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Abstract- Obtaining the bottomhole flowing pressure of a
producing well from readily available surface pressures
had been a significant concern for operators in the
petroleum industry, as accurate knowledge of this
pressure is crucial for determining the most efficient
recovery methods and lifting procedures. Although many
existing correlations aim to achieve this, their predictive
capabilities are limited due to the inability of current
models to account for sand particles in the flow stream
and the need to shut in the well for bottomhole pressure
predictions, which seems counterproductive. This study
introduces a data-driven approach to determine of the
flowing bottomhole pressure of a vertical well using
surface and well parameters. Existing models and
correlations provide insights into the relationship
between flowing bottomhole pressures and wellhead
pressure, while artificial feedforward neural networks,
random forest decision trees and support vector machine
algorithms are employed to develop regression models
based on available field data. Evaluation metrics such as
mean squared error and mean absolute error are used to
assess the performance of these machine learning
models. The artificial neural network performed best on
both training and testing data-sets, predicting the flowing
bottomhole pressures with a mean squared error of 7.5%
and a mean absolute error as low as 3.9% on the test set.
This model offers advantages in estimating flowing
bottomhole pressure from real-time surface pressures and
well data compared to empirical models that rely on
simplifying assumptions.

Keywords: Flowing Bottom-Hole Pressure, Wells,
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L INTRODUCTION

In hydrocarbon reservoir exploitation, reservoir
fluids (liquids and gases) flow simultaneously in any
direction or pattern, which is generally called
multiphase flow. The simultaneous flow of liquids
and gases in the production system is much more
difficult than single-phase flow because an interface,
which may be smooth or not depending on the flow
regime and pattern, can exist between the gases and
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liquids. Interpretation of data from well test analysis
has traditionally been based on the assumption that
the reservoir is a homogeneous single layer.

However, the true petroleum reservoir consists of
layers with distinct interlayer characteristics. These
layers are typically separated by interfaces that can
be either permeable or impermeable. Pressure
behavior in such a vertically heterogeneous system
differs from that of a single-layered system and rarely
reflects more than the average properties of the entire
system. It is in this context that this study becomes
necessary. Well completion in these systems would
be more formative and improve reservoir and
production engineering practices if detailed layer
information is available. The petroleum industry,
however focused on accurately calculating the
pressure losses that occur during multiphase flow in
tubing and pipelines. Accurate prediction of pressure
losses enables proper system design. Additionally,
pressure measurement in a production system is
crucial the petroleum industry because it supports
efficient oil and gas extraction from the reservoir.
Amongst these, bottom-hole pressure is particularly
vital because knowing it helps determine many
parameters essential for optimal production and
prevents early reservoir depletion. It can also be used
to avoid formation damage caused by early sand
production reservoir. Surface pressures can often be
converted to bottom-hole values if sufficient
information about the wellbore system is available

1.1 VERTICAL MULTIPHASE FLOW

Much has been written in the literature regarding the
multiphase flow of fluids in pipes. This problem is
much more complex than single phase-flow because
it involves the simultaneous flow of both liquid (oil
or water) and vapor (gas). The mechanical energy
equation form the basis for methods used to estimate
the pressure drop in multiphase flow. However,
challenge lies in accurately determining the velocity,
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friction factor, and density to be used for the
multiphase mixture in calculations. Additionally, the
problem becomes more complicated as velocities,
fluid properties, and the liquid fraction change as the
fluid flows to the surface due to pressure variations.
Many researchers (Adekomaya et al., 2014, Guo,
2001, and Omohimoria et al., 2014) have proposed
methods to estimate pressure drops in multiphase
flow. Each approach is based on a combination of
theoretical, experimental, and field data, which has
led some researchers to relate the pressure-drop
calculations to flow patterns. Flow patterns or flow
regimes describe to the distribution of each fluid
phase inside the pipe. This means that pressure
calculation depend on the predicted flow pattern.
There are four main flow patterns in the simplest
classification of flow regimes.

1.2 OVERVIEW OF BOTTOM HOLE FLOWING
PRESSURE

The petroleum industry aims to in accurately
calculate pressure losses in multiphase flow within
tubing and pipelines. Precise predictions of pressure
losses enable proper pipe design. Additionally,
determining pressure in a production system is
crucial in the petroleum industry because it helps
optimize oil and gas extraction from reservoirs.
Among all, the most critical measurement is the
flowing bottom-hole pressure, which is the pressure
recorded at or near the producing formation’s depth.
Although surface pressures can often be converted to
bottom-hole pressure values if sufficient information
about the wellbore system is available (Aggour et al.,
2015), Knowing this pressure is essential for
selecting the most effective recovery and lifting
methods. However, there is less information
available about these pressures than about any other
part of the broader issue of oil production
(Adekomaya et al., 2014).

As mentioned earlier, the bottom-hole pressure can
be determined from surface pressures like the
wellhead pressures if sufficient information about the
production system is available, which can be easily
obtained from well testing operations. Since the
wellhead pressure and the relevant parameters are
readily obtained from pressure transient analysis, and
the success of this analysis depends on the accurate
measurement or estimation of bottom-hole pressure,
it is therefore important and necessary to determine
the bottom-hole pressure from this data (Guo, 2001).
This will be done to further emphasize the benefits of
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having adequate knowledge of a reservoir’s bottom-
hole pressure.

It is also well known that the knowledge of bottom-
hole pressure is necessary for determining the well
productivity index, which is derived from the curve
of the inflow performance relationship, that is, the
plot of bottom-hole pressure against flow rate.
Therefore, the ability to monitor bottom-hole
pressure is very important because it offers many
advantages for reservoir management. Its monitoring
capabilities can prevent severe damage to the well,
which could lead to early breakthrough, early well
intervention, or even premature abandonment of the
well before its intended lifespan. (Clinton et al.,
2020).

It is essential to study ways to correct this problem
quickly and cost-effectively. Therefore, this work
aims to at determine the bottom-hole pressure of a
vertical well from surface pressure and parameters by
modifying of the general energy equation to include
considering only the frictional pressure term.
(Omohimoria et al., 2014)

Since the inception of the original work on
multiphase flow by Poetmann and Carpenter (1952),
several authors (Ayub ef al., 2014; Medhat et al,
2015; Guo, 2011) have developed various
correlations and models. Poetmann and Carpenter
(1952), Ros, N.C. (1961), and Orkiszewski, J. (1967)
developed models for pressure drop or pressure
gradient along the tubing, which may only provide
approximate solutions. This means they might not
offer accurate information about the pressure
conditions at the bottom of the well caused by the
fluid column containing two or more fluid phases.
Their models treated the liquid and gas as a
homogeneous single-phase flow without largely
considering dissolved gas in oil. The developed
models and correlations can be categorized into three
main types: empirical models, mechanistic models
and artificial neural networks. (Ayub et al., 2014).

The empirical model or correlation uses measured
experimental production data based on mathematical
equations obtained from research facilities. While
most early pressure drop calculations relied on this
correlation due to its direct applicability and
reasonable accuracy within the data range used, the
model generation, was limited by the data range and
its applicability to all for all types of fluids and
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conditions encountered in oil and gas fields. Beggs
and Brill (1973) developed a widely used model for
estimating pressure drops in horizontal, inclined, and
vertical flows. The model also considered several
flow regimes in multiphase flow and can be used to
predict liquid holdup. The parameters used include
gas flow rate, liquid flow rate, pipe diameter,
inclination angle, liquid hold up, pressure gradient,
and horizontal flow regime.

The mechanistic model, also known as the semi-
empirical model, helps in determining and estimating
of pressure drop holdup in pipes by addressing the
physical phenomena of multiphase flow. This work
provides a way to predict pressure drop in situations
that cannot be modeled in a laboratory and where
reliable and calculable empirical correlations are not
availcale. Mechanistic models are generally
considered more reliable and versatile because they
incorporate important flowparameters. (Medhat et
al., 2015).

Several studies were conducted by Guo, B (2001) in
various areas of oil and gas well drilling and
production technology, requiring bottom-hole
pressure estimations. He developed a model to
simulate four-phase flow (gas, oil, water and solid
particles) in underbalanced drilling practices. Later,
this model was found to be useful in simulating the
simultaneous flow of gas, water, and coal particles in
coal-bed methane production wells, (Guo, 2011).
However, the artificial neural network model became
popular several years ago, as it has been applied in
the industry for many purposes, such as PVT
properties prediction, enhanced oil recovery, and
more. It has been proven that empirical and
mechanistic models do not provide convincing and
reliable tools for estimating of pressure in multiphase
flow wells, as high errors are usually associated with
these models. The artificial neural network
demonstrates a better performance compared to the
conventional empirical and mechanistic models.
Ayoub developed an artificial neural network model
for estimating bottom-hole flowing pressure and
pressure drop in vertical multiphase flow, showing
the power of neural networks in solving complex
engineering problems. This model could simulate the
actual physical process of determining bottom-hole
pressure and outperform all existing models (Ayoub
etal., 2015).
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Flowing Bottom-Pressure Importance and the
Electrical Submersible Pump (ESP) Symtem
Electric Submersible Pumping (ESP) is the second
most commonly used method for well production/and
fluid lifting in the oil and gas industry. It accounts for
the highest volume of total fluids produced - both oil
and water by any artificial lift method and is
especially suitable for wells with high water cuts.
Centrifugal pumps can be designed as single-stage or
multi- stage units. Single-stage pumps are typically
used when low to medium discharge pressure is
needed, while multi-stage pumps are built to handle
higher discharge pressures. This is the case with ESPs
used in the petroleum industry, where fluids must be
lifted from deep formations. (zhang et al.,2016)

Dynamic level
setting
CHP - Casinghead pressure
c WHP - Wellhcad pressure
PIP - PUmp INtake Prossure
T depth FBHP FBHP - Flowing bottombole
prossuro

Fig. 1. ESP Well System and Typical Pressure Drop
Profile Diagram (Ayub et al., 2014)

An ESP is typically installed at the end of the
production tubing string, which is inserted inside a
larger casing pipe. Usually, the ESP installation depth
is shallower than the formation (producing zone)
depth. The pressure drop schematic of a flowing oil
well with an ESP is shown in Figure. 1. The pressure
drop lines of interest in this study are the lines drawn
in red and labeled as A, B, and C. The pressure at the
top of line A is the well-head pressure, and the end of
this line represents the pump discharge pressure. Line
A indicates the pressure drop caused by the
hydrodynamic multiphase flowing column and
frictional losses in the tubing. Line B shows the
difference between the discharge and intake
pressures of the pump, essentially representing the
total pressure developed by the ESP. Line C
illustrates the pressure drop between the pump intake
and the perforations at the producing formation, due
to the hydraulic column and frictional losses in the
casing below the pump. The top of line C is the pump
intake pressure, and its lower end is the well flowing
bottom-hole pressure. It is a standard practice to have
online pressure measurements at the well-head,
pump discharge, and pump intake. In the fields
studied, these measurements are recorded every 15
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minutes. In this study, re-sampled data for daily
records have been used. Permanent pressure gauges
installed within the ESP assembly typically measure
the pressure at thye pump discharge and intake.
However, the formation bottom-hole pressure
(FBHP) at the perforations has no permanent
measurements, and in our case, we have almost no
records of the FBHP for an ESP well due to access
difficulties and other restrictions. Therefore, this
work is limited to estimating the pressure drops along
lines A and B only. Estimating the pressure drop
along line C (i.e. the pressure difference from FBHP
to the pump intake pressure) is less complex
compared to the drop along line A, because the flow
is more homogeneous and frictional losses are
negligible. Adittionally, it is very challenging to
evaluate this due to nthe lack of FBHP records. The
flowing bottom-hole pressure of a well is the pressure
measured or calculated at or near the producing
formation at the bottom of the well while the well is
producing hydrocarbons. It’s always higher than the
surface flowing pressure, but lower than the shut- in
bottom-hole pressure.

Knowing the bottom-hole pressure of an oil well can
help forecast the well’s potential throughout its life-
cycle. In other words, well production monitoring
and artificial lift optimization can be performed,
which are key objectives maximizing oil production
and reducing operational costs. Bottom-hole pressure
data can also provide information on pore pressure,
which is used for safety calculations when drilling
development wells in the area. This data is especially
critical for drilling operations, particularly
underbalanced drilling. It also helps in selecting the
accurate kill fluid weight. Additionally, this data can
improve accuracy of under- or over-balance
decisions before perforation.

Tubing pressures and casing pressures in flowing
wells have always been key factors in well operation,
and their importance increases under restricted
production. Changes in these pressures, related to
well age or production, provide valuable information
about the well’s conditions, sand presence, bore-hole
conditions through the sand, and whether the
equipment in the hole is functioning correctly. A
broad study of bottom-hole pressures across an entire
field directly applies to the operation of a specific
lease or individual well. Field-wide bottom-hole
pressure surveys offer data that can help make more
accurate early estimates of when wells will need
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artificial lift and how much fluid they will. Knowing
roughly when wells will require pumping is highly
useful.

2.5 MACHINE LEARNING ALGORITHMS

This work aims to predict wellbore flowing pressure
from surface pressure and well parameters using a
machine learning model. The target variable is the
bottom-hole pressure, while oil flow rate, gas flow
rate, total gas rate, water rate, bottom hole and surface
temperatures, oil gravity in API, and wellhead
pressure serve as input features. This is a regression
problem because the target variable is continuous.
Due to the nature of these variables, a thorough study
was conducted to select appropriate machine learning
algorithms for this work. The considered algorithms
were:

i)  Artificial Neural Network

ii) Decision tree algorithm

iii) Support vector machine

2.5.1 ARTIFICIAL NEURAL
(ANN)

An artificial neural network (ANN) is a linear model
inspired by brain architecture, developed to transfer
learning ability to a computer system (Castro et al.,
2017; Souza et al., 2019).

Artificial neural networks can perform complex
learning and adaptation tasks by mimicking the
functions of biological neural systems. Unlike
knowledge-based techniques, they do not require
explicit knowledge for application. Their primary
strength is the ability to learn complex functional

NETWORK

relationships by generalizing from a limited amount
of training data. Neural networks can thus serve as a
black-box model for nonlinear systems and can be
trained using input and output data observed in the
system. The mathematical model simulates the
functionality of biological neurons (called artificial
neurons) at various levels of detail. Essentially, it is a
static function with multiple inputs (representing
dendrites) and one output (the axon). Each input has
an associated weight factor. The weighted inputs are
summed and then passed through a nonlinear
activation function, which produces the neuron’s
output.

X, 4@\

: oz) — v

Fig. 2. Artificial Neuron (Babushka, 2010)
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Networks with multiple layers are called multi-layer
neural networks, compared to single-layer networks
that have only one layer. They consist of one input
layer, one output layer and several hidden layers in
between. The layers are made up of simple nonlinear
processing units called neurons. These neurons are
interconnected through adjustable weights. The
information relevant to the input and output mapping
of the net is stored in these weights, store information
related to the input and output mapping of the
network. In a feedforward neutral network,
information lows only in one direction, from the input
layer to the output layer. Israel (2021) pointed out
that each node calculates the sum of the products of
the weights and inputs, and if this value exceeds
threshold (typically 0), the neuron fires and outputs
an activated value (usually 1); otherwise, it outputs a
deactivated value (usually —1).

The number of nodes in the output layer depends on
whether a regression or classification model is being
built. For a regression model, the output layer has one
node, as it’s expects only a single output. In Contrast,
for classification, the output layer of the ANN has a
number of nodes equal to the number of classes being
classified.

2.5.2  The Decision Tree Algorithm

The decision tree is a practical, fast, and robust
method for supervised inductive learning (Maimon et
al., 2010). It effectively aids in extracting previously
unknown information from analyzing large datasets.
Examples of applications using decision trees include
landslides (Alkhasawneh et al., 2014), classification
and identification of natural minerals (Akkas et al.,
2015), and image classification (Loussaief, 2018).
Essentially, a decision tree consists of a series of if-
else statements organized through a nodes and leaves.
When applied to database records, it classifies data
and proves to be a resilient method forhandling noisy
or nonstandard data (Séez, 2013). Configurations
such as maximum tree depth, number of features for
the best split, maximum number of nodes, maximum
number of leaves, and the functions used for division
and node selection can be defined and optimized
during training.For node division and selection,
methods such as Gini impurity, entropy, information
gain, and chi-square are available

2.5.3  SUPPORT VECTOR MACHINE

The Support Vector Machine is a supervised machine
learning algorithm used mainly for classification and,
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to a lesser degree, regression problems (Cortes &
Vapnik, 1995). It seeks to find the optimal decision
boundary, also called a hyperplane that best separates
the data into different classes (Bishop, 2006). The
ideal hyperplane is the one that maximizes the
margin, which is the distance between the hyperplane
and the closest data points from each class, known as
support vectors (Cortes & Vapnik, 1995). When the
data is linearly separable, SVM treats a straight
hyperplane that clearly divides the classes (Hastie,
Tibshirani, & Friedman, 2009). Mathematically, this
involves solving a convex optimization problem to
minimize the norm of the weight vector, ensuring a
wide margin between classes (Bishop, 2006). If the
data is not linearly separable, SVM adds slack
variables and a regularization parameter C to allow
some misclassifications while still aiming to find the
best separation (Hastie et al., 2009).

2.6 MACHINE LEARNING MODELS FOR
BOTTOM HOLE PRESSURE DETERMINATION
Guo et al. (2016) pioneered the investigation of
lithology identification using support vector
machines (a traditional machine learning algorithm).
In their research, they developed a model to predict
bottom hole pressure based on four surface
parameters. These parameters include oil rate, gas
rate, water rate and wellhead pressure. They served
as inputs to their model. A total of 100 data points
were used to develop the model, with bottom hole
pressure as the target variable. The algorithms used
included the random forest decision tree, linear
regression and support vector machine. Evaluation
metrics such as mean squared error, mean absolute
error, and coefficient of determination assessed the
performance of the machine learning algorithms.
Their study showed that a random forest decision tree
was the best for predicting bottom hole flowing
pressure, with a mean absolute error of 3%. The
analysis of feature importance indicated that
wellhead pressure played a crucial role predicting
bottom hole flowing pressure.

Nagham and Ibrahim (2021) developed three
machine learning models for predicting the
multiphase flowing bottom hole pressure using three
different algorithms. They employed an artificial
neural network, a random forest, and a K-nearest
neighbors algorithm. Results showed that the an
artificial neural network model achieved an error of
2.5% in estimating the flowing bottom hole pressure,
which was lower than the errors of 3.6% and 4% for
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the random forest and K-nearest neighbors models
respectively. The machine learning model were built
using surface production data, making it possible to
predict the flowing bottom hole pressure with actual
field data. The accuracy of the models was validated
by comparing their effectiveness. Overall, the study
demonstrates the potential of artificial intelligence in
predicting one of the most complex parameters in
multiphase petroleum production.

1. Method and Procedures

This study aims to develop a model to predict the
bottom hole flowing pressure using well and surface
parameters.

The different steps involved in developing this Al-
based model includes: data gathering, data
preprocessing, selection of algorithms and model
training, and model evaluation, validation, and
prediction. To develop the model for bottom-hole
pressure prediction, three different machine learning
algorithms were used. The models built are
regression models since the target (bottom-hole
pressure) is a continuous variable. The developed
machine learning models can predict the flowing
bottom-hole pressure from various well and surface
parameters. The algorithms used include: random
forest regressor, support vector machine and linear
regressor. It is important to note that the steps in
developing the model using any of these algorithms
are essentially the same. Machine learning model
building follows these generic steps as mentioned
above. To simplify and reduce ambiguity, the steps
for developing this Al -based proxy modelcan be
grouped into five major phases. These are:

e Data Acquisition / Input Data Selection

e Data Preprocessing

e Network Development

e Network Training

e Network Validation

DATA ACQUISITION / DATA SELECTION

A total of 206 multiphase flow data points collected
from Niger Delta fields for vertical wells were
obtained. These wells are flowing naturally without
any artificial lift process. During the measurements,
the well bottom-hole flowing pressure was recorded
using down-hole pressure gauges located just above
the perforations. The dataset includes 9 production-
related variables used to predict the bottom hole
flowing pressure, FBHP (psia) as well as the flowing
oil rate Qo (bbl/day), flowing gas rate, Qg
(Mscf/day), flowing water rate, Qw (bbl/day),
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production tubing internal diameter, ID (inches),
perforation depth, (ft), oil gravity, API, surface
temperature, ST (°F), bottom-hole temperature,
BT(°F), and wellhead pressure, Pwh (psia). The
output is the measured flowing bottom-hole pressure
FBHP, (psia).

£

Fig. 3. The correlation plot of all attributes in the
dataset.

II. DATA PREPROCESSING AND FEATURE
ENGINEERING

Data preprocessing, feature engineering, and
exploratory data analysis are essential initial steps
after collecting data.

Data preprocessing includes to data integration,
analysis, data cleaning, transformation, and
dimension reduction. It is the process of cleaning and
preparing raw data to facilitate feature engineering.
Feature engineering, on the other hand, involves
techniques such as adding or removing relevant
features, handling missing data, encoding data, and
managing categorical variables. The performance of
a machine learning model is heavily depents on both
the quantity and quality of the training data.Although
we have little controlover the amount of data,
ensuring data quality is solely the responsibility of
modeldeveloper. In this work, data analysis and
preprocessing are carefully performed to ensure the
training date-set quality. To reduce the number of
input parameters and improve the model’s efficieny,
fewer data points were used.

Feature selection is allowed to train machine learning
models in a way that is as honest as possible based on
the data. A dataset includes nine independent
variables, or input attributes. It is important to select
the right number of these variables because using too
many during model training can cause lengthy
processes and overfitting.Strong  correlations
between independent variables can lead to
collinearity and multicollinearity issues in linear
machine learning models, which reduce the models'
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prediction accuracy (Mungqith et al., 2017. Although
collinearity does not affect the chosen machine
learning techniques, feature selection is performed to
remove redundant variables. The correlation between
variables was calculated using Pearson's correlation
coefficient, a popular method for measuring the
linear relationship between two data variables, which
can range from -1 to 1.

NETWORK DEVELOPMENT/ TRAINING
Traditional algorithms were the only ones used for
the models development due to limited data. A total
of 206 tests were collected from different wells and
divided into two sets to train and validate the model.
The training dataset account for 80% (165 data
points) were used to prepare and train the models,
while the remaining 20% of the data (41 data points)
was reserved. The testing set was used to validate the
trained model and assess the prediction capabilities
of the developed models.

Both models rely on scientific libraries like pandas
and numpy for data manipulation and matrix
operation. The visualization library was also useful
for data visualization. The data was loaded into the
Python environment as a DataFrame using pandas,
and visualized with matplotlib and seaborn. For the
traditional algorithms, the scikit- learn library was
used to import pre-developed model from their
library. Support vector machines and random forest
regressors were the chosen algorithms. The training

process for both involved hyperparameter tuning,
which helps optimize the model’s parameters.
Gridsearchcv was used to enhance the performance
of both algorithms.

NETWORK VALIDATION

Validating a model involves comparing its results to
actual data. The final model was validated by testing
it against different data sets that were not used during
training. Evaluation metrics such as mean squared
error and mean absolute error assesses the model’s
performance. The mean squared error is defined as
the average of the squared of the differences between
actual and predicted values of the target variable. It
indicates how well the model performs, with lower
values being better, since high values suggest poor
performance. Conversely, the mean absolute error
measures the average of absolute differences between
the actual and predicted target variable.

III. RESULTS

Before data is used for model development, extensive
questions are asked about the data and potential
solutions are provided at
investigation reveals a loophole. Exploratory data

stages where the
analysis is essential for understanding quantitative
variables in a dataset and serve as a visual tool for
high-dimensional data. The goal of this analysis is to
identify patterns within the dataset.

Table 1. Statistical Description of Dataset

Oil rate Gas rate Water Tubing Depth Oil ST BT Pwh Pwf
rate size Gravity

Count | 206 206 206 206 206 206 206 206 206 206
mean | 6321.51 | 3416.07 2700.00 | 3.833 6359.86 | 33.7723 | 117.733 | 203.640 | 321.077 | 2489.03
Std 4835.15 | 3068.43 2793.08 | 0.387 566.278 | 2.3179 30.7934 ] 16.9572 | 153.563 | 302.165
min 280.00 33.600 0 1.995 4550.00 | 30.00 76.00 157.00 | 80.00 1227.00
25% 2543.75 | 1051.6025 | 3.250 3.813 6299.75 | 32.60 90.00 208.00 | 210.00 [ 2288.25
50% 4761.50 | 2454.525 | 1834.50 | 3.958 6509.5 | 32.60 90.00 212.00 | 280.00 [ 2500.00
75% 9576.00 | 4918.515 [ 5033.50 | 3.958 6712.75 | 36.50 155.00 | 212.00 | 390.00 | 2700.50
max 19618.00 | 13562.20 | 11000.0 | 4.00 7100.00 | 37.00 160.00 | 215.00 [ 960.00 | 3217.00

ST: surface temperature.
BT: Bottom hole temperature.
Pwh: Wellhead pressure. ,
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Pwf: Bottom hole pressure
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The table above provides a detailed description of the
data set. Descriptive data analysis was performed on
the ten variables. The first nine columns represent the
input features, while the last column is the target
feature. Descriptive data analysis is essential during
exploratory data analysis because it helps the analyst
gain a thorough wunderstanding of the data
distribution. The rows of the table offer various
descriptions of the data. The count indicates the total
number of observations in the data-set. From Table ,
row one, it can be inferred that there are no missing
value in the data, as all entries have the same count
row (206). This means missing data points were not
an issue during the modeling process.

Graphically, outliers can be tested using a box plot as
shown in Figures 4 and 5. The figures (Figures 4 and
5) display few or no outliers in the oil flow rate and

the gas flow rate. This was also true for all the
variables used in this model development.

There were four basic questions about the data asked
before starting the data analysis. The first concerns to
whether the data is discrete or continuous. The
second involves examining the symmetry of the
distribution to identify if skewness exists in the
dataset. The third question relates to the upper and
lower boundaries of the data, and the final question
assesses the likelihood of observing extreme values
in the distribution. Most of the data used is
continuous with values within a finite interval, except
for the facies variable. The density plot (Figure 4)
was used to display the variables with skewed data
points, and normalization was performed on the data-
set before using it to develop the model.

Qil_Flow_Rate Gas_Flow_Rate Water_Flow_Rate Tubing_Size Depth Oil_Gravity
50 70 = 200
80
60 175 60 g0
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o 20000 ] 10000 o 1 o 10000 2 4 500000000 30 a5

Fig. 4. Density plot showing the distribution of the input feature.

Proper attention was given to normalizing or scaling
these skewed input features before developing the
model.It was also necessary to understand the
pairwise relationships between variables. A bivariate
distribution in the form of a pair plot was created.
This plot is shown in Figure 5.The pair plot shows
illustrates the different variables relate to each other,
providing more insight into the data. From the pair
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plot (Figure 5), it can be observed that gas flow rate,
surface temperature, and bottom -hole temperature
exhibit a very strong positive relationship with other
input variables. This relationship among input
features is called multicollinearity and could affect
the performance of the models, especially those built
with traditional machine learning algorithms.
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Fig. 5. Pair plot showing bivariate relationship between variables in the dataset
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The correlation plot (Figure 6) below is a good way
of showing these positive correlations that exist
among input features. Figure 6 shows the correlation
plot of the variable and the magnitude of their
correlation coefficient.

Due to the issues of multicollinearity and its
purported impact on model performance, those input
features with strong correlation were dropped and the
model was developed with only features which
correlates only with the target feature (bottom hole
flowing pressure) .
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Fig. 6. Correlation Plot with Multicollinearity
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Fig. 7. Correlation Plot After Handling
Multicollinearity

The distribution of the target data set was also
examined before developing the model, as shown in
Figure 8. This was done to check for skewness in the
target variable. The histogram below (Figure 8) was
used for this purpose and it shows a normal
distribution for the model development.
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o
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Fig. 8. Distribution of the target data
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Again, four different algorithms were used to develop
a model for predicting the bottom- hole pressure. The
model consisted of one deep learning algorithm and
two traditional algorithms. The algorithms included
an artificial neural network, a decision tree algorithm,
and a support vector machine. After removing the
blind data set for model validation, about ten percent
of the remaining data was used to test the model’s
performance. Additionally, the relationship between
the target variable (bottom-hole pressure) and other
input features examined and represented graphically
before model development. Although not all input
features were plotted, the depth and oil flow rate
showed a direct relationship, as shown in Figure 9
and Figure 10.
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Fig. 9. Scatter Plot of Bottom Hole Pressure against

Depth
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Fig. 10. Scatter Plot of Bottom Hole Pressure
against Oil flow rate.

After the exploratory data analysis, the data-set was
normalized and then split into two parts for model
development. The first part of clean data (80% of the
total data) was used to train the algorithms, while the
second part (20%) was used to tune and validate the
performance of the trained model.

Iv. DISCUSSION

This work aims to predict the bottom hole flowing
pressure of a vertical well using a machine-learning
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model based on surface parameters. To maximize the
performance of various models, the hyperparameters
within the algorithms were tuned to their optimal
values. For the artificial neural network, the keras
Tuner from Tensor Flow was used to find the best
hyperparameters. The GridsearchCV (a package in

sklearn) was employed to identify the optimal
hyperparameters for the traditional algorithms
(support vector machine and decision tree). The table
below shows the hyperparameters used for model
development.

Table 2. Hyper parameter for various Algorithms.

S/N Hyper parameter ANN Support vector | Decision tree

1 Hidden Layer v — —

2 Batch Normalization v — —

3 Optimizer v — v

4 Learning rate v - —

5 Max-depth — — v

6 Min-samples-split — — v

7 Min-sample-leaf — — v

8 Regularization parameter | — v —

©

9 Gamma — v —

10 Kernel — v —
The three algorithms were trained, tuned, and Table 3. Performance of Models on Training Data
validated independently us¥ng? the ne.cessary dat.a-set. Model MSE MAE
The ANN model was optimized with three hidden
layers, while the support vector machine and decision ANN 592 3
tree repressor were optimized by adjusting their
hyperparameters as shown in Table 2 above. Decision Tree 7.4 3.7
STATISTICAL ANALYSIS Support ~ Vector | 8.3 4.2
After developing the model, it was used to predict the Machine

bottom -hole pressure based on test input data. This
step is common in every machine learning workflow
to assess how well the model can predict data it hasn’t
seen to during training. This is known as the concept
of generalization. To evaluate the model’s
predictions and compare them with actual values,
statistical analysis was performed on the forecasted
data set for the developed models. Table 3 and Table
4 shows a brief summary of these metrics after the
models were used to predict the training and test data
set
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Table 4. Performance of Models on Testing Data

Model MSE MAE
ANN 7.5 39
Decision Tree 9.4 5.2

Support  Vector | 10.7 5.6
Machine
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Model Comparison

The developed models were evaluated using their
respective mean squared error and mean absolute
error when predicting the test and training data sets.
The results from the evaluation are shown uin the bar
charts in Figure 11. From Figure 11, it can be deduced
that the ANN model outperformed the support vector
machine and decision tree regressor. This could be
due to the inherent ability of deep learning
algorithms. In general, ANN, which are invariants of
deep learning algorithms, have the ability to detect
patterns more easily compared to  traditional
algorithms like support vector machine and decision
tree algorithms.

B WsE W MAE

ANN Decision Tree Support Vector Machine

Model

Fig. 11. Model Performance Comparison on Train
Data Set

=

W MSE W MAE

ANN Decision Tree Support Vector Machine

Model
Fig. 12. Model Performance Comparison on Test
Data Set

V. CONCLUSION

The determination of the flowing bottom -hole
pressure of a vertical well from surface pressure and
well parameters has been carried out using a machine
learning approach. From the model predictions and
analysis, the following can be deducted:

The accuracy of the suggested correlations is reduced
by modeling and calculating the flowing bottom-hole

IRE 1711102

pressure in multiphase oil well flow, which involves
to numerous assumptions. Bottom-hole pressure is
the most important factor for reservoir and
production engineering.

The FBHP is determined by the oil industry through
empirical and/or mathematical relationships. One
branch of artificial intelligence that demonstrate
promising results is machine learning (ML). This
advanced field of study supports complex problem-
solving for humans. From this study, bottom -hole
pressure during multiphase well production can be
accurately predicted using machine learning
methods. The most ideal model among the three
machine-learning models that were built was ANN.
These findings demonstrate artificial intelligence's
capacity to forecast the most intricate aspects of the
oil and gas sector. This effort highlights the
importance the significance of data-driven
computational models for production planning in the
petroleum industry.
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