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ABSTRACT- In this paper, we studied some algebraic 

properties of multigroups. Some of the properties of 

multisets have also been studied. We discovered that for 

any multiset 𝑮 to be a multigroup over the group 𝑿, then 

its count function 𝑪𝑮 must satisfies the two conditions: (i) 

𝑪𝑮(𝒙𝒚) ≥ [𝑪𝑮(𝒙) ∧ 𝑪𝑮(𝒚)], ∀ 𝒙, 𝒚 ∈ 𝑿; (where ∧ is the 

minimum operation). (ii) 𝑪𝑮(𝒙−𝟏) ≥ 𝑪𝑮(𝒙), ∀ 𝒙 ∈ 𝑿. We 

also discovered that if 𝑿 is a group and 𝑨, 𝑩 ∈ 𝑴𝑮(𝑿), 

then 𝑨 ∩ 𝑩 ∈ 𝑴𝑮(𝑿) but 𝑨 ∪ 𝑩 ∉ 𝑴𝑮(𝑿). It has also 

been shown that if 𝑨 and 𝐁 are two multigroups over a 

group 𝐗, then 𝐀 is said to be a submultigroup of 𝐁 if 𝐀 ⊆

𝐁. Hence, the study shows that the theory of multisets and 

multigroups can be very useful in many areas such as 

information retrieval on the web, data mining, decision 

making, data encryption, coding theory etc. 

 

Keywords - Multisets, Group, Multigroups, Count 
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I. INTRODUCTION 

 

In mathematics, the concept of a group is central to 

abstract algebra: other well-known algebraic 

structures, such as rings, fields, and vector spaces, can 

all be seen as groups endowed with additional 

operations and axioms. Groups recur throughout 

mathematics, and the methods of group theory have 

influenced many parts of algebra. Linear algebraic 

groups and Lie groups are two branches of group 

theory that have experienced advances and have 

become subject areas in their own right. 

 

Various physical systems, such as crystals and the 

hydrogen atom, may be modelled by symmetry 

groups. Thus group theory and the closely related 

representation theory have many important 

applications in physics, chemistry, and materials 

science. Group theory is also central to public key 

cryptography [3]. 

 

A multigroup ℜ is an algebraic system with one 

operation called multiplication. This multiplication 

usually satisfies the ordinary group axioms except that 

the product is not unique. Various problems in non-

commutative algebra lead naturally to the introduction 

of algebraic systems in which the operations are not 

one-valued [6]. 

 

II. LITERATURE REVIEW 

 

According to Shinoj and Sunil [7], Abstract algebra is 

the study of algebraic structures and more specifically 

the term algebraic structure generally refers to a set 

(called carrier set or underlying set) with one or more 

operations defined on it. Examples of algebraic 

structures include groups, rings, fields, and lattices. 

They introduced algebraic structures on Fuzzy 

multisets by extending these algebraic structures on 

Intuitionistic Fuzzy multisets to a new concept named 

Intuitionistic Fuzzy multigroups. 

 

[4], introduced the notion of multigroups and also 

studied some basic results regarding multisets, like 

functional image and pre-image of a multiset under a 

mapping, decomposition theorems of multisets etc. 

 

Various problems in non-commutative algebra lead 

naturally to the introduction of algebraic systems in 

which the operations are one-valued. [6], refers to 

multigroup ℜ as an algebraic system with one 

operation called multiplication. This multiplication 

usually satisfies the ordinary group axioms except that 

the product is not unique. 

 

Another contribution to this theory was made by [8], 

where he referred to a hypergroup as a system in which 

any two elements 𝑎, 𝑏 can be combined to form the 

product 𝑎𝑏, which is a complex of 𝑛 not necessarily 

distinct elements of the system. Here, 𝑛 is a fixed 

integer  ≥ 1. If 𝑛 = 1, the hypergroup reduces to an 

ordinary group. If  [𝑎𝑏], called the bracket product, is 

the set of all the distinct elements of  𝑎𝑏, the totality of 

elements 𝑎 such that [𝑎𝑥] and [𝑥𝑎] are single elements 

for every 𝑥 forms a group with respect to the bracket 

product. This group is called the nucleus. 
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The history of the theory of multigroups is very short. 

Multigroups (or hypergroups) were first defined by 

[5], who has studied their properties and applications 

in several communications. 

 

It has been shown that the intersection of two 

multigroups is again a multigroup but their union may 

not be a multigroup. In this paper, we shall review 

some basic results regarding multigroup as it relates to 

multiset and define notions such as normal 

multigroup, factor multigroup, abelian multigroup 

etc., and again study some of their basic properties. 

 

III. AIM AND OBJECTIVES 

 

The aim of this research is to study the notion of 

multigroups as it relates to multisets.                                                                                                                                        

The specific objectives include, to:                                                                                                     

i. investigate the conditions to which a multiset over 

a given set say 𝑋 becomes a multigroup over    𝑋. 

ii. prove some results/ propositions in multigroup 

theory.                                                                           

iii. solve examples of multigroup problems. 

 

IV. METHODOLOGY 

 

In this section, we shall be looking at some definitions 

and propositions on multigroups as used in [1] and [2], 

as well as to prove some results on multigroups.  

 

4.1 Results on Intersection of Multigroups 

Definition 4.1.1. Let X be a group. A multiset G over X 

is said to be a multigroup over X if the count function 

of G (written as CG) satisfies the following two 

conditions:                      

(i) CG(xy) ≥ [CG(x)  ∧  CG(y)],   ∀ x, y ∈ X; ( where ∧ 

is the minimum operation).                         

(ii) CG(x−1) ≥ CG(x),   ∀ x ∈ X.    

                                            

The set of all multigroups over X is denoted by MG(X). 

Definition 4.1.2. Let A, B ∈ [X]w. Then we define A ∘

B and A−1 as follows: CA∘B(x) =∨ {CA(y)  ∧

 CB(z);  y, z ∈ X and yz = x} and  CA−1(x) = CA(x−1). 

Where, ∨ is maximum operation and ∧ is minimum 

operation. 

Definition 4.1.3. Let X and Y be two nonempty sets and 

f ∶ X → Y be a mapping. Then 

 (i) the image of a multiset M ∈ [X]w under the 

mapping f is denoted by f(M) or f[M],                                                        

where   Cf(M)(y) = {
∨f(x)=y CM(x)     if f −1(y) ≠ ∅

0              otherwise                   
  

                                    

(ii) the inverse image of a multiset N ∈ [Y]w under 

the mapping f is denoted by 

f −1(N) or f −1[N] where Cf−1(N)(X) = CN[f(x)]. 

                                  

Proposition 4.1.4. Let A ∈ MG(X). Then   

                     

(i) CA(e) ≥ CA(x),   ∀ x ∈ X; ( e is an identity 

element)                       

(ii) CA(xn) ≥ CA(x),   ∀ x ∈ X;    

                     

(iii) CA(x−1) = CA(x),   ∀ x ∈ X;    

                                

(iv) A = A−1. 

Proof.       

                            

Let x, y ∈ G.      

                      

(i) CA(e) = CA(xx−1) ≥ [CA(x)  ∧  CA(x−1)].  

                                  

By definition of multigroups, we have that  

      

CA(e) ≥ [CA(x)  ∧  CA(x)] = CA(x),   ∀ x ∈ X; 

                          

Hence,  CA(e) = CA(x).    

                 

(ii)CA(xn) = CA(xxn−1) ≥ [CA(x)  ∧  CA(xn−1)] =

[CA(x) ∧  CA(xxn−2)] ≥ [CA(x) ∧ CA(x) ∧

 CA(xn−2)] ≥ [CA(x)  ∧  CA(x)  ∧ .  .  .  ∧  CA(e)].  

                                                        

But CA(e) = CA(x).    

                                

Therefore  CA(xn) ≥ [CA(x)  ∧  CA(x)  ∧ .  .  .  ∧

 CA(x)] = CA(x),   ∀ x ∈ X                         

Hence, CA(xn) ≥ CA(x).    

(iii) Since CA(x−1) ≥ CA(x) = CA([x−1]−1).  

                                  

By definition of multigroups, CA([x−1]−1) ≥

CA(x−1) ≥ CA(x).                                                   

Hence, CA(x−1) = CA(x),   ∀ x ∈ X.   

                    

(iv) Since CA−1(x) = CA(x−1) = CA(x),                                                                                               

comparing subscript (i.e. for  CA−1(x) = CA(x)), we 

have that     

   A = A−1.   

                            

Hence, A = A−1. End of proof.   

         

Proposition 4.1.5. Let A be a multiset. Then A ∈

MG(X) if and only if CA(xy−1) ≥ [CA(x) ∧

 CA(y)],   ∀ x, y ∈ X.                                                                                                                       
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Proof.       

                        

Let A ∈ MG(X). Then CA(xy−1) ≥ [CA(x)  ∧

CA(y−1)]                      

but CA(y−1) = CA(y),   ∀ y ∈ X,    

                                     

⟹   CA(xy−1) ≥ [CA(x)  ∧  CA(y)],   ∀ x, y ∈ X.                    

                                              

Therefore, the given condition is satisfied.   

                            

Conversely let the given condition be satisfied. Now, 

                                  

CA(e) = CA(xx−1) ≥ [CA(x)  ∧  CA(x)] =

CA(x),   ∀ x, ∈ X.                                

4.1   Applying equation 4.1, we have                                                                                                                    

Again CA(x−1) = CA(ex−1) ≥ [CA(e) ∧ CA(x)] =

CA(x), ∀ x, ∈ X                      

4.2         Also CA(xy) = CA[x(y−1)−1] ≥ [CA(x)  ∧

 CA(y−1)]                                                                                 

but CA(y−1) = CA(y),   ∀ y ∈ X,                                                                                                 

Applying equation 4.2, we have                   

                                  

⟹   CA(xy) ≥ [CA(x)  ∧  CA(y)],   ∀ x, y ∈ X                                                       

4.3    Therefore, from equation 4.2 and 4.3, we have 

that A ∈ MG(X).                                   

Proposition 4.1.6. If A ∈ MS(X). Show that   

                                                                     

A ∈ MG(X) if and only if A ∘ A−1 = A. 

Proof. 

Let CA(x) ≥ CA(y)  ∧  CA(z),   ∀ y, z ∈ X    

                      

CA(x) ≥ ∨y,z∈X {CA(y) ∧  CA(z) ∶ yz = x;  ∀ x ∈ X}   

                                   

CA(x) ≥ CA(y) ∧ CA−1(z−1)    

                

Recall that CG(x−1) ≥ CG(x)     

                                 

⟹   CA(x) ≥ CA(y)  ∧  CA−1(z)    

                                           

CA(x) ≥ [CA(y)  ∧  CA−1(z)] = CA∘A−1(x) since yz =

x                                  

⟹    CA(x) ≥ CA∘A−1(x)      

                        

By comparing subscript, we have that,   

                                         

A ≥ A ∘ A−1                                                                                                            

(*)     Conversely, 

CA∘A−1(yz) ≥ CA(y)  ∧  CA−1(z);    ∀ y, z ∈ X   

                              

CA∘A−1(x) ≥∨y,z∈X {CA(y)  ∧  CA−1(z) ∶ yz =

x;   ∀ x ∈ X}                                            

⟹    CA∘A−1(x) ≥ CA(y)  ∧  CA(z−1)    

                       

Recall that  CG(x−1) ≥ CG(x), therefore we have that  

                                                     

 CA∘A−1(x) ≥ CA(y)  ∧  CA(z) ∶ yz = x;   ∀ x ∈ X   

                                                        

⟹    CA∘A−1(x) ≥ CA(x) since yz = x     

                                

By comparing subscript, we have that,   

                                        

A ∘ A−1 ≥ A                                                                                                         

(**)   (*) and (**) implies that     

                          

A ∘ A−1 = A       

Hence, A ∈ MG(X).  End of proof. 

Proposition 4.1.7. Let A ∈ MS(X). Then A ∈

MG(X) if and only if A satisfies the following 

conditions:                                                                                                                                          

(a)     (i)  A ∘ A ⊆ A;     

                        

(ii)  A−1 ⊆ A or A ⊆ A−1 or A−1 = A.   

                        

Or       

                         

(b)     A ∘ A−1 ⊆ A.     

                         

Proof.        

                 

Let A ∈ MG(X). Then CA(yz) ≥ [CA(y)  ∧

CA(z),   ∀ y, z ∈ X. Thus, CA(x) ≥ {CA(y)  ∧

 +CA(z) ∶ yz = x}. Hence     

                                               

CA(x) ≥∨y,z∈X {CA(y)  ∧  CA(z) ∶ yz = x} =

CA∘A(x),   ∀ x ∈ X.                               

Therefore, A ∘ A ⊆ A. Again since CA−1(x) =

CA(x−1) = CA(x), it follows that A = A−1 and hence 

A ⊆ A−1 and A−1 ⊆ A. Thus the given conditions are 

satisfied.                                                        

Conversely, let the given conditions be satisfied. Let 

x, y ∈ X.Then                                                

CA(xy−1) ≥ CA∘A(xy−1) =∨z∈X [CA(z)  ∧

 CA(z−1xy−1)].                       

≥ [CA(x)  ∧  CA(y−1)] = [CA(x)  ∧  CA(y)]                                                                          

Therefore, A ∈ MG(X).  End of proof. 

Proposition 4.1.8. Let A, B ∈ MG(X).   

                            

Then A ∘ B ∈ MG(X) if and only if A ∘ B = B ∘ A. 

                                       

Proof.       

                     

Since A, B ∈ MG(X), it follows that A = A−1 and B =

B−1.                                    
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Suppose A ∘ B ∈ MG(X). Then A ∘ B = (A ∘ B)−1 =

B−1 ∘ A−1 = B ∘ A.                                        

Conversely, let A ∘ B = B ∘ A. Then (A ∘ B)−1 =

(B ∘ A)−1 = A−1 ∘ B−1 = A ∘ B and (A ∘ B) ∘

(A ∘ B) = A ∘ (B ∘ A) ∘ B = A ∘ (A ∘ B) ∘ B =

(A ∘ A) ∘ (B ∘ B) ⊆ A ∘ B. Therefore, A ∘ B ∈ MG(X).  

End of proof. 

Proposition 4.1.9. Let A, B ∈ MG(X). Then A ∩ B ∈

MG(X).                         

Proof.       

                

Since A, B ∈ MG(X), we have CA(xy−1) ≥ [CA(x)  ∧

 CA(y)] and CB(xy−1) ≥ [CB(x)  ∧  CB(y)],   ∀ x, y ∈

X. Now                                   

CA∩B(xy−1)     =   ∧ {CA(xy−1), CB(xy−1)}   

                   

≥   ∧ {[CA(x)  ∧  CA(y−1)], [CB(x)  ∧  CB(y−1)]} 

                                                                     

By definition of multigroups, we have that  

     

CA∩B(xy−1)    ≥   ∧ {[CA(x)  ∧  CA(y)], [CB(x)  ∧

 CB(y)]}      

     =   CA(x) ∧ CA(y)  ∧  CB(x)  ∧  CB(y)  

          

=    [CA(x)  ∧  CB(x)]  ∧ [CA(y)  ∧  CB(y)]   

                                 

=    CA∩B(x)  ∧  CA∩B(y)     

                                                       

and   CA∩B(x−1)         =      CA(x−1)  ∧  CB(x−1)   

      

     =    CA(x)  ∧  CB(x) = CA∩B(x).  

                                     

Therefore, A ∩ B ∈ MG(X).  End of proof. 

 

4.2.  Results on Subgroups of Multigroups 

Proposition 4.2.1. Let A ∈ MG(X). Then An,   n ∈ ℕ 

are subgroups of X.                              

Proof.       

                     

Let x, y ∈ An. Then CA(x) ≥ n  and  CA(y) ≥ n. 

Since  A ∈ MG(X), it follows that CA(xy−1) ≥

[CA(x)  ∧  CA(y−1)]     

                                                

By definition of multigroups, we have  

                     

CA(xy−1) ≥ [CA(x)  ∧  CA(y)] ≥ n. Hence, xy−1 ∈

An.       

Therefore, An,   n ∈ ℕ are subgroups of  X.  End of 

proof.                                    

Proposition 4.2.2. If A ∈ MG(X) and H ≤ X, then 

A
H⁄ ∈ MG(H).                                

Proof. 

 Let x, y ∈ H. Then xy−1 ∈ H. Since A ∈ MG(X), 

then                 

CA(xy−1) ≥ CA(x) ∧  CA(y−1).  

By definition of multigroups, we have that 

CA(xy−1) ≥ CA(x) ∧  CA(y);   ∀ x, y ∈ X. 

Moreover, CA
H⁄

(xy−1) ≥ CA
H⁄

(x) ∧ CA
H⁄ (y−1).  

By definition of multigroups, we have that 

 CA
H⁄

(xy−1) ≥ CA
H⁄

(x) ∧  CA
H⁄

(y); ∀ x, y ∈ X  

Hence, A H⁄ ∈ MG(H). 

Definition 4.2.3. Let A ∈ MG(X). Then define A∗ =

{x ∈ X; CA(x) = CA(e)} and A∗ = {x ∈ X; CA(x) >

0}. 

Proposition 4.2.4. Let A ∈ MG(X). Then A∗ and A∗ 

are subgroups of X.  

                                        

Proof.       

                       

Let x, y ∈ A∗. Then CA(x) = CA(y) = CA(e). Now                                                                                 

CA(xy−1) ≥ [CA(x)  ∧  CA(y)] =  [CA(e)  ∧

 CA(e)] = CA(e) ≥ CA(xy−1).                              

So, CA(xy−1) = CA(e),   ∀ x, y ∈ X and hence x, y ∈

A∗ ⟹ xy−1 ∈ A∗. Therefore, A∗ is a subgroup of X.  

        

Again let x, y ∈ A∗. Then CA(x) > 0 and CA(y) > 0. 

Now                              

CA(xy−1) ≥ [CA(x)  ∧  CA(y)] > 0.   

                        

Therefore, x, y ∈ A∗ ⟹ xy−1 ∈ A∗ and hence A∗ is a 

subgroup of  X. End of proof. 

 

V. RESULTS 

 

Example 5.1. Let X = {e, a, b, c} be Klein’s 4-group 

and G = {e, e, e, a, a, b, b, b, c, c} be a multiset over X. 

Show that G is also a multigroup over X.  

Solution. 

G will only be a multigroup over X if the count function 

G (CG) satisfies the following two conditions: 

                                                 

(i) CG(xy) ≥ [CG(x)  ∧  CG(y)],   ∀ x, y ∈ X;         

                          

(ii) CG(x−1) ≥ CC(x),   ∀ x ∈ X. 

Now, X = {e, a, b, c} gives 

{e, a}, {e, b}, {e, c}, {a, b}, {a, c}, {b, c}, {e, e}, {a, a}, 

 {b, b}, {c, c}, {e−1}, {a−1}, {b−1}, {c−1}          

(i) ⟹     CG(ea) = CG(a) = 2 ≥ [CG(e)  ∧  CG(a)],                          
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CG(eb) = CG(b) = 3 ≥ [CG(e)  ∧  CG(b)],  

                                

CG(ec) = CG(c) = 2 ≥ [CG(e)  ∧  CG(c)],  

                    

 CG(ab) = CG(c) = 2 ≥ [CG(a)  ∧  CG(b)],   

                        

CG(ac) = CG(b) = 3 ≥ [CG(a)  ∧  CG(c)],  

                       

CG(bc) = CG(a) = 2 ≥ [CG(b)  ∧  CG(c)],   

                       

 CG(ee) = CG(e) = 3 ≥ [CG(e)  ∧  CG(e)],   

                       

CG(aa) = CG(e) = 3 ≥ [CG(a)  ∧  CG(a)],  

                   

 CG(bb) = CG(e) = 3 ≥ [CG(b)  ∧  CG(b)],     

                     

 CG(cc) = CG(e) = 3 ≥ [CG(c)  ∧  CG(c)],  

                                                         

(ii) ⟹    CG(e−1) = CG(e) = 3,   

          

CG(a−1) = CG(a) = 2,    

        

CG(b−1) = CG(b) = 3,      

       

CG(c−1) = CG(c) = 2.     

                                          

Since condition (i) and (ii) are satisfied as clearly 

shown above, we therefore said that G is a multigroup 

over X. 

Definition 5.2.  Let A and B be two multigroups over 

a group X. Then A is said to be a submultigroup of B if 

A ⊆ B. 

Example 5.3. Let X = {e, a, b, c} be Klein’s 4-group, 

A = {e, e, a, a, b, b, c, c} and                                        

B = {e, e, e, a, a, b, b, b, c, c}. Then clearly A, B ∈

MG(X) and A ⊆ B. Therefore, A is a submultigroup of 

B. 

Example 5.4. Let X = K4 = {e, a, b, c} be the Klein’s 

4-group, A = {e, e, a} and B = {e, e, b}. If A, B ∈

MG(X), show whether or not A ∪ B, A ∩ B is a 

multigroup over X.  

Solution.     

      

  Let G = A ∪ B = {e, e, a, b}  

                               

G will only be a multigroup over X if the count function 

G (CG) satisfies the following two conditions:  

(i) CG(xy) ≥ [CG(x)  ∧  CG(y)],   ∀ x, y ∈ X;         

                                 

(ii) CG(x−1) ≥ CC(x),   ∀ x ∈ X. 

Now, G = {e, e, a, b} gives 

{e, a}, {e, b}, {a, b}, {e, e}, {a, a}, {b, b}, {e−1}, {a−1}, {b−1} 

          

(i) ⟹     CG(ea) = CG(a) = 1 ≥∧ [CG(e), CG(a)],                          

                 

CG(eb) = CG(b) = 1 ≥∧ [CG(e), CG(b)],  

                     

CG(ab) = CG(c) = 0 ≱∧ [CG(a), CG(b)],    

                               

CG(ee) = CG(e) = 2 ≥∧ [CG(e), CG(e)],   

                          

CG(aa) = CG(e) = 2 ≥∧ [CG(a), CG(a)],  

                 

CG(bb) = CG(e) = 2 ≥∧ [CG(b), CG(b)],   

                                         

(ii) ⟹    CG(e−1) = CG(e) = 2,   

          

CG(a−1) = CG(a) = 1,    

       

CG(b−1) = CG(b) = 1,      

                                             

Since condition (i) is not satisfied as clearly shown 

above, i.e. A ∪ B = {e, e, a, b} and CA∪B(c) =

CA∪B(ab) = 0 ≱ ∧ [CA∪B(a), CA∪B(b)] = 1.  

 

We therefore said that A ∪ B ∉ MG(X). 

But A ∩ B = {e, e} and CA∩B(e) = 2 ≥∧

[CA∩B(e), CA∩B(e)].  Therefore, A ∩ B but not A ∪ B is 

a multigroup over X. 

 

VI. DISCUSSION 

 

From example 4.1, we see that the Klein’s 4-group X 

and multiset G satisfied the condition for multigroups, 

hence G is a multigroup over X. We also see from 

example 4.3 that the multigroup A is a submultigroup 

of the multigroup B since all the elements in the 

multiset A are all contained in the multiset B. 

Therefore, A ⊆ B and A is a submultigroup of B. We 

verified in example 4.4 whether or not the union or 

intersection of the two multigroups A and B is a 

multigroup, but the result shows that only their 

intersection is a multigroup but their union is not a 

multigroup since it does not satisfied the conditions for 

multigroups.  

 

VII. CONCLUSION 

 

From the results obtained above, we see clearly that 

the union of family of multigroups over a group X may 

not be a multigroup, but the intersection of family of 

multigroups over a group X is a multigroup. Also, if A 
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is a multiset over X, then A is a multigroup over the 

group X if and only if A ∘ A−1 = A, or  A ∘ A−1 ⊆ A. 

Hence the study of multigroups is very interesting and 

useful in areas such as information retrieval on web 

(since an information may appear more than once with 

possibly different degrees of relevance to a query), 

coding theory, etc. 
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