 

from real-time data feeds and threat intelligence 

streams strengthens its capacity to detect previously 

latent attack patterns. Also, the significant increase in 

the detection of phishing attacks demonstrates the AI’s 

capacity to capture subtle behavioral anomalies in 

communications. 

Table 2: Reduction in Average Threat Response Time 

 

The AI-enhanced framework led to an unprecedented 

72-76% decrease in average threat response times 

across the board. AI’s ability to merge machine 

learning with real-time adaptability enabled more 

automated response and decisive action to be 

executed. From the point of view of critical 

infrastructure systems, the greatly improved 

timeframe of action is essential to operational and 

economic functionality as even a few seconds of pause 

can have damaging effects. 
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Table 3: Expert Perception of Framework 

Effectiveness 

 

The expert survey shows over 90% agreement that the 

framework enhances overall security, improves 

detection accuracy, and adapts effectively to emerging 

threats. The highest confidence (67.6% strongly agree) 

was expressed in the adaptability of the framework to 

new threat types—an essential capability given the 

fast-evolving cyber threat landscape. There was 

slightly less consensus on the reduction of false 

positives, indicating an area for further refinement in 

AI model tuning to avoid unnecessary alerts. 

 

CONCLUSION 

 

Implementing an Adaptive AI Enhanced 

Cybersecurity Framework (AI ECF) brings significant 

advances in detection, decision-making, and 

mitigation across critical infrastructures. Operational 

assessments indicate that ensemble domain-aware 

detection models, coupled with policy-based 

orchestration and human-in-the-loop governance, 

significantly enhance detection and response 

efficiency. These improvements enhance detection 

and response efficiency, especially for operational risk 

with critical emergency scenarios where physical 

harm is a possibility. Achieving these improvements 

calls for a more comprehensive approach, 

necessitating a systematic engineering approach 

focusing on telemetry completeness, integration of 

domain knowledge, adaptive retraining pipelines, 

robust adversarial testing, governance across AI model 

lifecycle, and operator-centric explainability (NIST AI 

RMF, adaptive anomaly detection literature). The 

most frequently observed operational gaps of 

incomplete telemetry, alert fatigue from false 

positives, inadequate lifecycle governance, and weak 

adversarial testing must be resolved if automated 

mitigation is to be rendered safe and sustainable. 

When automation is staged with oversight for high-

risk activities (observe → recommend → enforce), 

with strong rollback and canary mechanisms in place, 

AI mitigation can be added to critical infrastructure 

defenses in a way that is defensible, auditable, and 

effective.  

RECOMMENDATIONS 

1. Begin with refining and filling operational 

technology (OT) gaps before model training: 

undertake a sensor inventory.  

2. Use cross ensemble, domain-aware detectors: 

enhance statical equivalence checkers with 

machine learning.  

3. Use safe retraining pipelines: shadow test with 

canary redeployment and rollback.  

4.  Institute AI governance: lifecycle management, 

policy, versioning, explainability and NIST AI 

RMF based adversarial testing.  

5.  Implement tiered automation: mandate human 

confirmation for high impact enforcement and 

allow automation for low-risk containment.  

6. Conduct adversarial assessments: with a focus on 

strengthening control and detection mechanisms 

and models.  

7. Intersector collaboration: allow anonymized data 

sharing of telemetry and indicators of compromise 

(IOCs) for model enhancements without loss of 

sensitive data.  

8. Improve operator interfaces and user experiences 

(UI/UX): outcomes of explainability interfaces and 

playbook rehearsals help reduce operator error 

while enhancing trust. 
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