A Review of Opportunities and Challenges for a Sustainable Energy Development

IKEH LESOR¹, OSIGWE UCHE STANLEY²

^{1, 2}University of Port Harcourt, Faculty of Engineering, Department of Petroleum and Gas Engineering, East – West Road, Choba, Uniport

Abstract- This review examines the opportunities and challenges of transitioning to a sustainable energy future, highlighting the crucial role of clean, affordable, and reliable energy in promoting global prosperity and economic growth. The work provides a comprehensive overview of advancements in transportation and electricity generation, highlighting innovative technologies and research pathways crucial for achieving sustainability. In transportation, strategies to improve energy efficiency, such as adopting lightweight materials (e.g., advanced steels, aluminum, and carbonfiber composites) and reducing friction-related energy losses, are discussed. It considers the ongoing relevance of internal combustion engines (ICEs), with potential efficiency gains through technologies such as direct injection and waste heat recovery. Battery-based electrification, including plug-in hybrids and electric vehicles, is presented as a practical option, with significant improvements in battery performance (such as energy density and cost reduction). Fuel-cell-based electrification is also examined, focusing on cost reductions and hydrogen storage solutions, like highpressure carbon-fiber tanks. The use of natural gas, both in compressed (CNG) and liquefied (LNG) forms, is highlighted as an economically feasible alternative, especially for heavy-duty vehicles, alongside the development of alternative liquid fuels such as biofuels, which face challenges related to cost and scalability. For electricity generation, the review assesses the potential of renewable sources such as solar and wind energy, noting substantial cost reductions (e.g., solar module prices dropping from \$4 W^{-1} to \$1 W^{-1} between 2008 and 2012) and emphasizing the need for improved efficiency and grid integration. Decarbonizing fossil-fuel emissions through carbon capture and storage (CCS) is recognized as a crucial step in reducing emissions from existing power plants, with a focus on optimizing sorbents and lowering costs. Nuclear power is regarded as an essential carbon-free baseload option, with discussions about safety enhancements (e.g., passive cooling systems) and the economic challenges of building a new plant. Integrating variable renewable energy sources into the grid requires advances in energy storage technologies, such as next-generation batteries, to ensure stability and reliability. The study stresses the importance of sustained research and development, supported by policy and international collaboration, to overcome technical and

economic barriers and realize a sustainable, secure energy future.

Keywords: Sustainable energy, fossil fuel, challenges, future energy, CNG, LNG.

I. INTRODUCTION

The quest for a sustainable energy future is one of the most pressing challenges of the 21st century, driven by the need to combat climate change, secure energy supplies, and sustain economic growth.

A sustainable renewable energy target would promote energy security by diversifying the energy mix and reducing reliance on fossil fuel imports. Countries with abundant renewable energy resources could harness their own energy sources, ensuring a stable and reliable supply.

This could reduce vulnerability to geopolitical conflicts and price fluctuations related to fossil fuel markets.

A sustainable renewable energy goal would encourage research and development in clean energy technologies, driving innovation. This would lead to improved efficiency and cost-effectiveness of renewable energy systems. Advancements in energy storage, grid integration, and smart technologies would enhance the overall performance of renewable sources, making them superior alternatives to traditional energy sources.

This review emphasizes the vital role energy has played since the Industrial Revolution, when fossil fuels like coal, oil, and natural gas spurred extraordinary growth, and stresses the urgent need for alternatives in today's world. It's noted that today's energy systems, mainly reliant on fossil fuels (around 86% of global primary energy use), present significant risks, including environmental harm from greenhouse gases, price fluctuations, and

geopolitical instability caused by resource dependence. They advocate a comprehensive strategy to shift toward sustainable energy, emphasizing innovations in transportation and electricity production, along with technologies such as nuclear power and carbon capture and storage (CCS). This review aims to synthesize the main their work, examining insights from opportunities and obstacles in these vital sectors and providing a balanced view on the practicality of a sustainable energy transition.

II. TRANSPORTATION: CHARTING THE PATH TO SUSTAINABILITY

The transportation sector, a major consumer of oil and a significant contributor to global emissions, is a key factor in achieving sustainable energy. Advancements in technology are playing a crucial role in making transportation more sustainable. Transportation using sustainable energy is helping countries optimize their logistics operations, reduce fuel consumption, and minimize emissions.

Steven Chu & Arun Majumdar, 2012, identify several strategies to reduce oil dependence and enhance energy efficiency, each presenting its own opportunities and challenges.

2.1 Efficiency Enhancements in Vehicles One promising approach in sustainable energy is to enhance vehicle efficiency by utilizing lighter materials and minimizing energy losses. Advanced materials such as ultrahigh tensile strength steels, aluminium, magnesium alloys, and carbon fibre composites could cut vehicle weight by 20-40% over the next 10-20 years, boasting fuel efficiency by 6-8% for every 10% weight reduction. Additionally, innovations in tribology, tires, braking systems, waste-heat recovery, and aerodynamics could deliver efficiency gains of up to 60% over 15-25 years. For internal combustion engines (ICEs), which are likely to remain common for decades, technologies like direct injection, lean burn, and turbocharging can increase spark-ignition engine efficiency (currently 25-35%) closer to diesel levels (40-50%), Holmberg, K., Anderssona, 2012.

2.2 Battery-Based Electrification Electrification through plug-in hybrid and all-electric vehicles offers a significant role in replacing liquid fuels. However, battery performance and cost remain

substantial challenges. Current lithium-ion batteries, with energy densities around 200 watt-hours per kilogram, are improving, but reaching the U.S. Department of Energy's (DOE) cost goal of \$150-\$300 per kWh by 2030 will need breakthroughs in materials science. Next-generation options, such as lithium-sulfur and metal-air batteries, could potentially boost energy density tenfold; however, issues with anode protection and electrolyte stability remain.

2.3 Fuel Cell-Based Electrification

Fuel-cell electric vehicles (FCEVs) offer high efficiency and quick refueling, but their adoption is limited by high costs (such as platinum catalysts) and hydrogen storage challenges. A 480-km range requires storing 4-7 kg of hydrogen, currently handled with expensive 700-bar carbon-fiber tanks (~\$3,000 each). Establishing hydrogen infrastructure, possibly using low-cost natural gas reforming, also remains a significant obstacle.

2.4 Natural Gas as a Transitional Fuel

Natural gas, in forms like compressed natural gas (CNG) and liquefied natural gas (LNG), is gaining popularity, especially for heavy-duty vehicles. LNG trucks, despite higher initial costs (~\$100,000), provide payback periods of 3-4 years due to fuel savings. However, expanding CNG for light-duty vehicles requires a costly infrastructure overhaul (estimated at over \$100 billion in the U.S.), although home refueling could reduce this burden for some users.

2.5 Alternative Liquid Fuels (Biofuels)

Biofuels, like Brazilian sugarcane ethanol, are already competitive with oil and reduce emissions by 61%. Advanced biofuels from lignocellulosic feedstocks or algae have greater potential. However, their scalability is limited by feedstock costs, land use, and the need for microbial engineering advancements in boost productivity and robustness.

2.6 Electricity Generation: Balancing Renewables and Reliability

Electricity generation is shifting toward renewables, but Chu and Majumdar (2012) stress the importance of reliable baseload power and solutions for intermittency.

III. RENEWABLE ENERGY EXPANSION

The International Energy Agency (IEA) projects that renewables will grow by 2035, though fossil fuels will still be dominant. Solar power has experienced significant cost reductions, with silicon module prices dropping from \$4 per watt in 2008, to \$1 per Watt in 2012, driven by the DOE's SunShot initiative aiming for \$50-60 per MWh by 2020. Wind energy faces challenges with turbine design and offshore deployment, requiring taller towers and larger rotors to improve capacity factors.

3.1 Intermittency and Storage

The inconsistent availability of solar and wind energy necessitates the development of energy storage and smart grid systems. Improvements in batteries, pumped hydro, and thermal storage are essential to handle fluctuations and maintain grid stability, though costs and scalability are still challenges.

2.2 Nuclear Power

Nuclear energy, providing 14% of global electricity in 2009 (falling to 12% after-Fukushima), supplies carbon-free baseload power. Third-generation reactors improve safety with passive cooling systems, but high capital costs (\$6,000-6,600 per kW) and public concerns about safety and waste disposal limit their adoption. Small modular reactors (SMRs) could lower costs and risks, though their commercial viability remains uncertain.

3.3 Carbon Capture and Storage (CCS)

CCS is essential for decarbonizing fossil fuel plants; however, current technologies are expensive, requiring capital costs nearly equal to the original plant and diverting 20-40% of the energy output. Research into new sorbents with faster kinetics and lower energy penalties (40-80 kJ mol^-1) is necessary, along with incentives like carbon pricing or CCUS applications (such as enhanced oil recovery) to promote adoption.

IV. OVERARCHING CHALLENGES AND OPPORTUNITIES

Chu and Majumdar (2012) emphasize systemic challenges, including the need for grid modernization to incorporate various diverse energy sources and the slow pace of energy transitions, which can take decades, as shown in U.S. energy mix

data []. Public acceptance, especially for nuclear and CCS, as well as the urgency of climate action, further complicates the transition. Opportunities exist in technological innovation, such as high-efficiency solar cells, advanced biofuels, and digital grid management—supported by policy measures like carbon pricing and R&D funding.

4.1 Economic Growth and Job Creation:

The Investments in sustainable renewable energy technologies will stimulate local economies and create employment opportunities in manufacturing, engineering, and project management.

4.2 Environmental Benefits

The adoption of sustainable energy in the future is expected to reduce greenhouse gas emissions, mitigate climate change, improve air quality, and minimize the environmental impact of traditional energy sources.

4.3 Technological Innovation

Advancements in solar, wind, biogas, and energy storage technologies, along with innovative solutions like agrivoltaics (combining farming and solar power), offer efficient and clean energy generation. It drives advancements, boosts efficiency and productivity, creates competitive advantages for businesses, and can transform markets and society.

4.4 Waste-to-Energy Solutions

Converting waste into energy provides a dual benefit, reducing disposal costs and creating clean power while cutting methane emissions. These technologies provide a means to reduce landfill waste and decrease reliance on fossil fuels, thereby contributing to a more circular economy by recovering resources from waste materials.

V. CONCLUSION

5.1 A Comprehensive Approach to Sustainability

The shift towards to a sustainable energy future, as outlined by Chu and Majumdar, requires a wide range of solutions. In transportation, improvements in efficiency, electrification, natural gas, and biofuels each have a part, while electricity generation needs a mix of renewables, nuclear, and CCS. Overcoming technical, economic, and social hurdles call for

© OCT 2025 | IRE Journals | Volume 9 Issue 4 | ISSN: 2456-8880

ongoing innovation, policy support, and international cooperation.

The review wok historical perspective reminds us that energy shifts are gradual, but the urgent need to fight climate change demands faster action. By leveraging the opportunities and addressing the challenges outlined, a prosperous, secure, and sustainable energy future can be achieved.

5.2 Highlight-Emerging Technologies
Explore green hydrogen production through electrolysis powered by renewables, highlighting projects like the Hywind Scotland floating wind farm—the world's first operational floating wind farm, producing 30 MW since 2017. Alternatively, consider Siemens Gamesa's 14 MW offshore wind turbine, which enhances energy output and efficiency for deepwater locations. These examples demonstrate cutting-edge advancements with real-world applications.

ACKNOWLEDGEMENT

The authors would like to thank Kaizer Engineering and Consultancy Services for their contributions to this work.

REFERENCES

- [1] BP. (2011). Statistical review of world energy.
- [2] Holmberg, K., Andersson, P., & Erdemir, A. (2012). Global energy consumption due to friction in passenger cars. Tribology International, 47, 221–234. Tarascon, J.-
- [3] M., & Armand, M. (2001). Issues and Challenges Facing Rechargeable Lithium Batteries. Nature, 414, 359–367.
- [4] Debe, M. K. (2012). Electrocatalyst approaches and challenges for automotive fuel cells. Nature, 486, 43–51.
- [5] National Petroleum Council. (2012). Advancing technology for America's transportation future.
- [6] National Academy of Sciences. (2009). Liquid transportation fuels from coal and biomass: Technological status, costs, and environmental impacts.
- [7] Peralta-Yahya, P. P., Zhang, F., del Cardayre, S. B., & Keasling, J. D. (2012). Microbial engineering for the production of advanced biofuels. Nature, 488, 320–328.

- [8] Chan, C. C. The state of the art of electric, hybrid, and fuel cell vehicles. Proc. IEEE 95, 704–718 (2007).
- [9] Yang, J., Sudik, A., Wolverton, C. & Siegel, D. J. High-capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery. Chem. Soc. Rev. 39, 656–675 (2010).
- [10] David, E. An overview of advanced materials for hydrogen storage. J. Mater. Process. Technol. 162–163, 169–177 (2005). International Energy Agency. (2011). World Energy Outlook 2011.
- [11] APS Panel on Public Affairs. (2011). Air capture of CO2 with chemicals: A technology assessment.
- [12] Solar Energy Industries Association. (2012). U.S. Solar Market Insight Report. Holmberg, K., Anderssona, P. & Erdemirb, A. Global energy consumption due to friction in passenger cars. Tribol. Int. 47, 221–234 (2012).
- [13] Chu, S., Majumdar, A. Opportunities and challenges for a sustainable energy future. *Nature* 488, 294–303 (2012). https://doi.org/10.1038/nature11475