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Abstract- Molecular docking has been a cornerstone of 

computer-aided drug discovery, enabling prediction of 

ligand–receptor interactions and prioritization of drug 

candidates. However, traditional docking approaches 

face challenges related to accuracy, computational cost, 

and limited ability to account for biological complexity. In 

recent years, artificial intelligence (AI) and machine 

learning (ML) have emerged as transformative 

technologies capable of addressing these limitations. 

Integration of molecular docking with AI/ML approaches 

allows not only rapid screening of vast chemical libraries 

but also improved prediction of binding affinities, pose 

selection, and off-target interactions. This review 

summarizes recent advances (2020–2025) in the 

combined application of molecular docking and AI/ML 

for accelerated drug discovery. Case studies highlight 

applications in neurodegenerative disorders, 

antimicrobial resistance, and oncology, where integrated 

approaches have yielded significant improvements in 

candidate identification and optimization. The article also 

discusses current limitations, such as data scarcity, 

reproducibility challenges, and interpretability of AI 

models. Finally, future perspectives on incorporating 

generative AI, multimodal data integration, and cloud-

based collaborative platforms are presented. By 

synergizing traditional molecular docking with cutting-

edge AI and ML techniques, the drug discovery pipeline 

can be significantly accelerated, reducing cost and 

increasing the probability of successful therapeutic 

development. 
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I. INTRODUCTION 

 

Drug discovery has historically been a long, costly, 

and complex process, often taking over a decade and 

billions of dollars to bring a single drug to market. 

Traditional molecular docking has played an 

essential role in virtual screening by predicting 

ligand–target interactions, estimating binding 

affinity, and guiding medicinal chemistry 

optimization. Despite its contributions, classical 

docking suffers from limitations, including rigid 

receptor assumptions, computational inefficiency for 

large-scale libraries, and limited predictive accuracy. 

 

 

Source: Created by authors 

Figure 1. AI–Molecular Docking Integration 

Workflow 

 

The last five years have witnessed a paradigm shift 

with the integration of artificial intelligence (AI) and 

machine learning (ML) into the drug discovery 

pipeline. AI/ML models, trained on large-scale 

chemical and biological datasets, can rapidly predict 

docking scores, improve pose ranking, and even 

generate novel chemical entities. By combining the 

physics-based rigor of molecular docking with the 

predictive power of AI/ML, researchers can achieve 

more accurate, efficient, and scalable drug discovery 

workflows. This review provides a comprehensive 

analysis of recent advances (2020–2025) in the 

integration of molecular docking with AI/ML, 

highlighting both opportunities and limitations. This 

paper will cover the evolution of docking techniques, 

the rise of deep learning in drug discovery, 
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integration strategies, and applications across 

therapeutic areas such as neurodegeneration, 

antimicrobial resistance, and oncology. We also 

highlight challenges including dataset bias, model 

interpretability, and reproducibility issues, followed 

by future directions to fully harness this integration 

for next-generation therapeutics. 

 

II. REVIEW OF LITERATURE (2020–2025) 

 

Between 2020 and 2025, significant developments 

have occurred in both molecular docking methods 

and AI/ML applications. Below is a summary of 

selected contributions, highlighting the evolution of 

tools, algorithms, and integration strategies. In 2025, 

Patel et al. introduced a hybrid transformer–docking 

framework that accelerated screening while 

preserving accuracy [1]. Likewise, Gómez et al. 

presented multimodal AI approaches combining 

omics data with docking simulations for oncology 

research, significantly improving hit identification 

[2]. 

 

Table 1. Literature Review on AI–Docking Integration (2020–2025) 

Year Study Method/Focus Key Finding 

2020 DeepDocking (Gentile et 

al.) 

Deep learning for docking 

triage 

Reduced docking cost, large-scale 

screening 

2021 ML Scoring Functions 

review-Li et al. 

WIREs review of 

GraphMLSFs 

Comprehensive review of ML 

scoring functions and their role in 

VS and lead optimization 

2021 GNINA (McNutt et al.) Improved pose ranking and 

docking accuracy 

Improved pose ranking and 

docking accuracy 

2021 AutoDock Vina 1.2.0 

(Eberhardt et al.) 

Updated docking engine New features and force field 

improvements 

2021 AlphaFold2-Jumper et al. Deep Learning protein 

structure prediction 

Near experimental accuracy protein 

models that dramatically expand 

available structures for docking 

2021 InteractionGraph Net – 

Jiang et al. 

Graph NN for protein-ligand 

interactions 

GNN that models atom/residue 

interactions improved affinity 

predictions vs baseline 

2022 PIGNet-Moon et al. Physics-informed DL Improved affinity prediction 

2022 Diffdock ( Corso et al. Diffusion generative docking Better pose generation 

2023 TB-IECS-Zhang et al. XGBoost scoring function Improved enrichment 

2023 Planet- Zhang X. et al. Multi-objective GNN Accurate binding affinity 

2023 GraphscpreDTA-  

Wang et al. 

 

Graph NN with Vina distance 

optimization terms 

Optimised GNN for binding 

affinity prediction improves 

docking aware affinity estimation 

2024 Accurate prediction by 

combing physics and 

GNN – Hong et al. 

Ensemble of physics 

models+GNNs 

Demonstrated strong forward-

screening and experimental hit 

indentification( autotaxin Inhibitors 

2025 Tanaka et al. Deep generative diffusion-

based docking for repurposing 

Enabled drug repurposing with 

diffusion generative docking 

models [3] 

2025 Williams et al. Cryo-EM data integration with 

AI docking 

Improved accuracy of docking 

simulations by combining cryo-

EM data with AI [4] 

 

III. CHALLENGES AND LIMITATIONS 

 

The integration of molecular docking with artificial 

intelligence (AI) and machine learning (ML) has 

shown tremendous promise for accelerating drug 

discovery; however, several challenges and 

limitations must be addressed before such workflows 

can be widely adopted in academia and industry. 

These challenges are multidimensional and span 

technical, methodological, and ethical domains. 
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A. Data Quality and Availability  

High-quality datasets form the backbone of both 

docking and AI models. Yet, the availability of 

reliable, diverse, and unbiased training data remains 

limited. Many protein–ligand complexes used to train 

AI-assisted docking models are extracted from the 

Protein Data Bank (PDB), but structural resolution, 

conformational variability, and ligand diversity are 

often inadequate [5]. The imbalance of chemical 

space further exacerbates the issue; drug-like 

molecules are overrepresented, while natural 

products and macrocycles are underexplored. In 

addition, bioassay data such as binding affinities and 

inhibition constants are scattered across multiple 

databases, often reported under inconsistent 

experimental conditions, creating noise that reduces 

predictive accuracy [6]. Without curated and 

standardized datasets, AI models may suffer from 

overfitting, poor generalizability, and low 

transferability across therapeutic areas. 

 

B. Reproducibility Across Docking Engines 

Another major limitation is the lack of reproducibility 

between docking platforms. Different engines, such 

as AutoDock Vina, Glide, or GOLD, implement 

distinct scoring functions and search algorithms, 

leading to significant variability in predicted poses 

and binding affinities [7]. Even when using the same 

dataset, docking results can differ due to 

parameterization choices, ligand preparation 

protocols, and receptor flexibility assumptions. Such 

variability makes it difficult to establish confidence 

in AI-assisted docking pipelines that rely on these 

outputs for training. While ensemble docking and 

consensus scoring strategies have been proposed, 

reproducibility remains a bottleneck for regulatory 

acceptance and cross-study validation [8]. 

 

C. Interpretability of AI Models 

Although deep learning models such as graph neural 

networks (GNNs) and convolutional neural networks 

(CNNs) achieve superior performance in docking 

pose prediction and binding affinity estimation, they 

are often criticized as “black boxes” [9]. This lack of 

interpretability poses challenges in understanding 

which chemical features or structural motifs drive 

model decisions. For instance, a model might 

prioritize a molecule due to spurious correlations 

rather than true biological relevance. In drug 

discovery, where regulatory authorities demand 

transparency and mechanistic insight, interpretability 

is critical. Recent efforts toward explainable AI 

(XAI) frameworks, such as attention-based neural 

networks and feature attribution methods, have begun 

addressing this issue, but they remain underutilized 

in docking pipelines [10]. 

 

D. Computational Cost and Scalability 

One of the strongest arguments for integrating AI 

with docking is computational efficiency. While AI 

can triage large libraries and reduce docking 

workloads, the training of advanced deep learning 

models itself requires enormous computational 

resources, such as GPUs or TPUs, and access to high-

performance computing clusters [11]. Moreover, 

large-scale docking campaigns, particularly those 

involving ultra-large chemical libraries (billions of 

molecules), demand massive storage, memory, and 

parallelization. Although methods like DeepDocking 

reduced costs by predicting docking outcomes before 

exhaustive screening, scalability continues to be a 

barrier for smaller research groups with limited 

resources. Cloud-native infrastructures and federated 

learning frameworks provide partial solutions but 

introduce new costs and privacy challenges. 

 

E. Lack of Standardized Benchmarks 

A recurring challenge in evaluating AI–docking 

workflows is the absence of universally accepted 

benchmarks. Currently, each study employs its own 

datasets, metrics, and validation schemes, ranging 

from root-mean-square deviation (RMSD) for pose 

accuracy to enrichment factors for virtual screening. 

This heterogeneity hampers direct comparison across 

models and makes it difficult to measure genuine 

progress. Community-driven benchmark platforms, 

such as MoleculeNet and LIT-PCBA, offer 

promising directions, but adoption in docking–AI 

studies is inconsistent [12]. Developing standardized, 

domain-specific benchmarks for AI–docking 

integration would significantly improve 

reproducibility, comparability, and trust. 

 

F. Ethical, Regulatory, and Practical Barriers 

Finally, ethical and regulatory considerations 

represent non-trivial challenges. AI-driven pipelines 

may inherit biases from training datasets, leading to 

inequitable predictions that favor certain chemical 

scaffolds while neglecting underrepresented drug 

classes [13]. In federated learning setups, ensuring 

patient data privacy and compliance with frameworks 

such as GDPR adds additional complexity. 

Furthermore, regulatory bodies such as the FDA and 

EMA are yet to establish clear guidelines on the 
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acceptance of AI-derived docking predictions in new 

drug applications. Without transparent frameworks, 

pharmaceutical companies may hesitate to rely 

heavily on these methods in high-stakes therapeutic 

areas. 

 

Summary of Challenges 

In summary, despite significant advancements 

between 2020 and 2025, challenges including data 

scarcity, reproducibility, interpretability, 

computational cost, benchmarking, and ethical issues 

remain major roadblocks. Addressing these 

limitations will require cross-disciplinary 

collaboration between computational chemists, AI 

researchers, clinicians, and regulatory bodies. 

Initiatives to build standardized, explainable, and 

resource-efficient AI–docking frameworks will be 

crucial for realizing the full potential of this paradigm 

shift. 

 

IV. FUTURE PERSPECTIVES 

 

The integration of molecular docking with artificial 

intelligence (AI) and machine learning (ML) is still 

evolving, and the next decade is expected to see a 

transformation of this field. Several promising 

directions, both technological and methodological, 

are shaping the future landscape of computational 

drug discovery. 

 

A. Generative AI for De Novo Drug Design 

Generative models such as variational autoencoders 

(VAEs), generative adversarial networks (GANs), 

and more recently, diffusion-based frameworks like 

DiffDock, have shown tremendous capability to 

propose novel molecular scaffolds that satisfy 

predefined chemical and pharmacological 

constraints. Unlike traditional docking, which 

evaluates existing molecules, generative AI creates 

new candidates that are immediately optimized for 

binding potential. By coupling these generative 

models with docking validation, researchers can 

establish an iterative loop of design, prediction, and 

refinement. Such closed-loop AI–docking systems 

could substantially reduce time-to-lead discovery, 

particularly for diseases with limited therapeutic 

options such as neurodegenerative disorders [14]. 

 

B. Integration with Multi-Omics and Systems 

Biology 

Future AI–docking pipelines will increasingly 

incorporate data from genomics, proteomics, 

transcriptomics, and metabolomics to contextualize 

docking predictions [15]. For example, patient-

specific mutational data can guide docking 

campaigns toward variant-specific targets, enabling 

precision medicine strategies. Integration with 

systems biology frameworks will also allow mapping 

of drug–target interactions onto signaling networks, 

facilitating identification of synergistic drug 

combinations. Such holistic pipelines could 

accelerate discovery for complex, polygenic diseases 

like cancer and Alzheimer’s, where single-target 

therapies often fail. 

 

C. Advancements in Explainable and Interpretable AI 

One of the central criticisms of current AI models is 

their opacity, often referred to as the “black box” 

problem. Future research will emphasize explainable 

AI (XAI) approaches, where attention mechanisms, 

saliency mapping, and feature attribution methods 

reveal why certain ligands are predicted as favorable 

binders [16]. By making docking–AI predictions 

interpretable, these tools can enhance user 

confidence, enable rational medicinal chemistry 

decisions, and support regulatory acceptance. For 

instance, XAI can identify key molecular 

substructures driving binding affinity, guiding 

chemists toward meaningful modifications rather 

than blind exploration [17]. 

 

D. Federated and Collaborative Learning 

Federated learning has emerged as a powerful 

approach for collaborative model development 

without compromising data privacy [18]. In drug 

discovery, where proprietary datasets are held across 

different pharmaceutical companies and academic 

laboratories, federated frameworks will allow joint 

training of docking–AI models while keeping 

sensitive information local. This approach can unlock 

diverse chemical and biological data, improving 

model generalizability while maintaining compliance 

with data-protection regulations. In the future, 

federated learning consortia may become a 

cornerstone for global drug discovery collaborations. 

 

E. Cloud-Native and High-Performance Computing 

Integration 

Scalability is another area expected to see rapid 

progress. Cloud-native infrastructures will 

democratize access to AI-driven docking pipelines by 

offering elastic, pay-as-you-go resources. Such 

setups eliminate the barrier of requiring expensive in-

house computational clusters. Combined with high-
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performance computing (HPC) and quantum 

computing advances, cloud-based AI–docking 

systems will allow screening of ultra-large libraries 

comprising billions of compounds within practical 

timelines [19]. Quantum computing, though 

currently limited, holds long-term potential to 

simulate quantum-level interactions between proteins 

and ligands, surpassing current approximations in 

classical docking engines. 

 

 
Source: Created by authors 

Figure 2 Smarter Drug Discovery 

 

F. Regulatory and Clinical Translation 

For AI–docking pipelines to influence real-world 

drug approvals, regulatory acceptance will be critical. 

Agencies such as the FDA and EMA are gradually 

recognizing the value of computational approaches 

but demand validation, reproducibility, and 

interpretability. Future developments in AI-assisted 

docking must therefore align with Good Machine 

Learning Practices (GMLP) and regulatory 

standards. Integration with electronic health records 

and clinical trial simulations may further streamline 

translation from computational predictions to bedside 

applications, accelerating time-to-market for new 

drugs [20]. 

 

G. Ethical and Societal Considerations 

Finally, ethical and societal issues must not be 

overlooked. AI models trained on biased datasets risk 

reinforcing inequalities by overlooking 

underrepresented therapeutic areas or rare diseases 

[21]. Transparency, fairness, and accessibility will 

need to be embedded into AI–docking pipelines from 

their inception. Moreover, as these pipelines 

increasingly automate drug design, questions about 

intellectual property, authorship, and accountability 

will become more pressing . Addressing these 

concerns proactively will be critical to ensuring the 

equitable global impact of these technologies. 

 

V. RESULTS 

 

The integration of molecular docking with artificial 

intelligence (AI) and machine learning (ML) has 

demonstrated promising results across multiple 

therapeutic areas. Analysis of studies published 

between 2020 and 2025 indicates that hybrid 

approaches consistently outperform traditional 

docking in terms of speed, accuracy, and scalability. 

For example, AI-assisted scoring functions such as 

GNINA and GraphscoreDTA improved pose 

prediction and affinity estimation compared to 

baseline docking methods, while transformer-based 

models in 2025 further reduced computational time 

without compromising accuracy. In oncology, 

multimodal AI pipelines that incorporated docking 

with omics data led to higher hit identification rates 

and more effective prioritization of compounds. 

Similarly, generative AI frameworks combined with 

docking successfully generated novel scaffolds 

optimized for binding, demonstrating value in drug 

repurposing and early lead discovery. Furthermore, 

the adoption of federated learning and cryo-EM–

integrated docking approaches in 2025 provided 
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evidence of improved reproducibility and structural 

accuracy [21]. Collectively, these results underscore 

the potential of AI–docking workflows to accelerate 

candidate discovery, reduce costs, and enable 

precision-focused drug design, positioning the 

integrated paradigm as a powerful tool in modern 

pharmaceutical research. 

 

 
Source: Created by authors 

Figure 3 AI & Molecular Docking 

 

CONCLUSION 

 

The convergence of molecular docking with artificial 

intelligence (AI) and machine learning (ML) has 

opened new frontiers in modern drug discovery. Over 

the past five years, significant advances have 

demonstrated the ability of AI-enhanced docking 

pipelines to improve accuracy, efficiency, and 

scalability compared to traditional approaches. From 

GNINA’s deep learning–based scoring to 

AlphaFold’s accurate structural predictions, these 

innovations show that computational tools can now 

address bottlenecks that once slowed preclinical 

research. However, while these advances are 

encouraging, the path to widespread adoption is not 

without hurdles. 

 

The lack of interpretability remains a serious barrier 

to regulatory acceptance and limits trust among 

medicinal chemists and clinicians. Thus, the future 

will likely emphasize explainable AI methods, 

ensuring that computational predictions are both 

accurate and mechanistically meaningful. Another 

major conclusion is that data quality and 

benchmarking standards are indispensable. Many AI 

models still rely on noisy or biased datasets that 

compromise generalizability across diverse 

therapeutic classes. The development of standardized 

benchmarks, curated datasets, and transparent 

validation protocols will be critical to translating 

these methods into regulatory submissions. This 

aligns with the growing recognition of Good Machine 

Learning Practices (GMLP) within biomedical 

sciences. 

 

Docking guided by genomic or transcriptomic data 

can prioritize variant-specific targets, enabling 

precision medicine applications in oncology and 

neurodegeneration. Furthermore, synergy between 

generative AI models and docking pipelines suggests 

a future where not only screening but also de novo 

molecular design is driven by computational 

intelligence .Without careful attention to dataset 

biases, privacy in federated learning, and equitable 

access to computational tools, AI–docking may 

unintentionally widen existing disparities in 

healthcare innovation [22]. 

 

In summary, the integration of docking and AI is 

transitioning from proof-of-concept studies to real-

world applications.  
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