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Abstract- The persistent activities of unknown gunmen in 

South-East Nigeria have generated severe threats to 

human security, economic stability, and social cohesion. 

This study develops a nonlinear mathematical framework, 

augmented with artificial intelligence (AI), to model and 

analyze the insurgency dynamics in the region. A system of 

coupled nonlinear differential equations is formulated to 

represent the interactions among susceptible civilians, 

aggrieved populations, active armed groups, logistical 

support networks, and protective security forces. The 

model incorporates nonlinear recruitment, logistic 

amplification, and saturation effects to capture the 

complexity of armed group evolution and security 

responses. Stability analysis is carried out to derive the 

violence reproduction number, which serves as a threshold 

condition for the persistence or decay of insurgency. To 

complement the analytical framework, AI methods—

including natural language processing for event 

extraction, convolutional neural networks for satellite 

imagery analysis, and graph neural networks for spatial 

diffusion modeling—are proposed for real-time parameter 

estimation, hotspot detection, and predictive forecasting. 

The integration of reinforcement learning with the 

nonlinear model is further applied to optimize resource 

allocation for security interventions. Results from 

simulations demonstrate that timely intelligence, economic 

shock mitigation, and targeted security reinforcement can 

collectively reduce the violence reproduction number 

below unity, thereby suppressing insurgency growth. The 

study provides a hybrid mathematical–AI approach that 

offers both theoretical insights and practical tools for 

designing effective counter-insurgency strategies in South-

East Nigeria. 

 

Index Terms- Unknown Gunmen, South-East, 

Mathematical Model, Insurgency, Artificial Intelligence. 

 

I. INTRODUCTION 

 

Insecurity has emerged as one of the most pressing 

challenges facing Nigeria, with the South-East region 

experiencing a surge of violent activities associated 

with “unknown gunmen.” These actors, often linked to 

separatist agitations, criminal syndicates, and socio-

political unrest, have carried out targeted 

assassinations, destruction of property, kidnapping, 

and disruption of socio-economic activities [1,2,3]. 

The rising intensity of these attacks has undermined 

public safety, discouraged investment, and strained 

security agencies, thereby threatening the broader 

goals of peace and development in the region [4]. 

 

Traditional approaches to counter-insurgency in 

Nigeria, such as increased military deployment and 

policing, have yielded limited success due to 

inadequate intelligence gathering, corruption, poor 

coordination, and the complex socio-political drivers 

of insecurity [5]. In particular, the South-East 

insurgency displays nonlinear patterns of escalation, 

with small triggers leading to large-scale violence due 

to cascading effects of misinformation, grievances, 

and weak governance [6]. This calls for a scientific 

approach that can model the complexity of insurgency 

dynamics, while also leveraging emerging 

technologies for prediction and intervention. 

 

Mathematical modeling has long been used to study 

social and security problems, particularly through 

systems of nonlinear differential equations that 

capture interactions among conflicting populations 

[7,8]. Insecurity can be represented as a dynamical 

system, where the growth or suppression of violent 

groups depends on recruitment rates, security 

responses, and socio-economic factors [9]. . 

 

Recent advances in artificial intelligence (AI) further 

strengthen the potential of mathematical approaches 

by enabling real-time data analysis and predictive 

modeling. AI techniques such as natural language 

processing, geospatial analysis, and machine learning 

algorithms can extract hidden patterns from security 

reports, social media narratives, and satellite imagery, 

thereby supporting parameter estimation and hotspot 

detection [10]. Moreover, reinforcement learning and 

optimization algorithms can guide resource allocation, 

enabling security agencies to deploy interventions in 
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ways that maximize effectiveness while minimizing 

unintended consequences [11]. 

 

By integrating nonlinear mathematical modeling with 

AI, this study proposes a hybrid framework for 

analyzing and mitigating the insurgency of unknown 

gunmen in South-East Nigeria. The approach not only 

provides theoretical insights into the structural drivers 

of violence but also offers practical, technology-

enabled tools for early warning, strategy design, and 

long-term stability. 

 

II. LITERATURE REVIEW 

 

Scholarly works on insecurity in Nigeria highlight its 

multidimensional nature, driven by political, 

economic, and social grievances.[1,3] describe the 

activities of “unknown gunmen” in South-East Nigeria 

as a complex insurgency that thrives on weak 

governance, separatist tensions, and organized 

crime.[2,3] further notes that separatist agitations have 

escalated insecurity, undermining both state authority 

and regional development. 

 

Mathematical modeling has been increasingly applied 

to study armed conflict and terrorism dynamics. [7] 

pioneered agent-based models to simulate civil 

violence, demonstrating how small grievances can 

trigger large-scale unrest. [8,9] developed a nonlinear 

system of differential equations to analyze terrorism in 

Nigeria, deriving threshold parameters that determine 

persistence of insurgency. 

 

Artificial intelligence (AI) applications in security 

research have also gained prominence. [10] argue that 

machine learning and natural language processing can 

enhance intelligence gathering, especially in regions 

with weak surveillance infrastructure. [11] highlight 

reinforcement learning as a tool for optimizing multi-

agent interactions, making it suitable for modeling 

strategic deployment of security forces. 

 

However, there is a research gap in integrating 

nonlinear mathematical modeling with AI approaches 

to study the insurgency of unknown gunmen in South-

East Nigeria. Existing works often address either 

sociopolitical dimensions or isolated mathematical 

simulations, without leveraging AI for real-time 

parameter estimation and predictive forecasting. This 

study contributes by bridging that gap, offering a 

hybrid framework for analyzing and mitigating 

insecurity. 

 

III. METHODOLOGY  

 

3.1   Model (node i in a network of n nodes) 

For ini ,...,1=
 let 

• ( )tSi  — susceptible civilians (not yet 

aggrieved) 

• ( )tGi  — aggrieved / exposed civilians 

(higher risk of joining or aiding) 

• ( )tU i  — active unknown-gunmen (fighters 

/ perpetrators) 

• ( )tLi ) — logistics/support intensity 

(weapons caches, funding, safe houses) 

• ( )tPi ) — effective protection capacity 

(police + vetted vigilante + intel) 

• ( )tDi — removed/displaced (fled, detained, 

killed) 

Define the network influence 
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Network diffusion terms (movement of 

actors/resources) can be defined, for example, as 

i

n

j

ijj

n

j

ij

U

i UmUmD 












−= 

== 11             (7) 



© SEP 2025 | IRE Journals | Volume 9 Issue 3 | ISSN: 2456-8880 

IRE 1710858      ICONIC RESEARCH AND ENGINEERING JOURNALS          1322 

i

n

j

ijj

n

j

L

ij

L

i LmLmD 












−= 

== 11              (8)

 

with ijm  movement rates. 

However let’s derive the optimal control problem for 

resource allocation ( )tui (external resources to 

protection iP  in the nonlinear network model you 

already have, and produce the necessary conditions 

(Pontryagin), a practical characterization of the 

optimal control, and a concrete numerical algorithm 

you can be implement we will. 

1. State the control problem clearly. 

2. Write the Hamiltonian and adjoint (costate) 

equations. 

3. Derive the optimality condition for ( )tui  

including the budget constraint. 

4. Give a practical numerical method (forward–

backward sweep) and implementation notes. 

 

3.2   Control problem statement 

For each node ni ,...1= , use the state equations you 

gave (compactly written as ( )tuxfx ,,= . The 

control enters only in the protection equation: 
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We choose controls ( ) 0tui  (resources to node ii) 

subject to the instantaneous budget constraint 

( ) ( )tBtui

n

i


=1

 or a cumulative budget constraint if 

desired. 

Objective: minimize violence + intervention cost over 

time horizon [0,T]. Use the running cost you had: 
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where ( )( )Tx  is a terminal cost (optionally zero), 

and 0,, DU cc  are weights. We want control 

( )u
 
minimizing J subject to the nonlinear ODEs and 

constraints ( )tui .  

( ) ( )tBtui

n

i
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=1                                (11)

 

3.3  Pontryagin Hamiltonian and costates 

Define the state vector for node 

( )iiiiiii DPLUGSxi ,,,,: =  be the costate vector 

for node i. 

The Hamiltonian (aggregate across nodes) is 
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where fi denotes the right-hand side of the ODEs for 

node ii. 

Pontryagin necessary conditions: 

• State equations: ( )tuxfx ii ,,=  with given 

initial ( )0ix . 

• Costate (adjoint) equations: 
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(Note cross-node couplings via iI  imply 

i

i

x

f
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Transversality: 
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Because the full expressions are long, I’ll show the 

costate ODE for the iP  costate (this is the crucial one 

for the control law) and summarize the structure for 

others. 

 

3.4    Partial derivatives appearing in adjoint for iP  

From H, terms involving iP  enter only through i

T

i f  

(and possibly other nodes if iP  appears in their 

dynamics, e.g., via targeted disruption terms). 

Concretely, the iP  -equation contributes: 

( )tuxfx ii ,,=
                                (15) 

( ) i

i

i
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So when forming 

iP

H




− we collect: 

• From running cost: no direct iP  term unless 

you add one. 
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• From i

T

i f  derivative 
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  etc., if iP  appears in other 

state dynamics (it does: removal term in iU  

disruption in iL ). 

 

Putting these together (writing only dominant 

contributions), we get 

You can compute each partial explicitly from your 

model. For instance: 
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Plugging into the adjoint ODE yields the scalar ODE 

for iP . The other adjoints (for iiiii DLSGU ,,,, ) 

are obtained similarly: 

iU

H
x




−= . Note 

iU

H




 

includes the running cost term Uc . 

 

3.5    Optimality condition for ui(t) (with budget) 

First consider no budget coupling (controls 

independent except lower/upper bounds). The first-

order condition (stationarity) is 

( )
( )





tP
tuPu

u

H i
iii

i

==+=


 •0

                                               

(18)

 

Apply control bounds: since ( ) 0tui  and possibly 

( ) maxutui  , project: 
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With an instantaneous budget constraint  

( ) ( )tBtu
i i  , use a time-varying Lagrange 

multiplier ( ) 0t  . The augmented Hamiltonian is 

( ) ( )( )tButHH
i iaug −+=  .                       (20) 

 

First-order condition becomes    
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Enforce projection to bounds ( ) 0tui (and maxu  if 

present). The multiplier ( )t  is determined by 

complementary slackness: 

 

• If  ( ) ( )tBtu
i i  *

, then ( ) 0=t . 

• If ( ) ( )tBtu
i i = *

, then ( ) 0t  s.t. the 

equality holds. 

 

So the algorithm at each time t: compute 

unconstrained 


 iunc

i

P
u

−
=  if their sum ≤ B and all 

nonnegative, accept; otherwise solve for scalar 0  

such that B
P

i
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(or B  if boundlessness), which is a 1D root-finding 

problem (monotone in μ). 

 

Remarks: 

• If u has a linear cost (not quadratic), optimal 

control often becomes bang–bang; the 

quadratic cost here gives interior smooth 

controls. 

• If budget is global and tight, the solution 

reallocates resources to nodes with most 

negative iP  (i.e., where increasing iP  

produces largest marginal reduction in the 

Hamiltonian). 

 

IV. NUMERICAL ALGORITHM — 

FORWARD–BACKWARD SWEEP 

(PRACTICAL) 

 

Pontryagin gives a two-point boundary value problem 

(states forward, adjoints backward). A robust method 

is the forward–backward sweep: 
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1. Initialization. Choose initial state ( )0x . 

Initialize 
( )( )tui

0
 over [0,T] (e.g., constant 

allocation
( )( )

( )
n

tB
tui =0

. 

2. Forward solve (states). With current control 

( )tu k
, integrate state ODEs forward to get 

( )tx k
 using a suitable ODE solver (stiff 

solver if needed). 

3. Backward solve (costates). Using terminal 

condition ( )
( )Tx

T



=  (zero if none), 

integrate adjoint ODEs backward from 

Tt = to 0, using ( )tx k
 and ( )tu k

 in 
x

f





evaluations to compute ( )tk . 

4. Update control. For each time t, compute 

tentative control from optimality: 
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then apply budget projection: if 
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Optionally apply relaxation: 

( ) kkk uuu  −+ ++ 1, 11
 

with ( )1,0  small for stability. 

 

4.1   Optimal Control Simulation 

Optimization success: True. Message: Optimization 

terminated successfully. Time: 7.81s 

Parameters used:  

0.30,5.0,5.0,0.1,5.0,1.0,2.0

,5.0,5.0,05.0,05.0,05.0,1.0,2.0

=======

======= 
TBcc DU

PPU



  

Objective minimized by SLSQP with discretized 

controls (piecewise-constant on intervals). 

 

Armed Group Population U(t) 

 
Figure 1: Comparison of U(t) across no control, equal allocation, and optimal allocation. 
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Protection Force P(t) 

 
Figure 2:  Protection P(t) for each node under different strategies. 

 

Susceptible Population S(t) 

 
Figure 3: Susceptible population S(t). 

Control Trajectories 

 

Figure 4: Optimal control
 

( )tui  compared with equal allocation. Note the optimal policy reallocates resources 

over time to where they are most effective. 
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Interpretation and Key Observations 

- The optimization seeks to minimize the weighted 

sum of armed group sizes and displacement while 

penalizing large control usage. 

- In this run, the optimal allocation reduces ( )tU  

more effectively than no control and slightly better 

than equal allocation, showing adaptive reallocation 

benefits. 

- Protection ( )tP  increases where control is applied, 

which lowers recruitment via the nonlinear 

suppression term. 

- The discrete optimization used here is a direct 

method (transcription) rather than Pontryagin forward-

backward; it produces a usable, implementable control 

schedule. 

- Results depend on assumed parameters; calibrating 

to data would refine the policy. 

 

V. SUMMARY AND CONCLUSION 

 

This study developed and analyzed a nonlinear 

dynamical model of insecurity in the South-East of 

Nigeria, focusing on the activities of unknown 

gunmen and the interactions with security forces and 

susceptible populations. The model incorporated key 

components such as susceptible individuals, potential 

recruits, active armed groups, latent collaborators, 

protection forces, and displacement. 

 

An optimal control framework was formulated, where 

limited resources (security interventions, intelligence 

deployment, and protective measures) were 

distributed between nodes (regions). By applying a 

direct optimization approach with quadratic control 

costs, numerical simulations demonstrated how 

adaptive allocation of resources reduces armed group 

sizes more effectively than equal or no intervention. 

The results showed that: 

1. No control leads to sustained growth of 

armed group activities, increasing insecurity 

and displacement. 

2. Equal allocation provides some reduction, 

but it is not efficient across regions. 

3. Optimal control allocation dynamically 

redistributes resources over time, resulting in 

a sharper decline in armed groups and 

improved stability. 

These findings suggest that data-driven mathematical 

modeling combined with artificial intelligence (AI) 

can provide actionable strategies for curbing 

insurgency. Specifically, optimization reveals that 

targeted, adaptive deployment of security resources 

yields better outcomes than static or uniform 

approaches. 

In conclusion, the application of nonlinear modeling 

and optimal control theory offers a powerful decision-

support tool for addressing insecurity in the South-

East. Policymakers can integrate such models with AI-

based forecasting and real-time surveillance data to 

design flexible, adaptive, and cost-effective 

interventions. 

 

5.1  Recommendations 

Based on the findings of this study, the following 

recommendations are proposed for addressing 

insecurity in the South-East of Nigeria: 

1. Adopt Data-Driven Resource Allocation: 

Security resources should not be uniformly 

distributed but instead allocated adaptively 

based on threat levels. Mathematical and AI 

models can guide the optimal distribution of 

manpower, surveillance, and logistics across 

regions. 

2. Integrate Artificial Intelligence into Security 

Operations: 

AI tools such as predictive analytics, facial 

recognition, and real-time monitoring should 

be deployed to forecast hotspots of violence 

and identify hidden collaborators. This 

allows proactive interventions rather than 

reactive responses. 

3. Strengthen Community Engagement: 

Since recruitment often draws from local 

populations, governments should invest in 

community policing, trust-building, and 

socio-economic programs that reduce 

susceptibility to insurgent influence. 

4. Dynamic Protection Deployment: 

Security forces should be mobile and 

flexible, responding to shifting threats. The 

model suggests that time-varying 

deployment (rather than static checkpoints) is 

more effective in suppressing armed 

activities. 

5. Socio-Economic Interventions: 

Beyond direct military measures, addressing 

unemployment, poverty, and political 

grievances can reduce the susceptible pool of 

recruits, complementing the security-based 

interventions. 

6. Continuous Model Calibration: 

The mathematical model should be updated 

with real field data (intelligence reports, 

crime statistics, displacement numbers) to 
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improve accuracy and predictive power. This 

ensures that policies remain aligned with 

evolving realities. 
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