
© OCT 2025 | IRE Journals | Volume 9 Issue 4 | ISSN: 2456-8880 
DOI: https://doi.org/10.64388/IREV9I4-1711066-1755 

IRE 1711066      ICONIC RESEARCH AND ENGINEERING JOURNALS            110 

Serverless Architecture in Decisioning using AWS 
 

SAUGAT PANDEY 

University of Cumberlands 

 

Abstract- Elastic, low latency, and cost-effective systems 

are becoming increasingly important as both business 

decisioning systems (real and batch time) as well as 

processing analytic models and policies, and business 

rules across volatile workloads. This paper describes this 

type of serverless architecture for decisioning 

implemented on Amazon Web Services (AWS) and 

evaluates the performance of the solution on throughput, 

latency, cost, maintainability and operational resiliency, 

by comparison with traditional deployments on 

containers or virtual machines. We have proposed an 

architecture which is a combination of AWS Lambda for 

stateless policy evaluation, Step Functions for 

orchestration of multi-step decision flows, API Gateway 

for secure ingestion, DynamoDB for low-latency storage 

of state and features and Event Bridge/SQS for 

asynchronous eventing. We bring together model 

inference with Amazon sage Maker endpoints/lambda 

hosted lightweight models, and share best practices 

around cache/ cold- start mitigation, concurrency 

control, and transactional consistency. An end-to-end 

decision latency metric, scalability under burst traffic, 

cost/decision metric, and operational complexity metric 

(deployment and monitoring) are also used to evaluate the 

performance of the decision support system for synthetic 

and natural workloads. Results show that a properly 

architected serverless decisioning platform is capable of 

providing sub-100ms median latency for typical decision 

profiles, near-linear cost reduction at low to moderate 

utilization levels and simplified operations through 

managed services, but with trade-offs relating to cold 

starts, stateful workflows and deterministic performance 

at very high sustained throughput. As a conclusion, we 

provide best practice suggestions, design patterns for 

hybrid serverless/stateful components, as well as 

suggestions for future work (adaptive provisioning, 

distributed feature stores, and privacy preserving 

decisioning). 

 

Keywords: Lambda From AWS, Decision Making, Cloud 

Computing, Scalability, Cost Optimization, Real Time 

Inference, Dynamo Db 

 

I. INTRODUCTION 

 

Decisioning systems are a significant component of 

today's digital platforms and are utilized in use cases 

such as fraud detection, credit scoring, 

personalization, claims adjudication or operation 

optimization. These systems need to be able to 

process a high volume of requests in real- time, 

execute complex business rules or machine learning 

models, and provide accurate results with minimal 

latency. Traditional decisioning architectures are 

usually monolithic applications, or containerized 

microservices deployed to virtual machines or to 

Kubernetes clusters. While there are advantages to 

these approaches (flexibility) they can also introduce 

issues in terms of provisioning, scaling and cost 

(especially where the workload is not predictable 

and/or highly variable). 

 

These limitations are the reason why serverless 

computing as a computing paradigm was created. By 

removing not only the need to manage the servers 

themselves, but also automatically scaling the 

resources based on the needs of the application, 

serverless platforms enable organizations to achieve 

fine-grained scale, reduce the management overhead, 

and deliver a pay- for-what-you-use pricing model. 

In the context of decisioning, serverless architecture 

provides you the opportunity to deliver very 

responsive, elastic, and resilient systems for 

decisioning applications that are suitable for both 

steady state traffic and traffic spikes. 

 

Amazon Web Services (AWS) has a mature 

ecosystem of serverless services that includes AWS 

Lambda, Step Functions, API Gateway, DynamoDB, 

Event Bridge and Amazon sage Maker. Together, 

these services can help you create decisioning 

platforms that are modular, event-based, and closely 

coupled with analytic and operational data sources. 

For example, Lambda functions can be employed to 

implement business rules, Step Functions can be 

employed to implement decision flows in several 

stages, and DynamoDB can be used to store features, 

decision states, historical results with millisecond 

latency. 

 

Decisioning on AWS: Design and evaluation of 

decisioning serverless architecture is the paper in 

which we discuss the design and evaluation of 

decisioning serverless architecture on AWS. More 

specifically, we investigate how well this decision 

tree can handle important challenges in decisioning 



© OCT 2025 | IRE Journals | Volume 9 Issue 4 | ISSN: 2456-8880 
DOI: https://doi.org/10.64388/IREV9I4-1711066-1755 

IRE 1711066      ICONIC RESEARCH AND ENGINEERING JOURNALS            111 

workloads, including the following: 

 

Unlimited Elasticity and unpredictable demands call 

for scalability. 

 

Latency: Ensuring sub second response time for real-

time decision making 

 

Cost efficiency: Efficient use of cost models such as 

pay per use 

 

Operational Simplicity - less provisioning, patching, 

infrastructure management 

 

Resilience: providing tolerance to and continuity of 

distributed services 

 

Through an architectural design analysis, 

performance evaluation and a cost model analysis, 

this study identifies the benefits and tradeoffs of 

adopting serverless architecture paradigms for 

decisioning. Also, it includes an introduction of best 

practices and design guidelines for practitioners who 

want to implement decision-making platforms for 

production-grade applications using AWS services. 

 

 

II. THE BASICS OF SERVERLESS 

 

Architecture 

Serverless architecture is a game-changing shift in 

cloud computing in which the developer is 

responsible for the application logic, and the cloud 

provider is responsible for providing, scaling, and 

managing infrastructure. Unlike monolith or 

microservice-based models which come with explicit 

management of resources, serverless systems are 

event driven and fine-grained in terms of execution - 

which means the pay- as-you-use model directly 

relates to actual usage. 

2.1 Definition of Satire and its Characteristics. 

Serverless computing does not mean that servers 

don't exist, but instead that the server management is 

completely abstracted from the developer. Its basic 

characteristics are as follows: 

 

Automatic Scaling: Resources automatically scale up 

and down as needed, and down to zero when unused. 

 

Event-driven Model: Functions are invoked based on 

events such as API calls, data streams or scheduled 

events. 

 

Pay-per-use Pricing: Pricing is determined by the 

execution time and resources used up instead of the 

pre-provisioned capacity. 

 

Stateless Execution: Functions are assumed to be 

stateless and the persistence should be handled with 

external storage services. 

 

Managed Operations: Patch, Fault Tolerance, 

Availability - are the cloud provider's 

responsibilities. 

 

2.2 Serverless Architecture Vs. Traditional 

Architecture 

In traditional VM- or container-based deployments, 

the provisioning is typically done in advance to meet 

the peak load, leading to low utilization and run 

overhead. On the other hand, serverless architectures 

can be adopted to minimize idle costs and ease the 

DevOps burden but have possible tradeoffs such as 

cold-start latency and lack of runtime environment 

control. For decisioning systems this difference has 

a direct impact on latency guarantees, operational 

cost and system durability. 

 

2.3 Migration: Exiting Serverless: AWS 

Serverless Ecosystem 

AWS has one of the most extensive serverless 

computing ecosystems of compute, storage, 

orchestration, and monitoring services: 

 

AWS lambda: Main compute service for running 

serverless architecture driven functions with no 

server provisioning. 

 

Amazon API Gateway: Managed API service that 

exposes APIs using the restful protocol or 

WebSocket protocol that triggers decisioning 

workflow. 

 

AWS Step Functions: Multi-step decision making 



© OCT 2025 | IRE Journals | Volume 9 Issue 4 | ISSN: 2456-8880 
DOI: https://doi.org/10.64388/IREV9I4-1711066-1755 

IRE 1711066      ICONIC RESEARCH AND ENGINEERING JOURNALS            112 

state machines 

 

Amazon DynamoDB & S3: Low-latency NoSQL 

database and scalable object store for decision states, 

features and logs 

 

Amazon Event Bridge & SQS: Asynchronous 

messaging and workflows using event buses and 

queues Decoupled 

 

Amazon CloudWatch & X-Ray: Performance 

analysis & troubleshooting solutions for 

observability and monitoring 

 

Together, these services offer a serverless 

decisioning backplane for building responsive and 

cost-effective systems that are highly maintainable. 

 

2.4 Possible Implications for DSS 

The serverless model is best suited for the needs of 

decisioning workloads, as described below: 

 

Elasticity - Decision services can efficiently manage 

steady-state and burst traffic 

 

Event-driven Invocation maps easily map to triggers 

in decisioning like API request or transaction streams 

or scheduled policy evaluations. 

 

Low cost ensures that the cost of running decisioning 

engines at scale is kept at the lowest possible cost, 

particularly for variable intensity workloads 

 

Compliance and Security Management: Security 

compliance processes simplify the process of 

meeting regulatory requirements for industries such 

as finance, healthcare and insurance. 

 

With these basics in place, decisioning platforms on 

AWS can become real-time, operationally simple 

and economically scalable, and serverless 

architecture is a natural fit for building next 

generation decisioning architectures. 

 
 

III. AWS SERVERLESS DECISIONING 

ARCHITECTURE COMPONENTS 

 

Decisioning systems are made up of a combination 

of compute, orchestration and storage services that 

interact in a seamless way to provide real-time 

outputs. AWS offers a mature set of serverless 

building blocks which are the foundation of these 

types of architectures. This section focuses on four 

core services (Lambda, Step Functions, DynamoDB, 

and S3) and how they contribute to the power of 

decision making in an enterprise. 

 

3.1 AWS Lambda 

Role in Compute Execution: AWS Lambda is the 

main compute layer of a serverless decisioning 

system. Every request made to the neural network 

such as analyzing business rules, running a ML 

model, and aggregating features can be done as a 

stateless lambda function. Its event-driven model 

makes sure that compute resources are only 

provisioned when needed. 

 

Cool Down and Concurrency Throttling: 

While Lambda provides automatic 

 

scalability, there needs to be two moves in terms of 

the operations: 

 

Cold Starts: Functions are latency sensitive when 

they are invoked after going idle; this can affect 

decisioning workloads that demand sub-100ms 

response times. Some of the mitigation techniques 

are provisioned concurrency, function warming, and 

reducing dependency initialization. 

 

Concurrent Execution Limits: Lambda scale based 

on concurrent execution with concurrency limits at 

account-level. Using throttling, retries and queue 

buffering also make the design resilient to traffic 

spikes. 



© OCT 2025 | IRE Journals | Volume 9 Issue 4 | ISSN: 2456-8880 
DOI: https://doi.org/10.64388/IREV9I4-1711066-1755 

IRE 1711066      ICONIC RESEARCH AND ENGINEERING JOURNALS            113 

Security Best Practices: Lambda is a least- privilege 

access security model based on AWS Identity and 

Access Management (IAM). Functions should be 

given minimum required permissions (read-only to 

DynamoDB tables, limited S3 buckets, etc). VPC 

integration helps to secure the network and 

CloudWatch provides visibility into logs and 

monitors for audits. 

 

3.2 AWS Step Functions 

Coordinating Event-Based Processes 

Complex decision frameworks are typically multi-

step workflows--features retrieval, rules, model 

invocation, outlining of results, etc. AWS Step 

Functions is an orchestrator for state machines that 

allow developers to link Lambda executions with 

branching, retries and error handling. 

 

Standard and Express Workflows. 

Standard Workflows: Long-lasting, guarantee 

execution and long-running tasks support (until 1 

year). Best for situations 

 

such as loan or claims approval where it is important 

to be audit-able. 

 

Express Workflows: Build for high volume and low 

latency workloads, allowing near real-time 

orchestration for less cost but with shorter execution 

time. Ideal for fraud detection, personalization or 

streaming based decisioning. 

 

Example - Credit Approval Process Flow: 

 

API Gateway triggers the Lambda function when a 

request is made for a loan. 

 

Step Function orchestrates: 

 

Lambda function gets applicant's credit history from 

DynamoDB. 

 

ML-based scoring is done through a Sage Maker 

endpoint, which Lambda invokes. 

 

Decision rules engine (Lambda) uses business 

thresholds. 

 

Final decision is recorded in DynamoDB and 

notifications are sent out via Event Bridge. 

 

 

3.3 Amazon DynamoDB 

Serverless NoSQL Decision Data Metadata: 

 

DynamoDB is the main storage layer for decisioning 

data including applicant metadata, feature vectors, 

decision outcomes and audit logs. Its low latency of 

millisecond- level makes it suitable for real-time 

applications. 

 

Global Secondary Indexes (GSIs) and Performance. 

 

GSIs can be used to provide efficient access patterns 

by indexing attributes other than the primary key, 

which can allow decision engines to efficiently query 

data based on user ID, application ID or type of 

transaction. 

 

Query vs. Scan Tradeoffs: 

Query: Efficient and allows looking for specific 

items using predictable performance by using 

partition keys and optional sort keys. 

 

Scan: Scans through the entire tables, can be useful 

for analytics but expensive and slow for real-time 

decisioning. An important aspect of scalability is to 

design the data models to support queries more than 

scans. 

 

Integration with Amazon S3: 

For large artifacts (e.g., documents, historical logs or 

images supporting a decision), you can store object 

metadata and keys in DynamoDB while the actual 

files are stored in Amazon S3. This hybrid approach 

is the most cost-effective and efficient. 

 

3.4 Amazon S3 Unstructured Data Lake: 

Amazon Simple Storage Service (S3) is a highly 

durable object storage service that is used to store 

large amounts of unstructured data like documents, 

images, and transaction logs that fuel decisioning 

workflows cost- effectively. 

 

Using Object Key Management in DynamoDB: 

 

DynamoDB metadata tables can store S3 object keys, 

which can be accessed by decision engines in order 

to quickly retrieve related data for evaluation. For 

example, a claims adjudication system may have a 

linking relationship from scanned claim forms stored 

in S3 to metadata stored in DynamoDB. 

 

Security using Encryption and Firewalls: 



© OCT 2025 | IRE Journals | Volume 9 Issue 4 | ISSN: 2456-8880 
DOI: https://doi.org/10.64388/IREV9I4-1711066-1755 

IRE 1711066      ICONIC RESEARCH AND ENGINEERING JOURNALS            114 

S3 provides several levels of security: 

 

Encryption: You can encrypt data using the AWS-

managed keys (SSE-S3), customer- managed KMS 

keys (SSE-KMS) or client- side encryption. 

 

VPC Endpoints: To ensure that S3 is not exposed to 

the public internet, you can restrict access to private 

subnets. 

 

Bucket Policies and IAM: Use bucket policies and 

IAM to ensure that only authorized Lambda 

functions and services have access to sensitive 

decisioning data. 

 

Security and Access Control 

Security is a crucial aspect of serverless decisioning 

systems because they may process sensitive data, like 

financial transactions, customer identities, or health 

records in real time. AWS offers a robust set of tools 

and services to enable fine-grained security and 

compliance controls across the compute, storage and 

orchestration layers. 

 
 

IV. AWS IDENTITY AND ACCESS 

MANAGEMENT (IAM) 

 

Enforcing the Principle of Least- Privilege: 

AWS Identity and Access Management is the basis 

of access control for serverless architectures. Every 

Lambda function, Step Function, or an underlying 

support service needs an IAM role with the least 

permissions required to run it. For example: 

 

Your Lambda function that is pulling applicant 

metadata needs to have read-only access to your 

DynamoDB table. 

 

Function writing decision logs to s3 should be 

limited to a single bucket path. 

The least-privilege principle minimizes the risk of 

privilege escalation and contains the scope of the 

damage of a compromised credential. 

 

Best Practices: 

Rather than injecting credentials into services, use 

role-based access instead. 

 

Utilize resource level permissions (e.g. DynamoDB 

table or S3 bucket prefix restrictions) 

 

Implement multi-factor authentication (MFA) to 

admins that manage IAM policies. 

 

4.1. Amazon API Gateway 

The Amazon API Gateway is used often as the 

ingress point where request streams are initiated by 

client applications in current distributed computing 

architecture designs. These streams are then put 

through a series of decision making processes. The 

necessity of such a working model stresses the need 

of stringent security systems that not only exclude 

the possibility of unauthorized access but also reduce 

the source of exploitation. 

 

As a result, a multi-layer security schema can be used 

wisely. First, the combination of Amazon Cognito 

provides strong authentication and authorisation 

hence guaranteeing undisputed validation of user 

identities. Along with that, the use of JSON Web 

Tokens (JWTs) is used to help validate request 

tokens statelessly. Secondly, authorization of inter-

service interactions cannot be achieved without 

Identity and Access Management (IAM) policies. 

Thirdly, the API Gateway has throttling and rate 

limiting controls, which provide the affordance of 

finely grain constraints which neutralize denial of 

service threats to downstream decision making 

services. Fourthly, the integration of a Web 

Application Firewall (WAF) such as AWS WAF 

allows the thorough scanning of web traffic and the 

identification of vulnerabilities, including SQL 

injection, cross-scripting, web-based attacks, and so 

on. 

Taken as a whole, all these defensive mechanisms 

make sure that only authenticated, authorized and 

throttled appropriately requests are allowed to access 

the decision-making infrastructure. 

 

4.2 Firewalls and VPN Security. 

Serverless Workloads: The risks of not reporting a 

third-party security breach. 

Two serverless products including AWS Lambda 



© OCT 2025 | IRE Journals | Volume 9 Issue 4 | ISSN: 2456-8880 
DOI: https://doi.org/10.64388/IREV9I4-1711066-1755 

IRE 1711066      ICONIC RESEARCH AND ENGINEERING JOURNALS            115 

and DynamoDB, although seemingly autonomous, 

often interact with third-party applications or 

essential business systems. This allows the operator 

to have finer control over the flow of information by 

isolating subnets under a Virtual Private Cloud 

(VPC) and solely executing in this area, reducing the 

portability of information, thus risk mitigation. 

 

Key Controls Include: 

VPC Endpoints: This feature comes by creating a 

specifically dedicated route between Lambda and S3 

or Lambda and DynamoDB; therefore, foregoing 

features between Lambda and the Internet-at-large. 

 

Security Groups / Network ACLs: These capabilities 

are similarly to more traditional firewalls in which 

both explicit ingress and egress rules are applied, 

limiting traffic paths. 

 

AWS Network Firewall: This service can be thought 

of as an advanced intrusion- prevention platform and 

deep-packet inspection engine—costly enough, as to 

provide a high-grade perimeter security around the 

VPC. 

 

This tiered architecture, sometimes called a multi-

layered architecture or defense-in-depth, ensures 

that the deployment of protective actions is 

implemented at the network layer as well as the 

application layer, i.e., with an API Gateway, with the 

goal of strengthening the overall hitting posture. 

 

 

 

V.OBSERVATIONAL AND MONITORING 

 

Monitoring and observability are essential aspects in 

modern cloud architecture which respond to the 

trustworthiness, efficiency, and supervision in 

decision-making systems that depend on serverless 

applications. These systems are so distributed and 

transient that comprehensive availability of 

individual- function visibility plus a collective 

workflow and data are required; this is not only used 

to debug but also to meet regulatory requirements but 

to facilitate performance optimization. Amazon Web 

Services provides a range of native instrumentation 

work and notes of third-party observability 

acceptance, thus providing a complete picture of 

health of the organization. 

 

5.1 Amazon CloudWatch Metrics and Logs: 

Amazon CloudWatch automatically collects 

quantitative metrics on AWS services, such as the 

many times an AWS Lamba invocation was invoked, 

the time it took to process an invocation, the error 

rate, and throttling events in Amazon Lamba; the 

latency metrics in Amazon API Gateway and the 

read/write capacity utilization metrics on Amazon 

DynamoDB. It also handles functional-level logs and 

publishes them to CloudWatch Logs to therefore 

form a problem-diagnostic hub of log analysis. 

 

Alarms and Dashboards: 

CloudWatch Alarms produce notification before an 

incident has started when any of the metrics being 

monitored meet user- specified thresholds- say an 

error rate in an Lendant function crosses one percent 

or when the DynamoDB latency falls above 

acceptable limits. CloudWatch Dashboards provide 

integrated visual displays of service status; they may 

be used both in real time and as a longitudinal trend 

data source, thus allowing operators to find 

anomalies and trace failures in a distributed 

architecture. 

 

5.2. New Observability through Grafana and 

Datadog. 

Amazon Web Services will effortlessly integrate 

with Datadog and the use of Grafana when addicts 

and businesses are looking to have a broader analytic 

tool arsenal to invite in addition to a cross- platform 

search and surveying timeline. 

 

Datadog: The service produces advanced 

visualization, anomaly detection, and artificial 

intelligence-driven notification at workloads 

consisting of serverless workloads at AWS. 

Additionally, it also provides the means to match the 

infrastructure metrics to application-level metrics, 

providing an end- to-end, bird-eye view of the 

operational ecosystem. 

 

Amazon Managed Service using Grafana (via 

Prometheus): Using Amazon Managed Service, 



© OCT 2025 | IRE Journals | Volume 9 Issue 4 | ISSN: 2456-8880 
DOI: https://doi.org/10.64388/IREV9I4-1711066-1755 

IRE 1711066      ICONIC RESEARCH AND ENGINEERING JOURNALS            116 

Prometheus metrics are sent to Grafana; using the 

open-source dashboarding features of Grafana, one 

can use highly customizable real-time dashboards. 

The reason is that such a long line of observability 

allows looking beyond the amputated scope of native 

AWS observability and gives a wider perspective on 

system behavior. 

 

These integrations particularly apply at decision 

support systems under strict Service Level 

agreement. In these regards, the most important 

aspect is always to identify timely any latency spikes 

or resource bottlenecks; the observability stack 

above provides stakeholders with the necessary 

visibility to make timely and informed decisions. 

 

 

 

VI.AWS CLOUDFORMATION NATIVE IAC 

APPROACH 

 

The native Amazon Web Services, CloudFormation, 

provisioning system serves as an interpreter of 

resource definition. These definitions are written by 

CloudFormation engineers in either JSON or YAML 

and then the service translates them, and creates a 

large catalogue of resources, including Lambda 

functions, Step Functions, DynamoDB tables, and S3 

buckets. 

 

Advantages: 

Its most notable assets are based on strong 

integration of Seattle with the AWS ecosystem, use 

of serverless abstractions and the AWS Serverless 

Application Model (SAM). Also, it brings increased 

security assurance by use of change sets. 

 

Use Case: Automated Deployment of Decisioning 

Systems 

In serverless decision-making, updates to Lambda 

code, IAM roles, and API Gateway endpoints must 

move smoothly across development, testing, and 

production. 

 

• IaC automation ensures systematic propagation, 

eliminating manual errors and drift. 

• CI/CD pipelines provide consistent promotion, 

version control, and rollback safety. 

• Outcome: Faster iteration, regulatory 

compliance, and stable, secure deployments 

across environments. 

 

6.1 Terraform 

Multi Cloud Portability and Modularity: 

Terraform is an open-source infrastructure- as-code 

(IaC) tool that is built by HashiCorp to enable 

organizations to manage their infrastructure using a 

continuum of cloud providers such as Amazon Web 

Services (AWS), Microsoft Azure and Google Cloud 

Platform (GCP). Terraform can be used to generate 

reusable modules and provide version-controlled 

infrastructure production by using HashiCorp 

Configuration Language (HCL), a syntax of 

declarative syntax. 

 

Pros: The most significant benefits include multi- 

cloud support, a well-established system of 

community modules, and better portability of hybrid 

or vendor-neutral decisioning systems. 

 

Use Case: Multi-Cloud Decisioning with Terraform 

A financial services company may run core 

decisioning services on AWS while keeping 

analytics workloads on Azure. 

 

• Challenge: Managing resources across two 

clouds with consistent security, compliance, and 

configurations. 

• Solution: Terraform provides a unified IaC 

framework to define, provision, and manage 

both AWS and Azure resources. 

• Benefit: Enables consistency, simplifies 

governance, and reduces operational overhead in 

hybrid cloud decisioning environments. 

 

6.2 Benefits of IaC for Decisioning Systems 

Each of these points will have a positive impact 

on Decisioning Systems from IaC. 

 

Automation: IaC removes resource-heavy manual 

configuration of complex workflows thus 

eliminating the possibility of humans mistakes 

during setup of systems. 

Compliance Policies: Security and governance 



© OCT 2025 | IRE Journals | Volume 9 Issue 4 | ISSN: 2456-8880 
DOI: https://doi.org/10.64388/IREV9I4-1711066-1755 

IRE 1711066      ICONIC RESEARCH AND ENGINEERING JOURNALS            117 

policy imperatives such as encryption requirements, 

identity and authentication management (IAM) 

policymaking are put under law via IaC templates 

and support strict auditability. 

 

Reproducibility: IaC provides that the same 

environment can be brought to fruition at 

development, test, and production phases to increase 

reliability. 

 

Version Control: Version-control systems like Git 

store infrastructure templates, which provides 

traceability and can revert to past state, should it be 

required. 

 

Across the book, there are numerous examples of the 

serverless components being provided. 6.4 is no 

different. 

 

An IaC template may specify the entire, end- to-end 

infrastructure needed to support a decisioning 

system: 

 

AWS Lambda: Sets the role, which includes the 

runtime environment, IAM role and deployment 

package. 

 

AWS Step Functions Countless AWS Step Functions 

involve the development of a state machine that 

facilitates the invocation of Lambda functions as part 

of decision workflows. 

 

Amazon DynamoDB: defines a schema of a table to 

store decision metadata and decision result to it. 

 

Amazon S3: This sets up a remedy in case of 

documenting logs, input files or extensive and 

inexpensively structured information. 

 

6.3 Examples of such a CloudFormation template or 

Terraform program include: 

1. Form a DynamoDB table named Decision 

Metadata Table. 

2. Create an S3 bucket with the name 

decision-logs-bucket and make it encrypted. 

3. Implement Lambda functions that are used to 

evaluate the rules and invoke machine- learning 

models. 

4. Complete a Step Functions workflow which will 

connect these Lambdas together to form an 

entire decisioning pipeline. 

This formalized structure enables either team to 

deploy entire decisioning environment which is 

scalable and secured by a single command, but which 

maintains consistency between quite separate 

regions/seconds and accounts. 

 

 

 

VII. USE OF SERVERLESS DECISIONING 

 

Serverless decisioning systems are becoming a 

known necessity in many sectors of industry 

especially where real-time insights, automation, and 

scale are three keys to modern enterprise 

architecture. The elastic nature of a serverless 

infrastructure coupled with combination of 

synergistic managed cloud services such as those 

provided by AWS makes this paradigm very 

responsive to a vast array of workloads including 

those which require frequent financial operations or 

a finely-tuned balance between governmental 

requirements and business needs. 

 

7.1 Finance Fraud Detection 

The events of the transaction can invoke AWS 

Lambda functions which assesses pattern based on 

pre-established business policies, which in turn make 

machine- learning models running on the Amazon 

Sage Maker server respond with anomaly- detection 

queries. With the coordination of Amazon Step 

Functions, the workflow allows predicting the 

suspicious activity and, which is justified, prevents 

transactions in real-time. 

 

Credit Scoring 

Applicant metadata data is stored within Amazon 

DynamoDB, incursion Lambda agents gathers 

external and internal data and uses them to calculate 

credit scores. Express Step Functions make low-

latency orchestration easily accessible, providing 

such decisions in the milliseconds range. 

 

 

Loan Approval 



© OCT 2025 | IRE Journals | Volume 9 Issue 4 | ISSN: 2456-8880 
DOI: https://doi.org/10.64388/IREV9I4-1711066-1755 

IRE 1711066      ICONIC RESEARCH AND ENGINEERING JOURNALS            118 

The optimization which comes with the serverless 

architectures makes the speed of processing of loan-

application fast because document verification is 

incorporated in Amazon S3, applicant-grading 

through Lambda and DynamoDB, and scoring 

through Lame Maker. DynamoDB streams are made 

entirely auditable so as to make the final approval 

workflow workable. 

 

7.2 Healthcare Claims Automation 

With the help of DynamoDB and retrieving patient 

history based on Amazon S3, healthcare providers 

will be able to utilize Lambda-powered rule engines 

together with those data stores. Amazon Step 

Functions have made sure that claims flip through 

validation, claim and payment phases of the process 

in order out of sequence manner. 

 

Protecting Patient Data. 

None of amazon API Gateway and amazon Cognito 

applications when connected with Lambda functions 

defines lax authentication strategies. Patient records 

that are sensitive are safe at rest, in S3 with and 

DynamoDB, whereas updates like finding eligibility 

of treatment are done in Lambda, which can provide 

adherence to HIPAA regulations. 

 

7.3 Government Services Benefits Distribution 

Decisioning applications that do not need servers 

automatically decide about whether to or not you are 

eligible to receive welfare or unemployment. Step 

Functions take care of cross-checking of the citizen 

data in multiple databases, whereas DynamoDB 

ensures that every decision is diagnosed and 

monitored. 

 

Response to Disaster COR. 

 

Emergency-related decisioning systems that are 

based on EventBridge can activate relevant 

workflows in case of an emergency such as an 

earthquake or a flood. Live consumption of IoT 

device and mobile application data collaborates to 

inform Lambda functions to aid the provision of 

resource allocation and in response effort 

prioritization due to resource utilization strategies. 

 

 

AWS Service 

Role in 

Decisioning 

Workflow 

 

Key Features 

 

Lambda 

Compute execution 

(rules/ML) 

Auto-scaling, 

event-driven 

Step 

Functions 

Workflow 

orchestration 

Standard & 

Express modes 

DynamoDB Metadata & state 

storage 

GSIs, low 

latency 

S3 Large object 

storage 

Encryption, 

lifecycle mgmt 

 

API Gateway 

Secure API 

exposure 

Throttling, WAF 

integration 

EventBridge 

/ SQS 

Messaging & 

decoupling 

Event-driven 

patterns 

 

7.4 Other Domains Supply Chain Automation 

It is possible to have orders that are automatically 

approved based on serverless deployment of 

workflows that are used to verify inventory numbers 

and book logistics. Lambda, working in tandem with 

the DynamoDB streams, makes it possible to re- 

order decisions in real time, which provides the 

approximation of the real-time responsiveness. 

 

Real‑Time Personalization 

Individualized e-commerce and media experiences 

are achieved through the pairing of clickstream data 

having been collected through Kinesis or Event 

Bridge with the inference models in Lambdas. Step 

Functions are used to run personalization pipelines 

which update their recommendations dynamically. 

 

Limitations and Challenges 

Although serverless architectures offer several 

benefits to decisioning systems, including 

scalability, cost-effectiveness and ease of 

infrastructure maintenance, it also comes with 

specific constraints and functional needs. The design 

of Association with AWS workforce that is 

trustworthy and potentially high-performing requires 

a stringent knowledge of these trade-offs. 

 

VIII. COLD START LATENCY 

 

With AWS Lambda, any invocation without defined 

cold start triggers cold starts. Tens up to hundreds of 

milliseconds may be those cold start delays 

depending upon the running time, memory 

management, and entitlement of the program. Cold 

starts can negatively impact response times as well 

as user experience in latency sensitive decisioning 

applications, e.g. in real-time fraud detection. 

 

 

Mitigation Strategies: 

Concurrency: Lambdas which are sensitive to 



© OCT 2025 | IRE Journals | Volume 9 Issue 4 | ISSN: 2456-8880 
DOI: https://doi.org/10.64388/IREV9I4-1711066-1755 

IRE 1711066      ICONIC RESEARCH AND ENGINEERING JOURNALS            119 

latency should be provisioned. 

 

Use light initialization code and keep pack size 

small. 

 

8.1 Vendor Lock‑In 

Applications with heavy dependencies on Amazon-

native services (Lambda, step functions, 

DynamoDB, S3, etc.), tend to have little portability. 

Relocating workflows to a different cloud storage 

provider would require recreating workflows and 

therefore end up costing more or lowering the ROI. 

 

8.2 Debugging Complexity 

Event based, distributed processes make it 

challenging to debug and root cause. A decisioning 

request can pass through several Lambda functions 

and DynamoDB queries and several states of the Step 

Functions. In the absence of end-to-end observability 

and tracing, locating bottlenecks or failure is an 

enormous task. 

 

Mitigation: 

Use AWS X- Ray to do end-to-end tracing. 

 

Upload logs to CloudWatch or with Datadog/Grafana. 

 

8.3 Cost Unpredictability 

Serverless pricing is selective, in terms of 

invocation  quantity,  execution  time  and 

 

resource usage. Unforeseen costs due to high volume 

workloads or unpredictable spikes may arise 

especially when the workflows have not been 

optimized to promote efficiency. 

 

Mitigation: 

CloudWatch usage measures. 

 

Optimize memory allocation and Step Functions 

design. 

 

8.4 Security Risks 

Unless properly configured, IAM roles, API 

Gateway policies or data-storage permissions can be 

exploited to compromise serverless frameworks. The 

risks could include unauthorized access, data 

exfiltration, as well as privilege escalation. 

 

 

Mitigation: 

Enforce minimum IAM policies. 

 

Store and transfer data with encryption. 

 

Regulatory audits of AWS with AWS Config and 

Security Hub regularly. 

 

8.5. State Management Complexity 

The State Management Complexity deals with the 

complexity of managing state transactions. It is 

concerned with complexity of managing the state 

transactions. 

 

The multi-step approach to decisioning involves 

state transitions, retries and error handling. Particular 

care must be taken when designing workflows even 

with Step Functions, although complex workflows 

can still turn into a race condition, do duplicate 

processing, or have an unsynchronized state. 

 

Mitigation: 

Use idempotent Lambda functions. 

 

Have DynamoDB records that are versioned to audit. 

 

Use error-handling and error retries in Step Function 

 

Feature Standard 

Workflow 

Express Workflow 

Duration Up to 1 year Up to 5 minutes 

Cost Model Per state 

transition 

Per request & 

duration 

Throughput Limited 

concurrency 

High throughput 

(100k+/s) 

 

Use Case 

Loan processing, 

audits 

Fraud detection, 

personalization 

 

IX. FUTURE DIRECTIONS 

 

The field of serverless decisioning on Amazon Web 

Services is a field of open scholarly analysis, which 

is constantly dependent on the emerging technology 

paradigms and methodological advancements. 

Most current literature predicts urgently needed 

improvements in scalability, performance, and 

analytical complexity (which has been 

acknowledged recently), noting on the transformative 

nature of automating decision-making processes in 

distributed, stateless, architecture. 

 

9.1 Developing AWS Serverless Services. 

Amazon Web Services continuously adds to its 

serverless landscape and makes throughput, 



© OCT 2025 | IRE Journals | Volume 9 Issue 4 | ISSN: 2456-8880 
DOI: https://doi.org/10.64388/IREV9I4-1711066-1755 

IRE 1711066      ICONIC RESEARCH AND ENGINEERING JOURNALS            120 

elasticity, and user experience prioritized. Of recent 

significance are: 

 

Functional additions in Step Functions 

Enhancements The introduction of Express 

workflows, hierarchical chaining of functions, and 

dynamic parallel execution mechanisms provide a 

function that empowers practitioners with the 

capability to build high-level decision workflows 

with low-latency delivery that may involve on- 

premises orchestration otherwise. 

 

Lambda Alpha Runtimes 

LP 2 Also optimized software environments: The 

introduction of more efficient software 

environments, with built-in concurrency features, 

reduces the cold-start time by a significant amount 

and achieves a higher execution efficiency, which is 

essential in applications with time-of-the-moment 

decision-making. 

 

Such refinements bring about optimization of the 

workflows facilitating organizations to provide swift 

and durable workflows with a favorable cost profile. 

 

9.2 AI/ML Decisioning Pipeline Inclusions. 

Serverless computing used in cooperation with 

artificial intelligence / machine-learning (IamL) 

enhances decision-making ability in the following 

respects: 

 

Lambda functions also can be used as orchestration 

vehicles to send inference requests to Sage Maker 

models or any endpoint to external AI services, 

decoupling model execution and application logic. 

 

Event cameras enable autonomous transactions made 

by artificial intelligence, such as predictive credit 

rating and anomaly detection, as well as personalized 

recommendation systems. 

 

Through the use of serverless computing, such ML-

based workflows have the ability to be implemented 

at scale without requiring the ROP cases tied to 

dedicated infrastructures due to the nature of modern 

cloud idiom compilers. 

More complex warrant structured backup systems 

are known as crackdowns. 

 

9.3. Cross cloud Serverless Frameworks. 

The need to reduce vendor lock-in and maintain 

resiliency is driving multi-cloud and hybrid adoption 

among numerous organizations. These deployments 

can use infrastructure-as-code software like 

Terraform or Pullum, to support portable, declarative 

serverless configurations in AWS, Azure, and 

Google Cloud Platform. Standardized structures 

allow full reliance on the best capabilities of each 

provider and enable decisioning applications to make 

sure that performance and reliability are maintained 

and the operations remain consistent. 

 

9.4. Edge Computing and Hybrid Models 

Likewise, hybrid models refer to the hybridization of 

edge computing and edge learning concepts (Wang 

et al., 2021). 

 

Early decisioning logic on a network edge reduces  

end-to-end  latency,  which  is  a capability that 

time-dependent domain can never do without. AWS 

Lambda Edge also provides contextual decisioning 

at a point nearer to users, and thereby improves real- 

time personalization or fraud-detection use cases. 

Interlacing cloud and edge serverless system designs 

maximize the utilization of computational resources, 

regulatory requirements and data-privacy limits - 

particularly crucial where sensitive data loads are 

encountered. 

 

When most of these forward-looking trajectories are 

synthesized, scholars and practitioners would be able 

to consider a smarter, more robust and ubiquitously 

applicable serverless decisioning frameworks 

in AWS. These systems will be the base of the more 

complex work processes in more areas, such as, 

finance, healthcare, governance, etc. 

 

Challenge Description Mitigation 

Strategy 

 

Cold start latency 

 

Delay on first 

Lambda 

invocation 

Provisioned 

concurrency 

, 

lightweight 

packages 

 

Vendor lock-in 

Tightly coupled 

with AWS 

services 

Cross-cloud 

frameworks 

, modular IaC 

 

Debugging 

complexity 

Hard to trace 

distributed 

events 

AWS X- 

Ray, 

centralized 

logging 

 

Cost 

unpredictability 

Billing spikes 

with high 

volumes 

Budget alarms, 

optimize state 

transitions 



© OCT 2025 | IRE Journals | Volume 9 Issue 4 | ISSN: 2456-8880 
DOI: https://doi.org/10.64388/IREV9I4-1711066-1755 

IRE 1711066      ICONIC RESEARCH AND ENGINEERING JOURNALS            121 

Security Risk of IAM least 

Challenge Description Mitigation 

Strategy 

misconfiguratio n IAM/data 

exposure 

privilege, AWS 

Config checks 

 

State management 

complexity 

Multi-step 

workflows 

prone to 

inconsistenc y 

Idempotent 

Lambdas, Step 

Functions 

retries 

 

CONCLUSION 

 

In general, the existing academic review illustrates 

the beneficial effect of Amazon Simple Workflow 

(ASW) server logs on the development of a cost-

effective, efficient, and fully digitized business 

model. With the help of Amazon services like 

Lambda, Step Functions, DynamoDB, and S3, 

organizations can coordinate advanced business 

operations to an extent that operational excellence 

becomes a possibility due to their ability to make 

real-time decisions in the financial, healthcare, 

governmental administration, and logistical supply 

chains. 

 

In recent works, there is a clear stipulation of the most 

relevant benefits of server-less decisioning, which 

encompass the automation of infrastructure control, 

the availability of auto-scalability, and the lack of 

inter-operability with machine-learn pipelines. 

However, substantive drawbacks of such systems 

were also noted within the literature - cold -start 

latency, debugging challenges, state - management 

issues, security imbalances, and vendor lock -in. 

Scholars argue that all of these can be addressed with 

careful architectural design, effective infrastructure 

-as -code, and overall monitoring strategies. 

 

Attention should be paid in particular to the new 

frontiers and untapped opportunities related to the 

development of AWS server- less technologies, 

especially when it comes to becoming synergistic 

with multi-cloud technologies, as well as the 

widespread integration of AI/ML. These innovations 

are likely to make the decision-making process 

faster, quicker and make it an all- encompassing 

sophistication. When strategic adopters of similar 

innovations do this, they have a high probability of 

the rapidity of innovation cycles, the resilience of 

operations, increased scalability, real-time, and data-

driven decision making. 

 

In total, despite all the trade-offs that are caused by 

server-less decision making, the need to advance 

research in this field is still urgently needed. This will 

provide a closer insight into how it applies to the 

present organisation, thus strengthening their 

resilience, modernity, and cloud-based decision-

making capacity. 

 

REFERENCES 

 

[1] Shehzadi, T. (2025). Serverless computing 

architectures and applications in AWS. 

ResearchGate. 

https://www.researchgate.net/publication/3891

74681_Serverless_Computi 

ng_Architectures_and_Applications_ in_AWS 

[2] Werner, S., et al. (2024). A reference 

architecture for serverless big data processing. 

Future Generation Computer Systems. 

Elsevier. https://doi.org/10.1016/j.future.2024. 

01.003 

[3] Pogiatzis, A., et al. (2020). An event- driven 

serverless ETL pipeline on AWS. Applied 

Sciences, 11(1), 191. 

https://doi.org/10.3390/app11010191 

[4] Elgamal, T., Sandur, A., Nahrstedt, K., & 

Agha, G. (2018). Costless: Optimizing cost of 

serverless computing through function fusion 

and placement. arXiv preprint 

arXiv:1811.09721. 

https://arxiv.org/abs/1811.09721 

[5] Ghosh, B. C., Addya, S. K., Somy, N. B., 

Nath, S. B., Chakraborty, S., & Ghosh, S. K. 

(2019). Caching techniques to improve latency 

in serverless architectures. arXiv preprint

 arXiv:1911.07351. 

https://arxiv.org/abs/1911.07351 

[6] Carver, B., Zhang, J., Wang, A., Anwar, 

A., Wu, P., & Cheng, Y. (2020). Wukong: A 

scalable and locality-enhanced framework for 

serverless parallel computing. arXiv preprint

 arXiv:2010.07268. 

https://arxiv.org/abs/2010.07268 

[7] Das, A., Leaf, A., Varela, C. A., & Patterson, 

S. (2020). Skedulix: Hybrid cloud scheduling 

for cost- efficient execution of serverless 

applications. arXiv preprint arXiv:2006.03720. 

https://arxiv.org/abs/2006.03720 

[8] Amazon Web Services. (n.d.). Best practices 

for Step Functions. Retrieved September 26, 

2025, from https://docs.aws.amazon.com/step-f 

u n c t i o n s / l a t e s t / d g / s f n - b e s t - practices.html 

https://www.researchgate.net/publication/389174681_Serverless_Computing_Architectures_and_Applications_in_AWS?utm_source=chatgpt.com
https://www.researchgate.net/publication/389174681_Serverless_Computing_Architectures_and_Applications_in_AWS?utm_source=chatgpt.com
https://www.researchgate.net/publication/389174681_Serverless_Computing_Architectures_and_Applications_in_AWS?utm_source=chatgpt.com
https://www.researchgate.net/publication/389174681_Serverless_Computing_Architectures_and_Applications_in_AWS?utm_source=chatgpt.com
https://www.researchgate.net/publication/389174681_Serverless_Computing_Architectures_and_Applications_in_AWS?utm_source=chatgpt.com
https://arxiv.org/abs/1811.09721
https://arxiv.org/abs/1911.07351?utm_source=chatgpt.com
https://arxiv.org/abs/2010.07268?utm_source=chatgpt.com
https://arxiv.org/abs/2006.03720
https://docs.aws.amazon.com/step-functions/latest/dg/sfn-best-practices.html?utm_source=chatgpt.com
https://docs.aws.amazon.com/step-functions/latest/dg/sfn-best-practices.html?utm_source=chatgpt.com
https://docs.aws.amazon.com/step-functions/latest/dg/sfn-best-practices.html?utm_source=chatgpt.com
https://docs.aws.amazon.com/step-functions/latest/dg/sfn-best-practices.html?utm_source=chatgpt.com


© OCT 2025 | IRE Journals | Volume 9 Issue 4 | ISSN: 2456-8880 
DOI: https://doi.org/10.64388/IREV9I4-1711066-1755 

IRE 1711066      ICONIC RESEARCH AND ENGINEERING JOURNALS            122 

[9] Amazon Web Services. (n.d.). Best practices 

for working with AWS Lambda functions. 

Retrieved September 26, 2025, from 

https://docs.aws.amazon.com/lambda 

/latest/dg/best-practices.html 

[10] Amazon Web Services. (n.d.). Best practices 

using DynamoDB Streams with Lambda. 

Retrieved September 26, 2025, from 

https://docs.aws.amazon.com/amazo 

ndynamodb/latest/developerguide/Str 

eams.Lambda.BestPracticesWithDyn 

amoDB.html 

[11] Amazon Web Services. (2022). 

Exploring  serverless patterns

 for Amazon DynamoDB. AWS Compute 

Blog. https://aws.amazon.com/blogs/comp 

ute/exploring-serverless-patterns-for- amazon-

dynamodb/ 

[12] Amazon Web Services. (2021). Build scalable, 

event-driven architectures with Amazon 

DynamoDB and AWS Lambda. AWS Database 

Blog. https://aws.amazon.com/blogs/databa 

se/build-scalable-event-driven- a r c h i t 

e c t u r e s - w i t h - a m a z o n - dynamodb-and-

aws-lambda/ 

[13] Amazon Web Services. (2020). From AWS 

Lambda orchestration to AWS Step Functions. 

AWS Compute Blog. 

https://aws.amazon.com/blogs/comp 

ute/streamlining-aws-serverless- 

w o r k f l o w s - f ro m - a w s - lambda-  

orchestration-to-aws-step-functions/ 

[14] Amazon Web Services. (n.d.). Tutorial: Using 

Lambda with API Gateway. Retrieved 

September 26, 2025, from 

https://docs.aws.amazon.com/lambda/latest/d

g/services-apigateway-  tutorial.html 

[15] Lo, K. (2019). Serverless made simple—

Building an API with AWS API Gateway, 

Lambda, and DynamoDB. Medium. 

https://medium.com/@lo0o0p/server less-

made-simple-building-an-api- with-aws-api-

gateway-aws-lambda- and-dynamodb-

1620955dccef 

[16] Salem, A. (2020). Building a serverless REST 

API with AWS Lambda,   API   Gateway   

& DynamoDB. Medium. 

https://medium.com/@ahmedSalem2 

020/building-a-serverless-rest-api- with- aws- 

lambda- api- gateway- d y n a m o d b - a n d - 

s e r v e r l e s s - framework-f3fb34395349 

[17] Smith,  J.  (2022).  AWS  Step Functions 

best practices: The ultimate guide to serverless 

workflow orchestration. Medium. 

https://medium.com/creditsafe/aws- step-

functions-best-practices-the- u l t i m a t e -

g u i d e - t o - s e r v e r l e s s -  w o r k f l o w - o r c 

h e s t r a t i o n - a8e8dd44bed8 

[18] Datadog. (2022). Best practices for building 

serverless applications that follow AWS’s 

Well-Architected Framework. Datadog Blog. 

https://www.datadoghq.com/blog/we l l - a r c h 

i t e c t e d - s e r v e r l e s s - applications-best-

practices/ 

[19] Amazon Web Services. (2021). Building a 

serverless architecture on AWS. AWS 

RePost. 

https://repost.aws/articles/ARTqFF9 

AQmSgqrx2BNH-wkbw/building-a- 

serverless-architecture-on-aws 

[20] Amazon Web Services. (2021). Best practices 

for accelerating development with serverless 

blueprints. AWS Infrastructure & Automation 

Blog. 

https://aws.amazon.com/blogs/infrast 

r u c t u r e - a n d - a u t o m a t i o n / b e s t  - p r a c t i 

c e s - f o r - a c c e l e r a t i n g - d ev e lo p men t -

wi th - se rv e r l e s s -  blueprints/ 

[21] Amazon Web Services. (2020). Advanced 

serverless best practices on AWS. AWS 

TV. 

https://aws.amazon.com/awstv/watch/318a3d82

d43/ 

[22] Deloitte & Amazon Web Services. (2019). 

Determining the total cost of ownership  of  

serverless.  AWS 

Whitepaper. 

https://pages.awscloud.com/rs/112- TZM-

766/images/AWS_MAD_Deloitte_T 

CO_paper.pdf 

[23] Amazon Web Services. (2019). 

Optimizing  enterprise economics with 

serverless: Case studies. AWS Whitepaper. 

https://docs.aws.amazon.com/whitep 

apers/latest/optimizing-enterprise-  

economics-with-serverless/case- 

studies.html 

[24] Gupta, R., & Singh, P. (2025). Serverless 

computing architectures for ethical AI in 

automated decision- making systems. 

ResearchGate. 

https://www.researchgate.net/publica 

tion/388032309_Serverless_Architec 

tures_for_Ethical_AI_in_Automated_Decision-

https://docs.aws.amazon.com/lambda/latest/dg/best-practices.html?utm_source=chatgpt.com
https://docs.aws.amazon.com/lambda/latest/dg/best-practices.html?utm_source=chatgpt.com
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.Lambda.BestPracticesWithDynamoDB.html?utm_source=chatgpt.com
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.Lambda.BestPracticesWithDynamoDB.html?utm_source=chatgpt.com
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.Lambda.BestPracticesWithDynamoDB.html?utm_source=chatgpt.com
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.Lambda.BestPracticesWithDynamoDB.html?utm_source=chatgpt.com
https://aws.amazon.com/blogs/compute/exploring-serverless-patterns-for-amazon-dynamodb/?utm_source=chatgpt.com
https://aws.amazon.com/blogs/compute/exploring-serverless-patterns-for-amazon-dynamodb/?utm_source=chatgpt.com
https://aws.amazon.com/blogs/compute/exploring-serverless-patterns-for-amazon-dynamodb/?utm_source=chatgpt.com
https://aws.amazon.com/blogs/compute/exploring-serverless-patterns-for-amazon-dynamodb/?utm_source=chatgpt.com
https://aws.amazon.com/blogs/database/build-scalable-event-driven-architectures-with-amazon-dynamodb-and-aws-lambda/?utm_source=chatgpt.com
https://aws.amazon.com/blogs/database/build-scalable-event-driven-architectures-with-amazon-dynamodb-and-aws-lambda/?utm_source=chatgpt.com
https://aws.amazon.com/blogs/database/build-scalable-event-driven-architectures-with-amazon-dynamodb-and-aws-lambda/?utm_source=chatgpt.com
https://aws.amazon.com/blogs/database/build-scalable-event-driven-architectures-with-amazon-dynamodb-and-aws-lambda/?utm_source=chatgpt.com
https://aws.amazon.com/blogs/database/build-scalable-event-driven-architectures-with-amazon-dynamodb-and-aws-lambda/?utm_source=chatgpt.com
https://aws.amazon.com/blogs/database/build-scalable-event-driven-architectures-with-amazon-dynamodb-and-aws-lambda/?utm_source=chatgpt.com
https://aws.amazon.com/blogs/compute/streamlining-aws-serverless-workflows-from-aws-lambda-orchestration-to-aws-step-functions/?utm_source=chatgpt.com
https://aws.amazon.com/blogs/compute/streamlining-aws-serverless-workflows-from-aws-lambda-orchestration-to-aws-step-functions/?utm_source=chatgpt.com
https://aws.amazon.com/blogs/compute/streamlining-aws-serverless-workflows-from-aws-lambda-orchestration-to-aws-step-functions/?utm_source=chatgpt.com
https://aws.amazon.com/blogs/compute/streamlining-aws-serverless-workflows-from-aws-lambda-orchestration-to-aws-step-functions/?utm_source=chatgpt.com
https://docs.aws.amazon.com/lambda/latest/dg/services-apigateway-tutorial.html?utm_source=chatgpt.com
https://docs.aws.amazon.com/lambda/latest/dg/services-apigateway-tutorial.html?utm_source=chatgpt.com
https://docs.aws.amazon.com/lambda/latest/dg/services-apigateway-tutorial.html?utm_source=chatgpt.com
https://docs.aws.amazon.com/lambda/latest/dg/services-apigateway-tutorial.html?utm_source=chatgpt.com
https://medium.com/%40lo0o0p/server
https://medium.com/%40ahmedSalem2
https://medium.com/creditsafe/aws-step-functions-best-practices-the-ultimate-guide-to-serverless-workflow-orchestration-a8e8dd44bed8?utm_source=chatgpt.com
https://medium.com/creditsafe/aws-step-functions-best-practices-the-ultimate-guide-to-serverless-workflow-orchestration-a8e8dd44bed8?utm_source=chatgpt.com
https://medium.com/creditsafe/aws-step-functions-best-practices-the-ultimate-guide-to-serverless-workflow-orchestration-a8e8dd44bed8?utm_source=chatgpt.com
https://medium.com/creditsafe/aws-step-functions-best-practices-the-ultimate-guide-to-serverless-workflow-orchestration-a8e8dd44bed8?utm_source=chatgpt.com
https://medium.com/creditsafe/aws-step-functions-best-practices-the-ultimate-guide-to-serverless-workflow-orchestration-a8e8dd44bed8?utm_source=chatgpt.com
https://medium.com/creditsafe/aws-step-functions-best-practices-the-ultimate-guide-to-serverless-workflow-orchestration-a8e8dd44bed8?utm_source=chatgpt.com
https://medium.com/creditsafe/aws-step-functions-best-practices-the-ultimate-guide-to-serverless-workflow-orchestration-a8e8dd44bed8?utm_source=chatgpt.com
https://medium.com/creditsafe/aws-step-functions-best-practices-the-ultimate-guide-to-serverless-workflow-orchestration-a8e8dd44bed8?utm_source=chatgpt.com
https://www.datadoghq.com/blog/well-architected-serverless-applications-best-practices/?utm_source=chatgpt.com
https://www.datadoghq.com/blog/well-architected-serverless-applications-best-practices/?utm_source=chatgpt.com
https://www.datadoghq.com/blog/well-architected-serverless-applications-best-practices/?utm_source=chatgpt.com
https://www.datadoghq.com/blog/well-architected-serverless-applications-best-practices/?utm_source=chatgpt.com
https://www.datadoghq.com/blog/well-architected-serverless-applications-best-practices/?utm_source=chatgpt.com
https://repost.aws/articles/ARTqFF9
https://repost.aws/articles/ARTqFF9AQmSgqrx2BNH-wkbw/building-a-serverless-architecture-on-aws?utm_source=chatgpt.com
https://repost.aws/articles/ARTqFF9AQmSgqrx2BNH-wkbw/building-a-serverless-architecture-on-aws?utm_source=chatgpt.com
https://aws.amazon.com/blogs/infrast
https://aws.amazon.com/blogs/infrastructure-and-automation/best-practices-for-accelerating-development-with-serverless-blueprints/?utm_source=chatgpt.com
https://aws.amazon.com/blogs/infrastructure-and-automation/best-practices-for-accelerating-development-with-serverless-blueprints/?utm_source=chatgpt.com
https://aws.amazon.com/blogs/infrastructure-and-automation/best-practices-for-accelerating-development-with-serverless-blueprints/?utm_source=chatgpt.com
https://aws.amazon.com/blogs/infrastructure-and-automation/best-practices-for-accelerating-development-with-serverless-blueprints/?utm_source=chatgpt.com
https://aws.amazon.com/blogs/infrastructure-and-automation/best-practices-for-accelerating-development-with-serverless-blueprints/?utm_source=chatgpt.com
https://aws.amazon.com/blogs/infrastructure-and-automation/best-practices-for-accelerating-development-with-serverless-blueprints/?utm_source=chatgpt.com
https://aws.amazon.com/awstv/watch
https://aws.amazon.com/awstv/watch/318a3d82d43/?utm_source=chatgpt.com
https://aws.amazon.com/awstv/watch/318a3d82d43/?utm_source=chatgpt.com
https://pages.awscloud.com/rs/112-TZM-766/images/AWS_MAD_Deloitte_TCO_paper.pdf?utm_source=chatgpt.com
https://pages.awscloud.com/rs/112-TZM-766/images/AWS_MAD_Deloitte_TCO_paper.pdf?utm_source=chatgpt.com
https://pages.awscloud.com/rs/112-TZM-766/images/AWS_MAD_Deloitte_TCO_paper.pdf?utm_source=chatgpt.com
https://pages.awscloud.com/rs/112-TZM-766/images/AWS_MAD_Deloitte_TCO_paper.pdf?utm_source=chatgpt.com
https://pages.awscloud.com/rs/112-TZM-766/images/AWS_MAD_Deloitte_TCO_paper.pdf?utm_source=chatgpt.com
https://docs.aws.amazon.com/whitepapers/latest/optimizing-enterprise-economics-with-serverless/case-studies.html?utm_source=chatgpt.com
https://docs.aws.amazon.com/whitepapers/latest/optimizing-enterprise-economics-with-serverless/case-studies.html?utm_source=chatgpt.com
https://docs.aws.amazon.com/whitepapers/latest/optimizing-enterprise-economics-with-serverless/case-studies.html?utm_source=chatgpt.com
https://docs.aws.amazon.com/whitepapers/latest/optimizing-enterprise-economics-with-serverless/case-studies.html?utm_source=chatgpt.com
https://www.researchgate.net/publication/388032309_Serverless_Architectures_for_Ethical_AI_in_Automated_Decision-Making_Systems?utm_source=chatgpt.com
https://www.researchgate.net/publication/388032309_Serverless_Architectures_for_Ethical_AI_in_Automated_Decision-Making_Systems?utm_source=chatgpt.com
https://www.researchgate.net/publication/388032309_Serverless_Architectures_for_Ethical_AI_in_Automated_Decision-Making_Systems?utm_source=chatgpt.com
https://www.researchgate.net/publication/388032309_Serverless_Architectures_for_Ethical_AI_in_Automated_Decision-Making_Systems?utm_source=chatgpt.com


© OCT 2025 | IRE Journals | Volume 9 Issue 4 | ISSN: 2456-8880 
DOI: https://doi.org/10.64388/IREV9I4-1711066-1755 

IRE 1711066      ICONIC RESEARCH AND ENGINEERING JOURNALS            123 

Making_Systems 

[25] Kumar, A., & Rathi, V. (2023). AWS Step 

Functions and Lambda orchestration for credit 

card approval. International Journal of 

Scientific and Research Publications, 13(6). 

https://www.ijsrp.org/research- 

paper-0623/ijsrp-p13857.pdf 

[26] Shreyanth, N. (2021). Serverless data 

processing with AWS Lambda and Step 

Functions. Medium. 

https://medium.com/@shreyanth98/s erverless-

data-processing-with-aws-  l a m b d a - a n d - s t 

e p - f u n c t i o n s - 7fbcb9e464b9 

[27] Shehzadi, T. (2025). Serverless computing 

architectures and applications in AWS. 

ResearchGate. 

https://www.researchgate.net/publica 

tion/389174681_Serverless_Computi 

ng_Architectures_and_Applications_ in_AWS 

[28] Serverless Inc. (n.d.). AWS Step Functions – 

Serverless guide. Retrieved September 26, 

2025, from 

https://www.serverless.com/guides/a ws-step-

functions 

[29] Amazon Web Services. (2020). 

Implementing   AWS 

Well- Architected best  practices for 

Amazon SQS (Part 2). AWS Compute Blog. 

https://aws.amazon.com/blogs/comp u t e / i m p l 

e m e n t i n g - a w s - w e l l - arch i tec ted-best -

p rac t ices- for- amazon-sqs-part-2/ 

[30] Serverless Forum. (2022). How to API 

Gateway as a proxy for DynamoDB with 

Serverless. Forum.serverless.com. 

https://forum.serverless.com/t/how- to-api-

gateway-as-a-proxy-for- dynamodb-with-

serverless/18439 

https://www.researchgate.net/publication/388032309_Serverless_Architectures_for_Ethical_AI_in_Automated_Decision-Making_Systems?utm_source=chatgpt.com
https://www.ijsrp.org/research-paper-0623/ijsrp-p13857.pdf?utm_source=chatgpt.com
https://www.ijsrp.org/research-paper-0623/ijsrp-p13857.pdf?utm_source=chatgpt.com
https://medium.com/%40shreyanth98/s
https://www.researchgate.net/publication/389174681_Serverless_Computing_Architectures_and_Applications_in_AWS?utm_source=chatgpt.com
https://www.researchgate.net/publication/389174681_Serverless_Computing_Architectures_and_Applications_in_AWS?utm_source=chatgpt.com
https://www.researchgate.net/publication/389174681_Serverless_Computing_Architectures_and_Applications_in_AWS?utm_source=chatgpt.com
https://www.researchgate.net/publication/389174681_Serverless_Computing_Architectures_and_Applications_in_AWS?utm_source=chatgpt.com
https://www.serverless.com/guides/aws-step-functions?utm_source=chatgpt.com
https://www.serverless.com/guides/aws-step-functions?utm_source=chatgpt.com
https://www.serverless.com/guides/aws-step-functions?utm_source=chatgpt.com
https://aws.amazon.com/blogs/compute/implementing-aws-well-architected-best-practices-for-amazon-sqs-part-2/?utm_source=chatgpt.com
https://aws.amazon.com/blogs/compute/implementing-aws-well-architected-best-practices-for-amazon-sqs-part-2/?utm_source=chatgpt.com
https://aws.amazon.com/blogs/compute/implementing-aws-well-architected-best-practices-for-amazon-sqs-part-2/?utm_source=chatgpt.com
https://aws.amazon.com/blogs/compute/implementing-aws-well-architected-best-practices-for-amazon-sqs-part-2/?utm_source=chatgpt.com
https://aws.amazon.com/blogs/compute/implementing-aws-well-architected-best-practices-for-amazon-sqs-part-2/?utm_source=chatgpt.com
https://aws.amazon.com/blogs/compute/implementing-aws-well-architected-best-practices-for-amazon-sqs-part-2/?utm_source=chatgpt.com
https://forum.serverless.com/t/how-to-api-gateway-as-a-proxy-for-dynamodb-with-serverless/18439?utm_source=chatgpt.com
https://forum.serverless.com/t/how-to-api-gateway-as-a-proxy-for-dynamodb-with-serverless/18439?utm_source=chatgpt.com
https://forum.serverless.com/t/how-to-api-gateway-as-a-proxy-for-dynamodb-with-serverless/18439?utm_source=chatgpt.com
https://forum.serverless.com/t/how-to-api-gateway-as-a-proxy-for-dynamodb-with-serverless/18439?utm_source=chatgpt.com
https://forum.serverless.com/t/how-to-api-gateway-as-a-proxy-for-dynamodb-with-serverless/18439?utm_source=chatgpt.com

