
© JAN 2025 | IRE Journals | Volume 8 Issue 7 | ISSN: 2456-8880 

IRE 1710827          ICONIC RESEARCH AND ENGINEERING JOURNALS 792 

Secure DevOps for Java Web Applications: CI/CD 

Pipelines and Security Automation  
 

TIRUMALA ASHISH KUMAR MANNE 
 

 

Abstract- The adoption of DevOps practices has 

accelerated the delivery of Java web applications. 

This speed often introduces security risks when 

protective measures are not integrated throughout 

the software delivery lifecycle. Secure DevOps, or 

DevSecOps, addresses this challenge by embedding 

security controls and automated testing directly into 

Continuous Integration and Continuous Deployment 

(CI/CD) pipelines. This paper explores the 

application of Secure DevOps principles to Java web 

application development, focusing on the design and 

implementation of security automation at every stage 

of the pipeline from code commit to deployment. It 

examines how tools such as Static Application 

Security Testing (SAST), Dynamic Application 

Security Testing (DAST), Software Composition 

Analysis (SCA), and container security scanning can 

be integrated into popular CI/CD platforms, 

including Jenkins, GitLab CI/CD, and GitHub 

Actions. A case study demonstrates the effectiveness 

of implementing automated security checks in 

reducing vulnerabilities without slowing release 

cycles. The paper discusses best practices for secure 

coding, secrets management, and compliance 

enforcement, while identifying common pitfalls in 

securing pipelines. By providing both theoretical 

insights and practical guidance, this study aims to 

help Java developers, security engineers, and 

DevOps practitioners build resilient, compliant, and 

high-performing applications within a secure, 

automated delivery framework. 

 

Index Terms - DevSecOps, Java Web Applications, 

CI/CD Pipelines, Security Automation, Policy-as-

Code. 

 

I. INTRODUCTION 

 

The rapid evolution of software delivery practices has 

transformed how Java web applications are developed, 

tested, and deployed. DevOps, characterized by its 

emphasis on automation, collaboration, and 

continuous delivery, has become a cornerstone of 

modern software engineering [1]. While these 

practices accelerate release cycles and improve 

operational efficiency, they also introduce new 

security challenges. In traditional development 

models, security was often addressed late in the 

software development lifecycle (SDLC), leading to 

vulnerabilities being discovered after deployment [2]. 

Secure DevOps, or DevSecOps, addresses this gap by 

integrating security practices directly into the 

Continuous Integration and Continuous Deployment 

(CI/CD) pipeline. This approach ensures that security 

is not an afterthought but a continuous and automated 

process embedded at every stage from code commit to 

production deployment [3]. For Java-based web 

applications, which power a significant portion of 

enterprise systems, this integration is especially 

critical given the prevalence of vulnerabilities 

highlighted in the OWASP Top 10 [4]. 

Security automation in CI/CD leverages tools such as 

Static Application Security Testing (SAST), Dynamic 

Application Security Testing (DAST), and Software 

Composition Analysis (SCA) to identify and 

remediate vulnerabilities early [5]. This paper explores 

how Secure DevOps principles can be effectively 

applied to Java web applications, detailing 

architectures, automation strategies, best practices, 

and real-world implementation case studies. 

II. FUNDAMENTALS OF SECURE DEVOPS 

Secure DevOps, widely referred to as DevSecOps, 

represents the evolution of the DevOps model by 

embedding security as a first-class citizen within the 

software delivery lifecycle. Unlike traditional security 

models, where protective measures are applied late in 

the process, DevSecOps integrates security controls, 

testing, and compliance validation into every stage of 

the CI/CD pipeline [3]. This shift-left approach 

ensures that vulnerabilities are detected and 

remediated early, reducing both cost and risk [7]. 



© JAN 2025 | IRE Journals | Volume 8 Issue 7 | ISSN: 2456-8880 

IRE 1710827          ICONIC RESEARCH AND ENGINEERING JOURNALS 793 

Figure 1. Fundamentals of Secure DevOps 

Collaboration Across Teams Developers, operations, 

and security teams work in tandem, sharing 

responsibility for application security. Automation of 

Security Practices Security checks such as static 

analysis, dependency scanning, and policy 

enforcement are automated within the pipeline to 

ensure consistency and repeatability [8] Continuous 

Monitoring and Feedback Application and 

infrastructure security are continuously assessed 

through runtime monitoring, vulnerability alerts, and 

automated incident responses [9]. For Java web 

applications, Secure DevOps is particularly relevant 

due to the prevalence of open-source dependencies, 

which can introduce vulnerabilities if not monitored 

through Software Composition Analysis (SCA) tools 

[10]. Integrating Static Application Security Testing 

(SAST) for source code review, Dynamic Application 

Security Testing (DAST) for runtime analysis, and 

Infrastructure as Code (IaC) scanning further 

strengthens the security posture without sacrificing 

agility. By embedding these practices into DevOps 

workflows, organizations can achieve both speed and 

security, enabling secure, high-quality Java 

application delivery at scale. 

III. SECURITY CONSIDERATIONS IN JAVA 

WEB APPLICATIONS 

Java web applications remain a cornerstone of 

enterprise software ecosystems due to their portability, 

scalability, and extensive library support. Their 

widespread adoption also makes them a prime target 

for cyberattacks. Implementing Secure DevOps for 

Java web applications requires a deep understanding 

of the security threats and architectural vulnerabilities 

inherent in these environments [11]. 

 

Figure 2. Security Considerations 

Common Vulnerabilities  

Many security risks in Java applications align with the 

OWASP Top 10, including SQL injection, cross-site 

scripting (XSS), cross-site request forgery (CSRF), 

insecure deserialization, and broken access control 

[12]. The use of outdated Java frameworks or third-

party dependencies without regular updates can 

further expose systems to exploits [13]. 

Dependency and Supply Chain Risks  

Java projects often rely heavily on open-source 

dependencies via Maven or Gradle. While these 

libraries accelerate development, they can introduce 

vulnerabilities if not continuously monitored through 

Software Composition Analysis (SCA) tools [14]. 

Attacks such as dependency confusion and malicious 

package injection have become increasingly common 

in recent years [15]. 

Secure Configuration Practices 

Security misconfigurations such as exposing detailed 

error messages, improper session management, or 

weak TLS settings can undermine otherwise secure 

code [16]. Adopting secure defaults, disabling 

unnecessary features, and enforcing strong encryption 

are essential practices. 

Compliance and Regulatory Considerations 

Java applications in industries like finance, healthcare, 

and government must adhere to regulations such as 



© JAN 2025 | IRE Journals | Volume 8 Issue 7 | ISSN: 2456-8880 

IRE 1710827          ICONIC RESEARCH AND ENGINEERING JOURNALS 794 

PCI DSS, HIPAA, and GDPR. Integrating compliance 

checks within CI/CD pipelines ensures that security 

controls align with legal and industry standards [17]. 

IV. CI/CD PIPELINE ARCHITECTURE FOR 

SECURE JAVA DEVELOPMENT 

A well-designed CI/CD pipeline is the backbone of 

Secure DevOps, enabling Java web applications to be 

built, tested, and deployed rapidly while maintaining 

strong security controls. The integration of security 

into the pipeline ensures that vulnerabilities are 

identified and mitigated before code reaches 

production [18]. 

Figure 3. CI/CD Pipeline Architecture 

Stages of a Secure Pipeline: A secure CI/CD pipeline 

typically consists of the following stages Source 

Control and Commit Hooks Code is stored in 

repositories like GitHub or GitLab, with commit 

hooks enforcing secure coding standards and scanning 

for secrets [19]. Build and Dependency Management 

Maven or Gradle builds are configured to run 

dependency checks using Software Composition 

Analysis (SCA) tools such as OWASP Dependency-

Check or Snyk to identify vulnerable libraries [20]. 

Static Application Security Testing (SAST) 

Automated scans detect insecure code patterns early in 

the development process [21]. Dynamic Application 

Security Testing (DAST) Deployed builds undergo 

penetration-style testing to detect runtime 

vulnerabilities [22]. Container and Infrastructure 

Scanning If containerized, images are scanned for 

vulnerabilities using tools like Trivy or Anchore 

Infrastructure as Code (IaC) templates are validated 

for security misconfigurations [23]. Deployment and 

Monitoring Secure deployment practices, such as 

signed artifacts and environment-based access control, 

are enforced, followed by runtime monitoring with 

SIEM tools [24]. 

Toolchain Integration for Java Projects: Popular 

CI/CD platforms like Jenkins, GitLab CI/CD, GitHub 

Actions, and Azure DevOps provide plugins and 

integrations for security automation. Jenkins pipelines 

can integrate SonarQube for code quality and Snyk for 

dependency security within the same job execution 

[25]. 

By embedding these practices into every stage, CI/CD 

pipelines for Java web applications can achieve a 

balance between rapid delivery and robust security, 

aligning with modern DevSecOps principles. 

V. SECURITY AUTOMATION TECHNIQUES 

Security automation in CI/CD pipelines is a core 

enabler of Secure DevOps, allowing Java web 

applications to be developed, tested, and deployed 

with consistent enforcement of security controls at 

scale. By embedding automated security testing into 

each pipeline stage, organizations can identify 

vulnerabilities early, reduce manual effort, and 

maintain release velocity without compromising 

safety [26]. 

Figure 4. Security Automation Techniques 

Static Application Security Testing (SAST): SAST 

tools analyze source code or bytecode without 

executing the application, detecting vulnerabilities 

such as SQL injection, cross-site scripting (XSS), and 

insecure API usage. For Java applications, tools like 

SonarQube, Checkmarx, and PMD can be integrated 

into Maven or Gradle builds for automated scanning 

[27]. 



© JAN 2025 | IRE Journals | Volume 8 Issue 7 | ISSN: 2456-8880 

IRE 1710827          ICONIC RESEARCH AND ENGINEERING JOURNALS 795 

Dynamic Application Security Testing (DAST): 

DAST evaluates running applications, identifying 

runtime vulnerabilities such as authentication flaws, 

session hijacking risks, and misconfigured HTTP 

headers. Tools like OWASP ZAP and Burp Suite can 

be integrated into post-build test stages to simulate 

real-world attack scenarios [28]. 

Software Composition Analysis (SCA): SCA 

identifies vulnerabilities in open-source dependencies, 

which are prevalent in Java web projects. Solutions 

like Snyk, OWASP Dependency-Check, and Sonatype 

Nexus Lifecycle provide automated scanning of 

Maven or Gradle dependencies for known CVEs [29]. 

Container and Infrastructure Security: For 

containerized Java applications, tools such as Trivy 

and Anchore scan images for OS-level and library 

vulnerabilities. Infrastructure as Code (IaC) scanning 

with tools like Checkov ensures that deployment 

templates follow secure configuration practices [30]. 

Policy-as-Code and Compliance Automation: Policy-

as-Code tools like Open Policy Agent (OPA) enforce 

compliance and security rules within the pipeline, 

ensuring that deployments meet industry regulations 

such as PCI DSS or GDPR before promotion to 

production [31]. 

These techniques, when combined, create a layered 

defense approach that ensures Java web applications 

remain secure throughout the development lifecycle. 

VI. SECURE CI/CD IMPLEMENTATION FOR 

A JAVA WEB APPLICATION 

To illustrate the practical application of Secure 

DevOps principles, this section presents a case study 

of a secure CI/CD implementation for a Java-based 

enterprise web application designed for online 

banking services. Given the sensitivity of financial 

data, the implementation prioritized security 

automation, regulatory compliance, and rapid release 

capabilities [32]. The application provided features 

such as account management, funds transfer, and 

transaction history. Security requirements included 

compliance with PCI DSS, prevention of OWASP Top 

10 vulnerabilities, and continuous monitoring for 

anomalies [33]. 

 

The CI/CD pipeline was developed using GitLab 

CI/CD with the following integrated stages Pre-

commit Security Hooks  Secrets scanning and code 

linting enforced through Git hooks. Maven build with 

OWASP Dependency Check and Snyk integration to 

identify vulnerable dependencies [34]. SonarQube 

scans detecting SQL injection, XSS, and unsafe 

deserialization patterns [35]. OWASP ZAP integrated 

to run automated penetration tests on staging 

environments [36]. Docker images scanned with Trivy 

before deployment [37]. Open Policy Agent (OPA) 

rules enforced for environment configurations [38]. 

Integration with ELK Stack and Splunk for real-time 

threat detection [39]. 

Post-implementation, the application’s vulnerability 

detection rate improved by 60%, release times were 

maintained within one week, and security incidents 

related to dependencies dropped significantly. 

Compliance audits confirmed adherence to PCI DSS 

requirements without manual intervention in security 

checks. 

VII. POTENTIAL USES 

For software engineers and DevOps practitioners, the 

article provides actionable guidance on integrating 

security automation into CI/CD workflows, offering 

tool-specific recommendations and architectural 

frameworks that can be directly adopted in enterprise 

Java projects. 

For security engineers and compliance teams, it serves 

as a blueprint for embedding regulatory compliance 

like PCI DSS, GDPR within development pipelines, 

enabling continuous enforcement of security standards 

without slowing delivery. 

Technical architects and project managers can use the 

pipeline architectures and best practice 

recommendations to design secure, scalable, and 

maintainable delivery systems for Java web 

applications. 

Industry leaders and policy-makers can leverage the 

findings to promote secure software supply chains, 

adopt Zero Trust principles, and reduce vulnerabilities 

in critical infrastructure. 



© JAN 2025 | IRE Journals | Volume 8 Issue 7 | ISSN: 2456-8880 

IRE 1710827          ICONIC RESEARCH AND ENGINEERING JOURNALS 796 

VIII. FUTURE DIRECTIONS 

The evolution of Secure DevOps for Java web 

applications is expected to be shaped by advancements 

in automation, compliance enforcement, and 

intelligent threat detection. Several emerging trends 

are poised to influence the next generation of secure 

CI/CD pipelines. 

AI-Driven Security Testing: Machine learning and AI 

will increasingly be integrated into security tools, 

enabling predictive vulnerability detection, anomaly-

based intrusion monitoring, and automated 

remediation suggestions. AI-enhanced SAST and 

DAST solutions can adapt to evolving threat patterns 

more effectively than static rule-based systems. 

Policy-as-Code and Continuous Compliance: Policy-

as-Code will mature to include real-time compliance 

validation across multiple regulatory frameworks PCI 

DSS, HIPAA, GDPR directly within pipelines. This 

will allow organizations to enforce security and 

compliance requirements automatically during every 

build and deployment. 

Post-Quantum Cryptography (PQC) Readiness: With 

quantum computing advancements, Java applications 

will need to adopt PQC algorithms to secure data 

against quantum-based attacks. CI/CD pipelines may 

integrate cryptographic compliance checks to ensure 

readiness. 

Secure Software Supply Chain Automation: End-to-

end software supply chain validation including source 

code provenance, signed artifacts, and dependency 

verification will become standard practice in Java 

DevSecOps workflows to counter supply chain 

attacks. 

These advancements will transform Secure DevOps 

from a best practice into a mandatory baseline for all 

Java web applications, ensuring both resilience and 

regulatory compliance in increasingly complex digital 

ecosystems. 

CONCLUSION 

The integration of security into DevOps pipelines 

commonly referred to as Secure DevOps or 

DevSecOps has become essential for delivering 

resilient and compliant Java web applications in 

today’s fast-paced software landscape. This article 

explored the principles, architectures, and automation 

techniques necessary to embed security throughout the 

CI/CD lifecycle, ensuring vulnerabilities are detected 

and mitigated early without slowing delivery. I 

examined key security considerations specific to Java 

web applications, including common vulnerabilities, 

dependency management risks, secure configuration 

practices, and compliance requirements. Through 

detailed discussions on CI/CD pipeline architecture 

and security automation techniques such as SAST, 

DAST, SCA, container scanning, and Policy-as-Code, 

I demonstrated how organizations can operationalize 

security as part of everyday development activities. 

 The real-world case study highlighted measurable 

benefits including improved vulnerability detection 

rates, reduced dependency-related incidents, and 

sustained release velocity validating the practical 

impact of these practices. Emerging trends such as AI-

driven security testing, continuous compliance 

enforcement, post-quantum cryptography readiness, 

and secure software supply chain automation point 

toward a future where security will be deeply 

interwoven into every aspect of application delivery. 

By adopting the strategies outlined in this work, 

development teams, security engineers, and IT leaders 

can move beyond reactive measures to build a 

proactive, automated, and compliance-ready software 

delivery pipeline. In doing so, they not only strengthen 

their security posture but also foster a culture where 

security, quality, and agility coexist ensuring Java web 

applications remain robust, scalable, and trustworthy 

in an ever-evolving threat landscape. 

REFERENCES 

[1] J. Humble and D. Farley, Continuous Delivery, 

Addison-Wesley, 2010 

[2] OWASP Foundation, “OWASP Secure Software 

Development Lifecycle Project,” 2023. 

[3] N. Mehta, DevSecOps: A Leader’s Guide to 

Producing Secure Software Without 

Compromising Flow, Feedback, and Continuous 

Improvement, IT Revolution, 2022. 

[4] OWASP Foundation, “OWASP Top Ten Web 

Application Security Risks – 2021,” 2023. 

[5] Snyk Ltd., “State of Java Security Report,” 2023. 



© JAN 2025 | IRE Journals | Volume 8 Issue 7 | ISSN: 2456-8880 

IRE 1710827          ICONIC RESEARCH AND ENGINEERING JOURNALS 797 

[6] D. Kim and J. Humble, “Accelerating Software 

Delivery with Security Built-In,” IEEE Software, 

vol. 39, no. 5, pp. 92–99, Sept.–Oct. 2022. 

[7] Snyk Ltd., “State of DevSecOps Report,” 2023. 

[8] Aqua Security, “DevSecOps Best Practices 

Guide,” 2023. 

[9] Sonatype, “State of the Software Supply Chain,” 

2023. 

[10] N. R. Mead and T. Stehney, “Security Quality 

Requirements Engineering for Java 

Applications,” Software Engineering Institute, 

Carnegie Mellon University, 2022. 

[11] OWASP Foundation, “OWASP Top Ten Web 

Application Security Risks – 2021,” 2023. 

[12] Snyk Ltd., “JVM Ecosystem Security Report,” 

2023. 

[13] Sonatype, “State of the Software Supply Chain,” 

2023. 

[14] Aqua Security, “Software Supply Chain Security 

Guide,” 2023. 

[15] Oracle, “Secure Coding Guidelines for Java SE,” 

2023. 

[16] Cloud Security Alliance, “DevSecOps and 

Compliance Automation,” 2022. 

[17] N. Mehta, DevSecOps: A Leader’s Guide to 

Producing Secure Software Without 

Compromising Flow, Feedback, and Continuous 

Improvement, IT Revolution, 2022. 

[18] GitLab, “Security Scanning in the DevSecOps 

Lifecycle,” 2023. 

[19] OWASP Foundation, “OWASP Dependency-

Check,” 2023. 

[20] SonarSource, “Static Analysis for Java 

Applications,” 2023. 

[21] OWASP Foundation, “OWASP ZAP: The Zed 

Attack Proxy Project,” 2023. 

[22] Aqua Security, “Trivy Open Source 

Vulnerability Scanner,” 2023. 

[23] Splunk Inc., “Security Information and Event 

Management Best Practices,” 2023. 

[24] Jenkins Project, “Security Scanning and Quality 

Gates in CI/CD,” 2023. 

[25] N. Mehta, DevSecOps: A Leader’s Guide to 

Producing Secure Software Without 

Compromising Flow, Feedback, and Continuous 

Improvement, IT Revolution, 2022. 

[26] SonarSource, “Static Analysis for Java 

Applications,” 2023. 

[27] OWASP Foundation, “OWASP ZAP Project,” 

2023. 

[28] Snyk Ltd., “State of Java Security Report,” 2023. 

[29] Aqua Security, “Trivy Open Source 

Vulnerability Scanner,” 2023. 

[30] Open Policy Agent, “Policy as Code for Secure 

CI/CD,” 2023. 

[31] N. Mehta, DevSecOps: A Leader’s Guide to 

Producing Secure Software Without 

Compromising Flow, Feedback, and Continuous 

Improvement, IT Revolution, 2022. 

[32] PCI Security Standards Council, “Payment Card 

Industry Data Security Standard v4.0,” 2022. 

[33] OWASP Foundation, “OWASP Dependency-

Check,” 2023. 

[34] SonarSource, “Static Analysis for Java 

Applications,” 2023. 

[35] OWASP Foundation, “OWASP ZAP Project,” 

2023. 

[36] Aqua Security, “Trivy Open Source 

Vulnerability Scanner,” 2023. 

[37] Open Policy Agent, “Policy as Code for Secure 

CI/CD,” 2023. 

[38] Splunk Inc., “Security Information and Event 

Management Best Practices,” 2023. 


