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Abstract- Obtaining the bottomhole flowing pressure of a 

producing well from readily available surface pressures 

had been a significant concern for operators in the 

petroleum industry, as accurate knowledge of this 

pressure is crucial for determining the most efficient 

recovery methods and lifting procedures.  Although many 

existing correlations aim to achieve this, their predictive 

capabilities are limited due to the inability of current 

models to account for sand particles in the flow stream 

and the need to shut in the well for bottomhole pressure 

predictions, which seems counterproductive. This study 

introduces a data-driven approach to determine of the 

flowing bottomhole pressure of a vertical well using 

surface and well parameters. Existing models and 

correlations provide insights into the relationship 

between flowing bottomhole pressures and wellhead 

pressure, while artificial feedforward neural networks, 

random forest decision trees and support vector machine 

algorithms are employed to develop regression models 

based on available field data. Evaluation metrics such as 

mean squared error and mean absolute error are used to 

assess the performance of these machine learning 

models. The artificial neural network performed best on 

both training and testing data-sets, predicting the flowing 

bottomhole pressures with a mean squared error of 7.5% 

and a mean absolute error as low as 3.9% on the test set. 

This model offers advantages in estimating flowing 

bottomhole pressure from real-time surface pressures and 

well data compared to empirical models that rely on 

simplifying assumptions. 
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I. INTRODUCTION 

 

In hydrocarbon reservoir exploitation, reservoir 

fluids (liquids and gases) flow simultaneously in any 

direction or pattern, which is generally called 

multiphase flow. The simultaneous flow of liquids 

and gases in the production system is much more 

difficult than single-phase flow because an interface, 

which may be smooth or not depending on the flow 

regime and pattern, can exist between the gases and 

liquids. Interpretation of data from well test analysis 

has traditionally been based on the assumption that 

the reservoir is a homogeneous single layer. 

 

However, the true petroleum reservoir consists of 

layers with distinct interlayer characteristics. These 

layers are typically separated by interfaces that can 

be either permeable or impermeable. Pressure 

behavior in such a vertically heterogeneous system 

differs from that of a single-layered system and rarely 

reflects more than the average properties of the entire 

system. It is in this context that this study becomes 

necessary. Well completion in these systems would 

be more formative and improve reservoir and 

production engineering practices if detailed layer 

information is available. The petroleum industry, 

however focused on accurately calculating the 

pressure losses that occur during multiphase flow in 

tubing and pipelines. Accurate prediction of pressure 

losses enables proper system design. Additionally, 

pressure measurement in a production system is 

crucial the petroleum industry because it supports 

efficient oil and gas extraction from the reservoir. 

Amongst these, bottom-hole pressure is particularly 

vital because knowing it helps determine many 

parameters essential for optimal production and 

prevents early reservoir depletion. It can also be used 

to avoid formation damage caused by early sand 

production reservoir. Surface pressures can often be 

converted to bottom-hole values if sufficient 

information about the wellbore system is available 

 

1.1 VERTICAL MULTIPHASE FLOW 

Much has been written in the literature regarding the 

multiphase flow of fluids in pipes. This problem is 

much more complex than single phase-flow because 

it involves the simultaneous flow of both liquid (oil 

or water) and vapor (gas). The mechanical energy 

equation form the basis for methods used to estimate 

the pressure drop in multiphase flow. However, 

challenge lies in accurately determining the velocity, 
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friction factor, and density to be used for the 

multiphase mixture in calculations. Additionally, the 

problem becomes more complicated as velocities, 

fluid properties, and the liquid fraction change as the 

fluid flows to the surface due to pressure variations. 

Many researchers (Adekomaya et al., 2014, Guo, 

2001, and Omohimoria et al., 2014) have proposed 

methods to estimate pressure drops in multiphase 

flow. Each approach is based on a combination of 

theoretical, experimental, and field data, which has 

led some researchers to relate the pressure-drop 

calculations to flow patterns. Flow patterns or flow 

regimes describe to the distribution of each fluid 

phase inside the pipe. This means that pressure 

calculation depend on the predicted flow pattern. 

There are four main flow patterns in the simplest 

classification of flow regimes. 

 

1.2 OVERVIEW OF BOTTOM HOLE FLOWING 

PRESSURE 

The petroleum industry aims to in accurately 

calculate pressure losses in multiphase flow within 

tubing and pipelines. Precise predictions of pressure 

losses enable proper pipe design. Additionally, 

determining pressure in a production system is 

crucial in the petroleum industry because it helps 

optimize oil and gas extraction from reservoirs. 

Among all, the most critical measurement is the 

flowing bottom-hole pressure, which is the pressure 

recorded at or near the producing formation’s depth.  

Although surface pressures can often be converted to 

bottom-hole pressure values if sufficient information 

about the wellbore system is available (Aggour et al., 

2015), Knowing this pressure is essential for 

selecting the most effective recovery and lifting 

methods. However, there is less information 

available about these pressures than about any other 

part of the broader issue of oil production 

(Adekomaya et al., 2014). 

 

As mentioned earlier, the bottom-hole pressure can 

be determined from surface pressures like the 

wellhead pressures if sufficient information about the 

production system is available, which can be easily 

obtained from well testing operations. Since the 

wellhead pressure and the relevant parameters are 

readily obtained from pressure transient analysis, and 

the success of this analysis depends on the accurate 

measurement or estimation of bottom-hole pressure, 

it is therefore important and necessary to determine 

the bottom-hole pressure from this data (Guo, 2001). 

This will be done to further emphasize the benefits of 

having adequate knowledge of a reservoir’s bottom-

hole pressure. 

 

It is also well known that the knowledge of bottom-

hole pressure is necessary for determining the well 

productivity index, which is derived from the curve 

of the inflow performance relationship, that is, the 

plot of bottom-hole pressure against flow rate. 

Therefore, the ability to monitor bottom-hole 

pressure is very important because it offers many 

advantages for reservoir management. Its monitoring 

capabilities can prevent severe damage to the well, 

which could lead to early breakthrough, early well 

intervention, or even premature abandonment of the 

well before its intended lifespan. (Clinton et al., 

2020). 

 

It is essential to study ways to correct this problem 

quickly and cost-effectively. Therefore, this work 

aims to at determine the bottom-hole pressure of a 

vertical well from surface pressure and parameters by 

modifying of the general energy equation to include 

considering only the frictional pressure term. 

(Omohimoria et al., 2014) 

 

Since the inception of the original work on 

multiphase flow by Poetmann and Carpenter (1952), 

several authors (Ayub et al., 2014; Medhat et al., 

2015; Guo, 2011) have developed various 

correlations and models. Poetmann and Carpenter 

(1952), Ros, N.C. (1961), and Orkiszewski, J. (1967) 

developed models for pressure drop or pressure 

gradient along the tubing, which may only provide 

approximate solutions. This means they might not 

offer accurate information about the pressure 

conditions at the bottom of the well caused by the 

fluid column containing two or more fluid phases. 

Their models treated the liquid and gas as a 

homogeneous single-phase flow without largely 

considering dissolved gas in oil. The developed 

models and correlations can be categorized into three 

main types: empirical models, mechanistic models 

and artificial neural networks. (Ayub et al., 2014). 

 

The empirical model or correlation uses measured 

experimental production data based on mathematical 

equations obtained from research facilities. While 

most early pressure drop calculations relied on this 

correlation due to its direct applicability and 

reasonable accuracy within the data range used, the 

model generation, was limited by the data range and 

its applicability to all for all types of fluids and 
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conditions encountered in oil and gas fields. Beggs 

and Brill (1973) developed a widely used model for 

estimating pressure drops in horizontal, inclined, and 

vertical flows. The model also considered several 

flow regimes in multiphase flow and can be used to 

predict liquid holdup. The parameters used include 

gas flow rate, liquid flow rate, pipe diameter, 

inclination angle, liquid hold up, pressure gradient, 

and horizontal flow regime. 

 

The mechanistic model, also known as the semi-

empirical model, helps in determining and estimating 

of pressure drop holdup in pipes by addressing the 

physical phenomena of multiphase flow. This work 

provides a way to predict pressure drop in situations 

that cannot be modeled in a laboratory and where 

reliable and calculable empirical correlations are not 

availcale. Mechanistic models are generally 

considered more reliable and versatile because they 

incorporate important flowparameters. (Medhat et 

al., 2015). 

 

Several studies were conducted by Guo, B (2001) in 

various areas of oil and gas well drilling and 

production technology, requiring bottom-hole 

pressure estimations. He developed a model to 

simulate four-phase flow (gas, oil, water and solid 

particles) in underbalanced drilling practices. Later, 

this model was found to be useful in simulating the 

simultaneous flow of gas, water, and coal particles in 

coal-bed methane production wells, (Guo, 2011). 

However, the artificial neural network model became 

popular several years ago, as it has been applied in 

the industry for many purposes, such as PVT 

properties prediction, enhanced oil recovery, and 

more. It has been proven that empirical and 

mechanistic models do not provide convincing and 

reliable tools for estimating of pressure in multiphase 

flow wells, as high errors are usually associated with 

these models. The artificial neural network 

demonstrates a better performance compared to the 

conventional empirical and mechanistic models. 

Ayoub developed an artificial neural network model 

for estimating bottom-hole flowing pressure and 

pressure drop in vertical multiphase flow, showing 

the power of neural networks in solving complex 

engineering problems. This model could simulate the 

actual physical process of determining bottom-hole 

pressure and outperform all existing models (Ayoub 

et al., 2015). 

 

Flowing Bottom-Pressure Importance and the 

Electrical Submersible Pump (ESP) Symtem 

Electric Submersible Pumping (ESP) is the second 

most commonly used method for well production/and 

fluid lifting in the oil and gas industry. It accounts for 

the highest volume of total fluids produced - both oil 

and water by any artificial lift method and is 

especially suitable for wells with high water cuts. 

Centrifugal pumps can be designed as single-stage or 

multi- stage units. Single-stage pumps are typically 

used when low to medium discharge pressure is 

needed, while multi-stage pumps are built to handle 

higher discharge pressures. This is the case with ESPs 

used in the petroleum industry, where fluids must be 

lifted from deep formations. (zhang et al.,2016) 

 

 
Fig. 1.  ESP Well System and Typical Pressure Drop 

Profile Diagram (Ayub et al., 2014) 

 

An ESP is typically installed at the end of the 

production tubing string, which is inserted inside a 

larger casing pipe. Usually, the ESP installation depth 

is shallower than the formation (producing zone) 

depth. The pressure drop schematic of a flowing oil 

well with an ESP is shown in Figure. 1. The pressure 

drop lines of interest in this study are the lines drawn 

in red and labeled as A, B, and C. The pressure at the 

top of line A is the well-head pressure, and the end of 

this line represents the pump discharge pressure. Line 

A indicates the pressure drop caused by the 

hydrodynamic multiphase flowing column and 

frictional losses in the tubing. Line B shows the 

difference between the discharge and intake 

pressures of the pump, essentially representing the 

total pressure developed by the ESP. Line C 

illustrates the pressure drop between the pump intake 

and the perforations at the producing formation, due 

to the hydraulic column and frictional losses in the 

casing below the pump. The top of line C is the pump 

intake pressure, and its lower end is the well flowing 

bottom-hole pressure. It is a standard practice to have 

online pressure measurements at the  well-head, 

pump discharge, and pump intake. In the fields 

studied, these measurements are recorded every 15 
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minutes. In this study, re-sampled data for daily 

records have been used. Permanent pressure gauges 

installed within the ESP assembly typically measure 

the pressure at thye pump discharge and intake. 

However, the formation bottom-hole pressure 

(FBHP) at the perforations has no permanent 

measurements, and in our case, we have almost  no 

records of the FBHP for an ESP well due to access 

difficulties and other restrictions. Therefore, this 

work is limited to estimating the pressure drops along  

lines A and B only. Estimating the pressure drop 

along line C (i.e. the pressure difference from FBHP 

to the pump intake pressure) is less complex 

compared to the drop along line A, because the flow 

is more homogeneous and frictional losses are 

negligible. Adittionally, it is very challenging to 

evaluate this due to nthe lack of FBHP records.   The 

flowing bottom-hole pressure of a well is the pressure 

measured or calculated at or near the producing 

formation at the bottom of the well while the well is 

producing hydrocarbons. It’s always higher than the 

surface flowing pressure, but lower than the shut- in 

bottom-hole pressure. 

 

Knowing the bottom-hole pressure of an oil well can 

help forecast the well’s potential throughout its life-

cycle. In other words, well production monitoring 

and artificial lift optimization can be performed, 

which are key objectives maximizing oil production 

and reducing operational costs. Bottom-hole pressure 

data can also provide information on pore pressure, 

which is used for safety calculations when drilling 

development wells in the area. This data is especially 

critical for drilling operations, particularly 

underbalanced drilling. It also helps in selecting the 

accurate kill fluid weight. Additionally, this data can 

improve accuracy of under- or over-balance 

decisions before perforation. 

 

Tubing pressures and casing pressures in flowing 

wells have always been key factors in well operation, 

and their importance increases under restricted 

production. Changes in these pressures, related to 

well age or production, provide valuable information 

about the well’s conditions, sand presence, bore-hole 

conditions through the sand, and whether the 

equipment in the hole is functioning correctly. A 

broad study of bottom-hole pressures across an entire 

field directly applies to the operation of a specific 

lease or individual well. Field-wide bottom-hole 

pressure surveys offer data that can help make more 

accurate early estimates of when wells will need 

artificial lift and how much fluid they will. Knowing 

roughly when wells will require pumping is highly 

useful. 

 

2.5 MACHINE LEARNING ALGORITHMS 

This work aims to predict wellbore flowing pressure 

from surface pressure and well parameters using a 

machine learning model. The target variable is the 

bottom-hole pressure, while oil flow rate, gas flow 

rate, total gas rate, water rate, bottom hole and surface 

temperatures, oil gravity in API, and wellhead 

pressure serve as input features. This is a regression 

problem because the target variable is continuous. 

Due to the nature of these variables, a thorough study 

was conducted to select appropriate machine learning 

algorithms for this work. The considered algorithms 

were: 

i) Artificial Neural Network 

ii) Decision tree algorithm 

iii) Support vector machine 

 

2.5.1 ARTIFICIAL NEURAL NETWORK 

(ANN) 

An artificial neural network (ANN) is a linear model 

inspired by brain architecture, developed to transfer 

learning ability to a computer system (Castro et al., 

2017; Souza et al., 2019). 

Artificial neural networks can perform complex 

learning and adaptation tasks by mimicking the 

functions of biological neural systems. Unlike 

knowledge-based techniques, they do not require 

explicit knowledge for application. Their primary 

strength is the ability to learn complex functional 

relationships by generalizing from a limited amount 

of training data. Neural networks can thus serve as a 

black-box model for nonlinear systems and can be 

trained using input and output data observed in the 

system. The mathematical model simulates the 

functionality of biological neurons (called artificial 

neurons) at various levels of detail. Essentially, it is a 

static function with multiple inputs (representing 

dendrites) and one output (the axon). Each input has 

an associated weight factor. The weighted inputs are 

summed and then passed through a nonlinear 

activation function, which produces the neuron’s 

output. 

 
Fig. 2. Artificial Neuron (Babushka, 2010) 
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Networks with multiple layers are called multi-layer 

neural networks, compared to single-layer networks 

that have only one layer. They consist of one input 

layer, one output layer and several hidden layers in 

between. The layers are made up of simple nonlinear 

processing units called neurons. These neurons are 

interconnected through adjustable weights. The 

information relevant to the input and output mapping 

of the net is stored in these weights, store information 

related to the input and output mapping of the 

network. In a feedforward neutral network, 

information lows only in one direction, from the input 

layer to the output layer. Israel (2021) pointed out 

that each node calculates the sum of the products of 

the weights and inputs, and if this value exceeds 

threshold (typically 0), the neuron fires and outputs 

an activated value (usually 1); otherwise, it outputs a 

deactivated value (usually −1). 

 

The number of nodes in the output layer depends on 

whether a regression or classification model is being 

built. For a regression model, the output layer has one 

node, as it’s expects only a single output. In Contrast, 

for classification, the output layer of the ANN has a 

number of nodes equal to the number of classes being 

classified. 

 

2.5.2 The Decision Tree Algorithm 

The decision tree is a practical, fast, and robust 

method for supervised inductive learning (Maimon et 

al., 2010). It effectively aids in extracting previously 

unknown information from analyzing large datasets. 

Examples of applications using decision trees include 

landslides (Alkhasawneh et al., 2014), classification 

and identification of natural minerals (Akkas et al., 

2015), and image classification (Loussaief, 2018). 

Essentially, a decision tree consists of a series of if-

else statements organized through a nodes and leaves. 

When applied to database records, it classifies data 

and proves to be a resilient method forhandling noisy 

or nonstandard data (Sáez, 2013). Configurations 

such as maximum tree depth, number of features for 

the best split, maximum number of nodes, maximum 

number of leaves, and the functions used for division 

and node selection can be defined and optimized 

during training.For node division and selection, 

methods such as Gini impurity, entropy, information 

gain, and chi-square are available 

 

2.5.3 SUPPORT VECTOR MACHINE 

The Support Vector Machine is a supervised machine 

learning algorithm used mainly for classification and, 

to a lesser degree, regression problems (Cortes & 

Vapnik, 1995). It seeks to find the optimal decision 

boundary, also called a hyperplane that best separates 

the data into different classes (Bishop, 2006). The 

ideal hyperplane is the one that maximizes the 

margin, which is the distance between the hyperplane 

and the closest data points from each class, known as 

support vectors (Cortes & Vapnik, 1995). When the 

data is linearly separable, SVM treats a straight 

hyperplane that clearly divides the classes (Hastie, 

Tibshirani, & Friedman, 2009). Mathematically, this 

involves solving a convex optimization problem to 

minimize the norm of the weight vector, ensuring a 

wide margin between classes (Bishop, 2006). If the 

data is not linearly separable, SVM adds slack 

variables and a regularization parameter C to allow 

some misclassifications while still aiming to find the 

best separation (Hastie et al., 2009). 

 

2.6 MACHINE LEARNING MODELS FOR 

BOTTOM HOLE PRESSURE DETERMINATION 

Guo et al. (2016) pioneered the investigation of 

lithology identification using support vector 

machines (a traditional machine learning algorithm). 

In their research, they developed a model to predict 

bottom hole pressure based on four surface 

parameters. These parameters include oil rate, gas 

rate, water rate and wellhead pressure. They served 

as inputs to their model. A total of 100 data points 

were used to develop the model, with bottom hole 

pressure as the target variable. The algorithms used 

included the random forest decision tree, linear 

regression and support vector machine. Evaluation 

metrics such as mean squared error, mean absolute 

error, and coefficient of determination assessed the 

performance of the machine learning algorithms. 

Their study showed that a random forest decision tree 

was the best for predicting bottom hole flowing 

pressure, with a mean absolute error of 3%. The 

analysis of feature importance indicated that 

wellhead pressure played a crucial role predicting 

bottom hole flowing pressure. 

 

Nagham and Ibrahim (2021) developed three 

machine learning models for predicting the 

multiphase flowing bottom hole pressure using three 

different algorithms. They employed an artificial 

neural network, a random forest, and a K-nearest 

neighbors algorithm. Results showed that the an 

artificial neural network model achieved an error of 

2.5% in estimating the flowing bottom hole pressure, 

which was lower than the errors of 3.6% and 4% for 
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the random forest and K-nearest neighbors models 

respectively. The machine learning model were built 

using surface production data, making it possible to 

predict the flowing bottom hole pressure with actual 

field data. The accuracy of the models was validated 

by comparing their effectiveness. Overall, the study 

demonstrates the potential of artificial intelligence in 

predicting one of the most complex parameters in 

multiphase petroleum production. 

 

1.  Method and Procedures 

This study aims to develop a model to predict the 

bottom hole flowing pressure using well and surface 

parameters.  

The different steps involved in developing this AI-

based model includes: data gathering, data 

preprocessing, selection of algorithms and model 

training, and model evaluation, validation, and 

prediction. To develop the model for bottom-hole 

pressure prediction, three different machine learning 

algorithms were used. The models built are 

regression models since the target (bottom-hole 

pressure) is a continuous variable. The developed 

machine learning models can predict the flowing 

bottom-hole pressure from various well and surface 

parameters. The algorithms used include: random 

forest regressor, support vector machine and linear 

regressor. It is important to note that the steps in 

developing the model using any of these algorithms 

are essentially the same. Machine learning model 

building follows these generic steps as mentioned 

above. To simplify and reduce ambiguity, the steps 

for developing this AI -based proxy modelcan be 

grouped into five major phases. These are: 

• Data Acquisition / Input Data Selection 

• Data Preprocessing 

• Network Development 

• Network Training 

• Network Validation 

 

DATA ACQUISITION / DATA SELECTION 

A total of 206 multiphase flow data points collected 

from Niger Delta fields for vertical wells were 

obtained. These wells are flowing naturally without 

any artificial lift process. During the measurements, 

the well bottom-hole flowing pressure was recorded 

using down-hole pressure gauges located just above 

the perforations. The dataset includes 9 production-

related variables used to predict the bottom hole 

flowing pressure, FBHP (psia) as well as the flowing 

oil rate Qo (bbl/day), flowing gas rate, Qg 

(Mscf/day), flowing water rate, Qw (bbl/day), 

production tubing internal diameter, ID (inches),  

perforation depth,  (ft), oil gravity, API, surface 

temperature, ST (oF), bottom-hole temperature, 

BT(oF), and wellhead pressure, Pwh (psia). The 

output is the measured flowing bottom-hole pressure 

FBHP, (psia). 

 

 
Fig. 3. The correlation plot of all attributes in the 

dataset. 

 

II. DATA PREPROCESSING AND FEATURE 

ENGINEERING 

 

Data preprocessing, feature engineering, and 

exploratory data analysis are essential initial steps 

after collecting data. 

Data preprocessing includes to data integration, 

analysis, data cleaning, transformation, and 

dimension reduction. It is the process of cleaning and 

preparing raw data to facilitate feature engineering. 

Feature engineering, on the other hand, involves 

techniques such as adding or removing relevant 

features, handling missing data, encoding data, and 

managing categorical variables. The performance of 

a machine learning model is heavily depents on both 

the quantity and quality of the training data.Although 

we have little controlover the amount of data, 

ensuring data quality is solely the responsibility of 

modeldeveloper.  In this work, data analysis and 

preprocessing are carefully performed to ensure the 

training date-set quality. To reduce the number of 

input parameters and improve the model’s efficieny, 

fewer data points were used. 

 

Feature selection is allowed to train machine learning 

models in a way that is as honest as possible based on 

the data. A dataset includes nine independent 

variables, or input attributes. It is important to select 

the right number of these variables because using too 

many during model training can cause lengthy 

processes and overfitting.Strong correlations 

between independent variables can lead to 

collinearity and multicollinearity issues in linear 

machine learning models, which reduce the models' 
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prediction accuracy (Munqith et al., 2017. Although 

collinearity does not affect the chosen machine 

learning techniques, feature selection is performed to 

remove redundant variables. The correlation between 

variables was calculated using Pearson's correlation 

coefficient, a popular method for measuring the 

linear relationship between two data variables, which 

can range from -1 to 1. 

 

NETWORK DEVELOPMENT/ TRAINING 

Traditional algorithms were the only ones used for 

the models development due to limited data. A total 

of 206 tests were collected from different wells and 

divided into two sets to train and validate the model. 

The training dataset account for 80% (165 data 

points) were used to prepare and train the models, 

while the remaining 20% of the data (41 data points) 

was reserved. The testing set was used to validate the 

trained model and assess the prediction capabilities 

of the developed models. 

 

Both models rely on scientific libraries like pandas 

and numpy for data manipulation and matrix 

operation. The visualization library was also useful 

for data visualization. The data was loaded into the 

Python environment as a DataFrame using pandas, 

and visualized with matplotlib and seaborn. For the 

traditional algorithms, the scikit- learn library was 

used to import pre-developed model from their 

library. Support vector machines and random forest 

regressors were the chosen algorithms. The training 

process for both involved hyperparameter tuning, 

which helps optimize the model’s parameters. 

Gridsearchcv was used to enhance the performance 

of both algorithms. 

 

NETWORK VALIDATION 

Validating a model involves comparing its results to 

actual data. The final model was validated by testing 

it against different data sets that were not used during 

training. Evaluation metrics such as mean squared 

error and mean absolute error assesses the model’s 

performance. The mean squared error is defined as 

the average of the squared of the differences between 

actual and predicted values of the target variable. It 

indicates how well the model performs, with lower 

values being better, since high values suggest poor 

performance. Conversely, the mean absolute error 

measures the average of absolute differences between 

the actual and predicted target variable. 

   

III. RESULTS 

 

Before data is used for model development, extensive 

questions are asked about the data and potential 

solutions are provided at stages where the 

investigation reveals a loophole. Exploratory data 

analysis is essential for understanding quantitative 

variables in a dataset and serve as a visual tool for 

high-dimensional data. The goal of this analysis is to 

identify patterns within the dataset.  

  

Table 1. Statistical Description of Dataset 

 Oil rate Gas rate Water 

rate 

Tubing 

size 

Depth Oil 

Gravity 

ST BT Pwh Pwf 

Count 206 206 206 206 206 206 206 206 206 206 

mean 6321.51 3416.07 2700.00 3.833 6359.86 33.7723 117.733 203.640 321.077 2489.03 

Std 4835.15 3068.43 2793.08 0.387 566.278 2.3179 30.7934 16.9572 153.563 302.165 

min 280.00 33.600 0 1.995 4550.00 30.00 76.00 157.00 80.00 1227.00 

25% 2543.75 1051.6025 3.250 3.813 6299.75 32.60 90.00 208.00 210.00 2288.25 

50% 4761.50 2454.525 1834.50 3.958 6509.5 32.60 90.00 212.00 280.00 2500.00 

75% 9576.00 4918.515 5033.50 3.958 6712.75 36.50 155.00 212.00 390.00 2700.50 

max 19618.00 13562.20 11000.0 4.00 7100.00 37.00 160.00 215.00 960.00 3217.00 

ST: surface temperature.  

BT: Bottom hole temperature.  

Pwh: Wellhead pressure. ,                                    Pwf: Bottom hole pressure 
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The table above provides a detailed description of the 

data set. Descriptive data analysis was performed on 

the ten variables. The first nine columns represent the 

input features, while the last column is the target 

feature. Descriptive data analysis is essential during 

exploratory data analysis because it helps the analyst 

gain a thorough understanding of the data 

distribution.  The rows of the table offer various 

descriptions of the data. The count indicates the total 

number of observations in the data-set. From Table , 

row one, it can be inferred that there are no missing 

value  in the data, as all entries have the same count 

row (206). This means missing data points were not 

an issue during the modeling process.  

 

Graphically, outliers can be tested using a box plot as 

shown in Figures 4 and 5. The figures (Figures 4 and 

5) display few or no outliers in the oil flow rate and 

the gas flow rate. This was also true for all the 

variables used in this model development. 

 

There were four basic questions about the data asked 

before starting the data analysis. The first concerns to 

whether the data is discrete or continuous. The 

second involves examining the symmetry of the 

distribution to identify if skewness exists in the 

dataset. The third question relates to the upper and 

lower boundaries of the data, and the final question 

assesses the likelihood of observing extreme values 

in the distribution. Most of the data used is 

continuous with values within a finite interval, except 

for the facies variable. The density plot (Figure 4) 

was used to display the variables with skewed data 

points, and normalization was performed on the data-

set before using it to develop the model. 

 

 
                                   Fig. 4. Density plot showing the distribution of the input feature. 

 

Proper attention was given to normalizing or scaling 

these skewed input features before developing the 

model.It was also necessary to understand the 

pairwise relationships between variables. A bivariate 

distribution in the form of a pair plot was created. 

This plot is shown in Figure 5.The pair plot shows 

illustrates the different variables relate to each other, 

providing more insight into the data. From the pair 

plot (Figure 5), it can be observed that gas flow rate, 

surface temperature, and bottom -hole temperature 

exhibit a very strong positive relationship with other 

input variables. This relationship among input 

features is called multicollinearity and could affect 

the performance of the models, especially those built 

with traditional machine learning algorithms. 

 

 
Fig. 5. Pair plot showing bivariate relationship between variables in the dataset 
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The correlation plot (Figure 6) below is a good way 

of showing these positive correlations that exist 

among input features. Figure 6 shows the correlation 

plot of the variable and the magnitude of their 

correlation coefficient.  

 

Due to the issues of multicollinearity and its 

purported impact on model performance, those input 

features with strong correlation were dropped and the 

model was developed with only features which 

correlates only with the target feature (bottom hole 

flowing pressure) .  

 

 
Fig. 6. Correlation Plot with Multicollinearity 

 

 
Fig. 7.  Correlation Plot After Handling 

Multicollinearity 

 

The distribution of the target data set was also 

examined before developing the model, as shown in 

Figure 8. This was done to check for skewness in the 

target variable. The histogram below (Figure 8) was 

used for this purpose and it shows a normal 

distribution for the model development. 

 

 
Fig. 8. Distribution of the target data 

Again, four different algorithms were used to develop 

a model for predicting the bottom- hole pressure. The 

model consisted of one deep learning algorithm and 

two traditional algorithms. The algorithms included 

an artificial neural network, a decision tree algorithm, 

and a support vector machine. After removing the 

blind data set for model validation, about ten percent 

of the remaining data was used to test the model’s 

performance. Additionally, the relationship between 

the target variable (bottom-hole pressure) and other 

input features examined and represented graphically 

before model development. Although not all input 

features were plotted, the depth and oil flow rate 

showed a direct relationship, as shown in Figure 9 

and Figure 10. 

 

 
Fig. 9. Scatter Plot of Bottom Hole Pressure against 

Depth 

 

 
Fig. 10. Scatter Plot of Bottom Hole Pressure 

against Oil flow rate. 

 

After the exploratory data analysis, the data-set was 

normalized and then split into two parts for model 

development. The first part of clean data (80% of the 

total data) was used to train the algorithms, while the 

second part (20%) was used to tune and validate the 

performance of the trained model. 

 

IV. DISCUSSION 

 

This work aims to predict the bottom hole flowing 

pressure of a vertical well using a machine-learning 
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model based on surface parameters. To maximize the 

performance of various models, the hyperparameters 

within the algorithms were tuned to their optimal 

values. For the artificial neural network, the keras 

Tuner from Tensor Flow was used to find the best 

hyperparameters. The GridsearchCV (a package in 

sklearn) was employed to identify the optimal 

hyperparameters for the traditional algorithms 

(support vector machine and decision tree). The table 

below shows the hyperparameters used for model 

development. 

 

Table 2. Hyper parameter for various Algorithms. 

S/N Hyper parameter ANN Support vector  Decision tree 

1 Hidden Layer ✔ 一 一 

2 Batch Normalization ✔ 一 一 

3 Optimizer ✔ 一 ✔ 

4 Learning rate ✔ 一 一 

5 Max-depth 一 一 ✔ 

6 Min-samples-split 一 一 ✔ 

7 Min-sample-leaf 一 一 ✔ 

8 Regularization parameter 

(C) 

一 ✔ 一 

9 Gamma 一 ✔ 一 

10 Kernel 一 ✔ 一 

 

The three algorithms were trained, tuned, and 

validated independently using the necessary data-set. 

The ANN model was optimized with three hidden 

layers, while the support vector machine and decision 

tree repressor were optimized by adjusting their 

hyperparameters as shown in Table 2 above. 

 

STATISTICAL ANALYSIS 

After developing the model, it was used to predict the 

bottom -hole pressure based on test input data. This 

step is common in every machine learning workflow 

to assess how well the model can predict data it hasn’t 

seen to during training. This is known as the concept 

of generalization. To evaluate the model’s 

predictions and compare them with actual values, 

statistical analysis was performed on the forecasted 

data set for the developed models. Table 3 and Table 

4 shows a brief summary of these metrics after the 

models were used to predict the training and test data 

set 

Table 3. Performance of Models on Training Data 

Model MSE MAE 

ANN 5.2 3 

Decision Tree  7.4 3.7 

Support Vector 

Machine 

8.3 4.2 

                      

Table 4. Performance of Models on Testing Data 

Model MSE MAE 

ANN 7.5 3.9 

Decision Tree  9.4 5.2 

Support Vector 

Machine 

10.7 5.6 
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Model Comparison 

The developed models were evaluated using their 

respective mean squared error and mean absolute 

error when predicting the test and training data sets. 

The results from the evaluation are shown uin the bar 

charts in Figure 11. From Figure 11, it can be deduced 

that the ANN model outperformed the support vector 

machine and decision tree regressor. This could be 

due to the inherent ability of deep learning 

algorithms. In general, ANN, which are invariants of 

deep learning algorithms, have the ability to detect 

patterns more easily compared to  traditional 

algorithms like support vector machine and decision 

tree algorithms.  

 

 
Fig. 11. Model Performance Comparison on Train 

Data Set 

 

 
Fig. 12. Model Performance Comparison on Test 

Data Set 

 

V. CONCLUSION 

 

The determination of the flowing bottom -hole 

pressure of a vertical well from surface pressure and 

well parameters has been carried out using a machine 

learning approach. From the model predictions and 

analysis, the following can be deducted: 

The accuracy of the suggested correlations is reduced 

by modeling and calculating the flowing bottom-hole 

pressure in multiphase oil well flow, which involves 

to numerous assumptions. Bottom-hole pressure is 

the most important factor for reservoir and 

production engineering.  

 

The FBHP is determined by the oil industry through 

empirical and/or mathematical relationships. One 

branch of artificial intelligence that demonstrate 

promising results is machine learning (ML). This 

advanced field of study supports complex problem-

solving for humans.  From this study, bottom -hole 

pressure during multiphase well production can be 

accurately predicted using machine learning 

methods. The most ideal model among the three 

machine-learning models that were built was ANN. 

These findings demonstrate artificial intelligence's 

capacity to forecast the most intricate aspects of the 

oil and gas sector. This effort highlights the 

importance the significance of data-driven 

computational models for production planning in the 

petroleum industry. 
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