
© OCT 2025 | IRE Journals | Volume 9 Issue 4 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I4-1711081-2290

IRE 1711081 ICONIC RESEARCH AND ENGINEERING JOURNALS 92

The Triumph of a Single Programming Language –

English

RAUNAK B SINHA

Master’s in Data Science and AI, BITS Pilani, India

Abstract- The rapid advancement of Large Language

Models (LLMs) and Artificial Intelligence (AI) is

catalyzing a fundamental shift in traditional

programming paradigms. This paper explores the vision

of a future where conventional programming languages

such as C++, Java, Python and many more converge

into a unified paradigm centered around natural

language—primarily English. By introducing an

abstraction layer over existing languages, LLMs serve as

an intelligent intermediary, enabling users to describe

computational logic using natural language instead of

formal syntax. This approach eliminates the need for

developers to learn and master multiple programming

languages and syntaxes, thereby democratizing software

development and making programming more accessible.

The paper discusses the simple architecture of this

superset abstraction, its implications for data analysis,

software engineering, and the future of human-

computer interaction in natural language.

I. INTRODUCTION

This paper introduces a novel approach to

programming that leverages the capabilities of

generative AI models to transform natural language

instructions directly into executable Python code.

We propose a framework where traditional

programming languages are abstracted beneath a

natural language interface, enabling users to

program using plain English, either written or

spoken. This is demonstrated through a prototype

IPython magic command (%%rb_code) that

interprets English-language descriptions of

computational logic and executes the AI-generated

code in real-time.

By embedding LLMs within the development

environment, the proposed system eliminates the

need for learning multiple programming syntaxes

and offers a highly accessible and intuitive mode of

software development. This approach not only

democratizes coding for non-programmers but also

augments productivity for experienced developers

by abstracting boilerplate logic and allowing focus

on higher-level problem-solving.

II. RESEARCH AND IDEA

The foundational idea for this research originated

from observing the increasing capabilities of Large

Language Models (LLMs) such as OpenAI's GPT

and Google's Gemini in generating high-quality

code from natural language prompts. With the rapid

integration of generative AI tools in development

environments, a question emerged as below:-

Can programming itself be abstracted to a level

where natural language becomes the primary

interface, eliminating the need for traditional syntax-

based languages?

To validate this, a simple experiment has been

performed using Jupyter Notebook for testing ,

Python Magic Command for using enhanced

functionality beyond regular python code , LLM

model as Google’s Gemini for code generation ,

Dynamic Memory to make the model stateful &

datasets of banking transaction as csv file for data

analysis task execution.

III. DESIGN AND FINDINGS

A. Design

The below design outlines the internal architecture

and flow of the custom Jupyter magic command

%%rb_code, which allows users to write English

instructions that are converted into executable

Python code using Google’s Gemini 2.5 Flash API.

When a notebook cell with the %%rb_code magic is

detected, the system parses the English instruction

and retrieves previously executed Python code from

a global memory store (code_memory). This past

context is combined with the new instruction to help

Gemini generate more accurate, context-aware

Python code.

The prompt is then sent to the Gemini 2.5 Flash

API, which returns Python code as plain text or

markdown. If the output is in markdown format

(e.g., inside triple backticks), the markdown is

stripped. The resulting code is executed using

Python’s exec() function within the notebook’s

© OCT 2025 | IRE Journals | Volume 9 Issue 4 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I4-1711081-2290

IRE 1711081 ICONIC RESEARCH AND ENGINEERING JOURNALS 93

global scope. If the code runs successfully, it is

appended to code_memory for use in future

prompts. If there is an execution error, it is caught

and displayed in the notebook output without

updating the memory.

Additionally, the design shows the %rb_reset line

magic, which clears the stored memory

(code_memory), allowing users to reset the

assistant’s context and begin a new, isolated

instruction session

B. Observations and Results

1. Using English language instructions, the system is

capable of loading data and performing data

preprocessing tasks.

2. Generate plots using English language

instructions, as demonstrated in the image below

3. A simple sum function can be created by

describing its logic in plain English, without writing

any code manually.

4. A new column can be added to a DataFrame

using English language instructions

5. The memory reset process involves clearing all

stored data or session information to restore the

system to its initial state.

. .

IV.CONCLUSION

In this research, we explored a groundbreaking shift

in the way humans interact with computers—by

using natural language as the medium for

© OCT 2025 | IRE Journals | Volume 9 Issue 4 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I4-1711081-2290

IRE 1711081 ICONIC RESEARCH AND ENGINEERING JOURNALS 94

programming. With the help of generative AI,

specifically Google’s Gemini model, we developed

a prototype system that allows English instructions

to be converted into executable Python code. This

experiment, though conducted on a small scale,

proves that it is indeed possible to abstract

traditional programming languages through natural

language. In essence, we have begun the journey of

transforming human thought, expressed in everyday

language, into functioning software.

This is not just a technical achievement; it

represents a broader, human-centered vision of the

future of programming. For decades, software

development has required individuals to learn

complex syntax, logic structures, and multiple

languages—each with its own rules and limitations.

This creates a steep learning curve and limits access

to programming to a small, technically skilled

portion of the population. Our work challenges that

barrier by proposing a future where anyone,

regardless of technical background, can create

software simply by describing what they want in

English.

Imagine a world where doctors, artists, teachers, or

entrepreneurs can build digital tools without writing

a single line of code—just by speaking or typing

their ideas. As generative AI continues to evolve,

we believe this future is not only possible but

inevitable.

The journey ahead involves expanding this

abstraction to support other languages beyond

Python, improving accuracy, handling ambiguity in

natural language, and integrating voice-based

interaction. But the path is clear: we are moving

toward a future where the only programming

language needed is the one we already speak.

This research is a meaningful step toward

democratizing software development—bringing us

closer to a world where programming is no longer

just for coders, but for everyone.

REFERENCES

[1] “Data Science and Machine Learning using

Python” Author : Dr.Reema Thareja

[2] "Effective Python" Author: Brett Slatkin

[3] "Attention Is All You Need" Authors: Ashish

Vaswani, Noam Shazeer, Niki Parmar, Jakob

Uszkoreit, Llion Jones, Aidan N. Gomez,

Łukasz Kaiser, Illia Polosukhin

[4] "Speech and Language Processing" Authors:

Daniel Jurafsky and James H. Martin

