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I. INTRODUCTION 

The most important tool that investigates most 

properties of solutions and equations of second order 

elliptic and parabolic type is the maximum principle. 

This has types, and all these types enable us to obtain 

valuable information about the properties of solutions 

and perhaps the equations themselves. Originating 

from the classical theory of harmonic functions, it has 

been generalized and extended to a wide range of 

elliptic partial differential equations and plays a 

critical role in proving uniqueness, comparism 

theorems, a priori estimates, and regularity results. 

 

II. PRELIMINARIES 

We now define some concepts used in this paper.  

Partial Differential Equations 

A kth-order partial differential equation is an 

expression of the form 

F(Dk u(x),  Dk-1 u(x), …, Du(x), u(x), x)= 0 

(x ∈ Ω)                                    (1) 

where 

u : Ω →R 

is the unknown.  

A general linear second order partial differential 

equation with constant coefficient in 𝗥 is of the form 

a
∂

2
u

∂x2
+ b

∂
2
u

∂x∂y
+ c

∂
2
u

∂y2
+ d

∂u

∂x
+ e

∂u

∂y
+ fu=g in Ω   (2) 

Elliptic Partial Differential Equation 

An elliptic partial differential equation (2) is an 

equation in which the DISCRIMINANT is less than 

zero(that is b
2
- 4ac < 0 ) 

 

Laplace Equation 

The laplace equation characterizes a large group of 

physical problems that are independent of the time, 

and for this reason they are usually called steady state 

problems. An example is ∆u = o i.e. 
∂

2
u

∂X2  + 
∂

2
u

∂t2
 = 0. 

 

Maximum Principle 

The maximum principle is a fundamental concept in 

the theory of partial differential equations, 

particularly for harmonic functions governed by the 

Laplace equation. It provides essential insights into 

the behavior of solutions within a domain. 

There are two types of maximum principle 

1. Weak Maximum Principle 

2. Strong Maximum Principle 

 

Weak Maximum Principle 

If u satisfies a uniformly elliptic partial differential 

equation in a bounded domain and is continuous up 

to the boundary, then the maximum of u in the closure 

of the domain is achieved on the boundary. 

 

Strong Maximum Principle 
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If u achieves an interior maximum and the equation 

is non-trivial, then u must be constant. 

 

ELLIPTIC OPERATOR 

We call the operator 

P = aij(x)
∂

2

∂xi∂xj

,     aij = 

aji                                               (3) 

(i, j = 1, . . . , n), elliptic at x = (x
1, 

x2, . . . , xn) if and 

only if there is a positive constant μ(x) such that 

aij(x)ξiξj≥ μ(x)ξiξi                                                                                                           (4) 

for any vector ξ = (ξ
1
, ξ

2
, . . . , ξ

n
). The operator P is 

said to be elliptic in a domain Ω if it is elliptic at 

each point of Ω,  and it is uniformly elliptic if (4) 

holds for each point of Ω and if there is a positive 

constant μ
0
such that μ(x) ≥ μ

0
for all x in Ω 

III. LITERATURE REVIEW 

The maximum principle is a generalization of the 

elementary fact of calculus that any function which 

satisfies the inequality f
´´

> 0 on an interval [a, b] 

attains its maximum value at a or b.  

In general, function which satisfy elliptic inequalities 

on a domain Ω in n-dimensional Euclidean space take 

their maxima on the boundary of Ω. This is the 

simplest form of the maximum principle. [2] 

Maximum principle for solutions of second order 

elliptic equations have been used in the mathematics 

literature since the early nineteenth century.  

Given that u is a solution of 

∆u+f(u)=0in D 

u= 0 on ∂D 

It turns out that the function P attains its maximum at 

a point where ∇u = 0 if ∂D is convex. This result was 

first found by Payne and Stakgold (1972), and it 

marked the beginning of a series of papers that were 

all concerned with various generalizations and 

applications of maximum principles for such a 

function P associated with the solution of some 

boundary value problems. These maximum principle 

proved to be a very useful tool in deriving all kinds 

of a priori bounds. In addition, most of the bounds 

found by these methods have the nice feature of being 

optimal in some sense. The book of Protter and 

Weinberger (1967) presents maximum principle for 

elliptic problems. [6] 

 

Strong Maximum Principle [7] 

The first classical maximum principle is accrued to E. 

Hoph, together with an extended commentary and 

discussion of Hopf's paper. The comparism technique 

invented by Hopf to prove this principle, has since 

become a main mathematical tool for the study of 

second order elliptic partial differential equations and 

has generated an enormous number of important 

applications.  

 

The strong maximum principle of Eberhard Hopf is a 

classical and foundational result of the theory of 

second order elliptic partial differential equations. It 

goes back to the maximum principle for harmonic 

functions, already known to Guass in 1839 on the 

basis of the mean value theorem. It also extends to 

maximum principle  for singular quasilinear elliptic 

differential inequalities; a theory initiated 

particularly by Vásquez and Diaz in the 1980's, but 

with earlier intimations in the work of Benilan, Brezis 

and Crandall.  

 

Patricia Pucci and James Serrin provided a clear 

explanation of the strong maximum principle from its 

beginnings, showed its relation with and differences 

from the classical theory of Hopf and developed the 

features of these ideas in rather unexpected byways. 

They emphasized and maintained the nonlinear 

nature of the operators involved, in contrast to the 

naive view sometimes expressed that Hopf's original 

results applies principally to linear operators.  
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They considered in the first instance the strong 

maximum principle and the compact support 

principle for quasilinear elliptic differential 

inequalities, under generally weak asumptions on the 

quasilinear operators in question, in the canonical 

divergence structure 

div {(|Du|)Du} - f(u) ≤0,  u ≥ 0             (5) 

and   div {(|Du|)Du} - f(u) ≥ 0,  u ≥ 0,         

 in a domain (connected open set) Ω  in Rn, n ≥ 2 . 

Here  ∆udenotes the vector gradient of the given 

function u = u(x), x ∈ Rn. They assumed throughout 

their paper, that unless otherwise stated explicitly, the 

following conditions on the operator A = A(ρ)  and 

the nonlinearity f = f(u), 

(1)           A ∈ C(0, ∞) 

               

(2)   ρ↦ρA(ρ)  is strictly increasing in (0, ∞)  and 

ρA(ρ) → 0 as ρ→0; 

(3)    f ∈ C[0, ∞),   

(4)   f(0) = 0 and f is non-decreasing on some 

interval (0, δ), δ > 0. 

By the strong maximum principle for (5), we mean 

the statement that if u  is a classical solution of (5) 

with  u(x0) = 0 for some x0 ∈ Ω, then u ≡ 0 in Ω. 

In order for the strong maximum principle to hold for 

(4), it is necessary and sufficient either that f(s) ≡ 0 

for s ∈ [0, μ),  μ > 0,  or that f(s) > 0  for s ∈ (0, δ) 

and 

∫
ds

H-1(F(s))

δ

0

 = ∞                          (6) 

The necessity of (6) for the case of the Laplace 

equation is accrued to Benilan, Brezis and Crandall, 

while for the p-Laplacisn, it is accrued to Vázquez. 

 

The  Hopf Maximum Principle [7] 

Gauss in 1839 had the knowledge of the maximum 

principle for harmonic and subharmonic functions on 

the basis of the mean value theorem; an extension to 

elliptic inequalities however remained open until the 

twentieth century. Bernstein (1904), Picard (1905), 

Lichtenstein (1912, 1924) then obtained various 

results by difficult means, as well as use of regularity 

conditions for the coefficients of the highest order 

terms. 

IV. MAIN RESULT 

Theorem: Suppose u satisfies the inequality 

Lu = aij(x)u,ij + bi(x)uij ≥ 0 

in some finite domain D ⊂ En, and the coefficients of 

L are bounded in Ω. Then u cannot assume its 

maximum at an interior point of Ω unless 

u ≡ constant. 

Proof (Protter and Weinberger (1967)) [10] 

The strong maximum principle also has an extension 

to the higher-dimensional case. 

One of the important methods in studying harmonic 

functions is the maximum principle. The maximum 

principle for a class of elliptic differential equations 

slightly more general than the Laplace equation is 

discussed in the next section. 

 

The Weak Maximum Principle [10] 

We assume Ω is a bounded domain in Rn. 

Definition: Let u be a C2-function in Ω. Then u is a 

subharmonic (or superharmonic) function in Ω if 

∆u ≥ (or ≤) 0 in Ω. 

 

Theorem 2: Let Ω be a bounded domain in Rn and 

u ∈ C2(Ω) ∩ C(Ω̅) be asubharmonic in Ω . Then u 

attains its maximum in Ω̅, that is, 

max
Ω̅

u = max
∂Ω

u   

Proof: If u has a local maximum at a point x0 in Ω, 

then the Hessian matrix 

∆u(x0) = tr(∇2u(x0)) ≤ 0 
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Hence, in the special case that ∆u > 0 in Ω, the 

maximum value of u in Ω̅ is attained only on ∂Ω. 

We then consider the general case and assume that Ω 

is contained in the ball BR for some R > 0. For any 

ε > 0, we consider 

uε(x) = u(x) - (R2 - |x|2). 

Then  

∆uε = ∆u + 2nε ≥ 2nε > 0 in Ω  

The special case we just discussed implies uε attains 

its maximum only on ∂Ω and hence  

max
Ω̅

uε = max
∂Ω

uε, 

Then 

max
Ω̅

uε ≤ max
Ω̅

uε + εR2 = max
∂Ω

uε + εR2   

≤ max
∂Ω

u  +εR2  

Letting ε → 0, gives us the desired result and using 

the fact that ∂Ω ⊂Ω.̅̅ ̅   

A continuous function in Ω̅  always attains its 

maximum in Ω̅ . Theorem 2 asserts that any 

subharmonic function continuous up to the boundary 

attains its maximum on the boundary ∂Ω , but 

possibly also in Ω.  

A class of elliptic equations slightly more general 

than the Laplace equation is discussed next. Let c and 

f be continuous functions in Ω. Considering 

∆u + cu = f in Ω, 

We require u ∈ C2(Ω). The function c is referred to 

as the coefficient of the zeroth-order term. u is 

harmonic if c = f = 0. 

A C2 -function u is called a subsolution (or 

supersolution) if ∆u + cu ≥ f  (or ∆u + cu ≤ f). If 

c = 0 and f = 0, subsolutions (or supersolutions) are 

subharmonic (or superharmonic). 

 

Weak Maximum Principle for Subsolutions 

u+  is the nonnegative part of u defined by 

u+ =max{0, u}  

 

Theorem 3 Let Ω be a bounded domain in Rn and c 

be a continuous function in Ω with c ≤ 0. Suppose 

u ∈ C2(Ω) ∩ C(Ω̅) satisfies 

∆u + cu ≥ 0 in Ω 

Then u attains on ∂Ω its nonnegative maximum in 

Ω̅, that is, 

max
Ω̅

u ≤ max
∂Ω

u+. 

Proof 

We set Ω+ = {x ∈ Ω; u(x) > 0}. If Ω+ =∅ , then 

u ≤0 in Ω, so u+ ≡ 0. If Ω+ ≠ ∅,  then  

∆u = ∆u + cu - cu ≥ -cu ≥ 0 in Ω+.  

Theorem 2 implies 

max
Ω+

u = max
∂Ω+

u = max
∂Ω

u+ 

If c ≡0 in Ω, Theorem 3 reduces to Theorem 2 and we 

can draw conclusions about the maximum of u rather 

than its nonnegative maximum. 

Theorem 3 holds for general elliptic differential 

equations. Let aij, bi and c be continuous functions in 

Ω with c ≤ 0. We assume  

∑ aij(x)ξiξj ≥ λ |ξ|2 for any x ϵ Ω and any ξ ϵ Rn,n
i, j = 1  

ℝ 

for some positive constant λ.  This means that we 

have a uniform positive lower bound for the 

eigenvalues of (aij) in Ω. For u ϵ C2(Ω) ∩ C(Ω̅) and 

f ∈ (Ω), cinsider the uniformly elliptic equation  

Lu = ∑ aijuxixj
 + ∑ biuxi

 + cu = f  in Ω

n

i = 1

n

i, j = 1

 

The corollary below is a simple consequence of 

Theorem 3. 

 

Corollary 4. Let Ω be a bounded domain in Rn and c 

be a continuous function in Ω with c ≤ 0. Suppose 

u ϵ C2(Ω) ∩ C(Ω̅) satisfies 

∆u+cu≥0inΩ, 

u ≤ 0 on ∂Ω 
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Then c ≤ 0 in Ω. 

  

The Strong Maximum Principle 

The weak maximum principle asserts that 

subsolutions of elliptic differental equations attain 

their non-negative maximum on the boundary of the 

coefficients of the zeroth-order term is non-positive. 

In fact, these subsolutions can attain their 

nonnegative maximum only on the boundary, unless 

they are constant. This is the strong maximum 

principle. To prove this , we need the following Hopf 

lemma. 

For any C´-function u in Ω̅ that attains its maximum 

on ∂Ω, say at x0 ∈∂Ω , we have 
∂u

∂v
(x0) ≥ 0. The Hopf 

lemma asserts that the normal derivative is in fact 

positive if u is a subsolution in Ω. 

Lemma 5: Let B be an open ball in Rn with x0 ∈∂B 

and c be a continuous function in B̅ with c ≤ 0. 

Suppose u ∈ C2(B) ∩ C´(B̅) satisfies 

∆u + cu ≥0 in B.  

Assume u(x) < u(x0) for any x ∈ B and u(x0) ≥ 0. 

Then 

∂u

∂v
(x0) > 0, 

where v is the exterior unit normal to B at x0. 

Proof  

We assume B = BR for some R>0. By the continuity 

of u up to ∂BR, we have 

u(x) ≤ u(x0) for any x ∈ B̅R 

For positive constants α and ε to be determined, we 

set 

w(x) = e-α|x|2 - e-αR2
, 

and 

v(x) = u(x) - u(x0) + ε w(x) 

We compute w and v in D = BR\B̅R

2

 

We have that 

∆w + cw = e-α|x|2(4α2|x|2 - 2nα + e) - ce-αR2
 

≥ e-α|x|2(4α2|x|2 - 2nα + e)  

Where we used c ≤ 0 in BR. Since 
R

2
 ≤ |x| ≤ R in D, 

we have 

∆w + cw ≥ e-α|x|2(α2R2 - 2nα + c) > 0 in D, 

if we choose ∝ sufficiently large. By c ≤ 0 and 

u(x0) ≥ 0, we obtain, for any ε > 0. 

∆v + cv = ∆u + cu + ε(∆w + cw) - cu(x0) ≥ 0 in D 

We discuss v on ∂D in two cases. First, on ∂BR

2

,  we 

have u - u(x0) < 0, and hence u - u(x0) < - ε  for 

some ε > 0. Note that w < 1 on ∂BR

2

. Then for such 

an ε,  we obtain v < 0 on ∂BR

2

. Second, for 

x ϵ∂BR,  we have w(x) = 0 and u(x) ≤ u(x0). Hence 

v(x) ≤ 0 for any x ϵ ∂BR  and v(x0) = 0. Therefore, 

v ≤ 0 on ∂D. 

In conclusion, 

∆v+cv≥0 in D 

v ≤ 0 on ∂D 

By the comparism principle, we have 

v ≤ 0 in D. 

In view of v(x0) = 0, then v attains at x0 its maximum 

in D̅. Hence, we obtain 

∂v

∂ν
(x0) ≥ 0,  

and then 

∂v

∂ν
(x0) ≥ - ε

∂w

∂ν
(x0) = 2εαRe-α|x|2 > 0  

Remark 8: Lemma 7 still holds if we substitute for B 

any bounded C1-domain which satisfies an interior 

sphere condition at x0 ϵ ∂Ω, namely, if there exists a 

ball B ⊂ Ω with x0 ϵ ∂B. This is because such a ball 

B is tangent to ∂Ω at x0.   

 

APPLICATIONS OF MAXIMUM PRINCIPLE TO 

ELLIPTIC EQUATIONS [10] 

Apriori Estimates 
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An important application of maximum principle is 

to prove the uniqueness of solutions of boundary 

value problems. 

Also, more importantly is to derive a priori estimates. 

In derivation of a priori estimates, it is necessary to 

construct auxiliary functions. We use only the weak 

maximum principle for the discussion. 

In this section, we derive a priori estimates for 

solutions to the Dirichlet problem and the Neumann 

problem. 

Suppose Ω is a bounded and connected domain in 

Rn.  Consider the operator L in Ω.  

Lu ≡ aij(x)Diju + bi(x)Diu + c(x)u 

 

for u ϵ C2(Ω) ∩ C(Ω̅). We assume that aij,bi, and c  

are continuous and aij(x)ξiξj ≥ λ |ξ|2 for any 

x ϵ Ω and any ξ ϵ Rn,  where λ is a positive number. 

We denote by Λ the sup norm of aij and bi, that is 

max
Ω

|aij|  + max
Ω

|bi| ≤ Λ  

Proposition 9: Suppose u ϵ C2(Ω) ∩ C(Ω̅) satisfies 

{
Lu = f in Ω

u =φ on ∂Ω 
 

For some f ϵ  C(Ω̅) and φ ϵ C(∂Ω) . If c(x) ≤ 0, then 

the following holds 

|u(x)| ≤ max
∂Ω

|φ| + C max
Ω

|f|  for any x ∈ Ω 

where C is a positive constant depending only on 

λ, Λ and diam (Ω).  

Proof 

We will construct a function w in Ω such that 

(i) L(w±u)=Lw±f≤0, or Lw≤∓f in Ω; 

(ii) w ± u = w ± φ ≥ 0, or w ≥ ∓φ on ∂Ω 

Denote F = max
Ω

|f| and ϕ = max
∂Ω

|φ|. We need  

Lw≤-F in Ω 

w ≥ Φ on ∂Ω  

Suppose the domain Ω lies in the set {0 < x1 < d} for 

some d > 0. Set w =Φ + (eαd - eαx1)F  with α > 0 to 

be chosen later. Then by direct calculation, we have, 

-Lw = (a11∝
2 + b1∝)Feαx1 - cΦ - c(eαd - eαx1)F 

≥  (a11∝
2 + b1∝)F ≥ (∝2λ + b1∝)F ≥ F 

By choosing ∝ large such that ∝2λ + b1(x)∝ ≥ 1 for 

any x ∈ Ω. Hence w satisfies (i) and (ii). By the 

comparism principle, we conclude -w ≤ u ≤ w in Ω, 

that is, 

sup
Ω 
|u| ≤ Φ + (eαd- 1)F 

where αis a positive constant depending only on 

λ and Λ 

(2) Gradient Estimates 

The basic idea in the treatment of gradient estimates, 

accrued to Bernstein involves differentiation of the 

equation with respect to xk, k = 1, ..., n, followed by 

multiplication by Dku  and summation over k. The 

maximum principle is then applied to the resulting 

equation in the function v = |Du|2  possibly with 

some modification. The two kinds of gradient 

estimates are global gradient estimates and interior 

gradient estimates. We will use semilinear equations 

to illustrate the idea. 

Suppose Ω is a bounded and connected domain in 

Rn. Consider the equation 

aij(x)Diju + 

bi(x)Diu = f(x, u) in Ω                                             (7)        

for u ϵ C2(Ω)  and f ϵ C(Ω × R).  aij and bi  are 

always assumed to be continuous and hence bounded 

in Ω̅ and the equation is uniformly elliptic in Ω in the 

sense  

aij(x)ξiξj ≥ λ |ξ|2 for any x ϵ Ω and any ξ ϵ Rn for 

some positive constant λ. 

Proposition 9: Suppose u ϵ C3(Ω) ∩ C1(Ω̅)  satisfies 

(7) for aij, bi ∈ C1(Ω̅) and f ∈C1(Ω̅ × R). Then there 

holds 

sup
Ω 
|u| ≤sup

∂Ω 
|u| + C 

Where C is a positive constant depending only on 

λ, diam(Ω) , |aij, bi |C1(Ω̅)
, M = |u|L∞(Ω), and 

|f|
C1(Ω̅ × [-M,M])

   

Proof 
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Set L ≡aij Dij +biDi. We calculate L(|Du|2) first. 

Note 

Di(|Du|2) = 2DkuDkiu 

and 

Dij(|Du|2) = 2DkiuDkju + 2DkuDkiju                                  

(8) 

Differentiating (8) with respect to xk, multiplying by 

Dku, and summing over k, we have by (8) 

aijDij(|Du|2) +bi Di(|Du|2)= 2 aijDkiuDkju - 

 2DkaijDkuDiju - 2Dkbi 

DkuDiu + 2Dz f|Du|2 + 2DkfDku  

The ellipticity assumption means 

∑ aij

i, j, k

DkiuDkju ≥ λ|D2u|
2
. 

By Cauchy inequality.  

L(|Du|2) ≥λ|D2u|
2
 - C|D2u|

2
 - C 

Where C is a positive constant depending only on λ, 

|aij, bi |C1(Ω̅)
, and |f|

C1(Ω̅ × [-M,M])
. 

We need to add another term u2 . We have by 

ellipticity assumption 

L(u2) =2aijDi
uDju + 2u {aijDij

u + 

biDiu}  ≥2λ|Du|2 +2uf   

We then obtain 

L(|Du|2 + αu2) ≥λ|D2u|
2
 +(2λα -C)|Du|2 - C 

 

≥  λ|D2u|
2
 + |Du|2 - C 

if we choose ∝ > 0 large, with C depending in 

addition on M. In order to control the constant term, 

we may consider another function eβx1 for β > 0. 

Hence we get 

L(|Du|2 + αu2 + eβx1) ≥ λ|D2u|
2
 + |Du|2 + 

{β2
a11eβx1 + βb1eβx1 - C} . 

If we putthe domain Ω ⊂ {x1 > 0}, then eβx1 ≥ 1 for 

any x ∈Ω. By choosing βlarge, we may make the 

last term positive.Therefore, if we set 

w =|Du|2 + α|u|2  +eβx1  for large α, β depending 

only on λ, diam(Ω),|aij, bi |C1(Ω̅)
, M = |u|L∞(Ω), and 

|f|
C1(Ω̅ × [-M,M])

, then we obtain  Lw ≥ 0 in Ω 

By the maximum principle, we have 

sup
Ω

 w ≤ sup
∂Ω

 w 

V. CONCLUSION 

The maximum principle are powerful tools in the 

analysis of elliptic partial differential equations, 

allowing for conclusions about existence, 

uniqueness,and properties of solutions. Their 

applications extend to various fields, including 

mathematics, physics, engineering,and geometry, 

where understanding the behavior of solutions is 

crucial. In mathematics, the maximum principle is 

applicable to a priori estimates and gradient 

estimates. 
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