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Abstract- The digital age has ushered in unprecedented 

connectivity and technological advancement, which have 

also introduced a surge in sophisticated and frequent 

cyber threats. To safeguard systems, anomaly detection 

has become a cornerstone of cybersecurity, enabling the 

identification of deviations from normal system 

behaviour. This study presents a comparative analysis of 

three machine learning techniques—Isolation Forest, 

Long Short-Term Memory (LSTM), and Q-Learning—

for cyberattack anomaly detection. The study designed 

and implemented a system using the CICIDS-2017 

dataset (2,830,743 records) in Python, preceded by data 

preprocessing and feature engineering. Evaluation 

metrics, including Accuracy, F1-Score, and error rates 

(FPR, FNR) revealed a clear performance hierarchy. The 

LSTM model proved superior, achieving a near-perfect 

Accuracy of 99.53% with minimal errors (FPR: 0.35%, 

FNR: 0.50%). Q-Learning showed strong, adaptive 

potential, recording an Accuracy of 92.80% and an F1-

Score of 90.25%, though with higher error rates (FPR: 

8.58%). Conversely, the unsupervised Isolation Forest 

was inadequate for this labeled task, with metrics around 

50%. The findings establish LSTM as ideal for maximum 

accuracy, Q-Learning as a viable option for dynamic 

environments, and highlight the limitations of simple 

unsupervised methods on complex security datasets. 

Index Terms- Cyberattack, Anomaly, Detection, 

Machine, Learning, Isolation Forest, Q-Learning, 

LSTM, Long Short-Term, Memory. 

I. INTRODUCTION 

The digital age, marked by exponential growth in 

interconnected systems, has led to a surge in 

sophisticated cyberattacks, posing significant 

financial and operational risks (Clarke et al., 2018; 

Kshetri, 2017). Traditional security methods, such as 

signature-based detection, are struggling to keep 

pace, frequently failing against zero-day and novel 

attacks while generating high false positive rates 

(Chandola et al., 2009; Modi et al., 2017). Machine 

learning (ML) offers a promising alternative for 

anomaly detection by adapting to evolving threats 

and handling complex data (Al-Shaymaa et al., 

2019). This research focuses on comparing three 

diverse ML paradigms—Isolation Forest (IF), Long 

Short-Term Memory (LSTM), and Q-Learning—to 

identify the optimal approach for enhancing modern 

cybersecurity defenses. 

The core research problem stems from the inability 

of traditional security systems to scale, integrate data, 

and respond effectively to the speed and volume of 

modern cyber threats, leading to severe 

vulnerabilities. While Machine Learning (ML) offers 

scalable solutions, the diverse performance of 

various algorithms creates a guidance gap for 

security professionals. The study is justified by the 

critical need for real-time analytics and advanced 

anomaly detection capabilities to combat the 

escalating costs and risks of cybercrime and establish 

a more proactive, holistic, and optimal cybersecurity 

posture. 

This study carried out a comparative analysis of 

Isolation Forest, Long Short-Term Memory, and Q-

learning machine-learning techniques across key 

metrics, including Accuracy, Precision, Recall, F1-

score, False Positive Rate (FPR), and False Negative 

Rate (FNR). To achieve this, the specific objectives 

are to: design a cyberattack anomaly detection 

system using the three selected techniques; 

implement the designed system using the Python 

programming language; evaluate and compare their 

performances using metrics. The study's scope 

involved analyzing these three techniques in high-

volume data environments, covering the full pipeline 

from data collection and preprocessing (cleaning, 

feature engineering) to training the algorithms and 

assessing their performance for timely threat 

detection.  
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II. RELATED WORKS 

The development of robust anomaly detection 

systems for cybersecurity is critical as cyber threats 

become increasingly sophisticated. This literature 

review examines significant studies on anomaly 

detection in cybersecurity, focusing on 

methodologies, algorithms, and their limitations. Key 

metrics, research gaps, and suggestions are 

highlighted, providing a foundation for advancing 

streaming machine learning-based cyberattack 

anomaly detection systems.  

Early intrusion detection research, as surveyed by 

Jones and Sielken (2000), provided an early 

comprehensive survey of intrusion detection, 

categorizing methods into misuse detection (for 

known attacks) and anomaly detection (for 

behavioral deviations). They highlighted that while 

misuse detection is effective for known threats, it 

struggles with novel attacks, a gap that anomaly 

detection aims to fill. They further emphasized the 

limitations of early systems regarding scalability and 

adaptability to evolving threats, stressing the need for 

effective trade-offs among performance metrics like 

accuracy and false positive rates.  

Building on this foundation, Chandola et al. (2009) 

conducted a systematic survey, classifying anomaly 

detection into statistical, machine learning, and 

information-theoretic methods. This seminal work 

stressed the difficulty of defining an anomaly across 

diverse domains and detailed algorithms like k-

means and GMM. A key conclusion was the 

challenge posed by high-dimensional data and the 

scarcity of labeled datasets, leading the authors to 

advocate for future research into unsupervised, 

scalable methods capable of handling dynamic 

environments and large data volumes in real-time. 

Specific algorithm exploration demonstrated various 

performance trade-offs. Yu et al. (2023) applied 

Gaussian Mixture Models (GMM) for network 

intrusion, achieving an F1−score of 0.80 by 

modeling complex data distributions, but noted the 

limitation that real-world network traffic might not 

always follow a Gaussian assumption. Addressing 

the issue of limited labeled data, Santos et al. (2019) 

explored semi-supervised learning using clustering 

and distance-based scoring, reporting a recall rate of 

75% and precision of 70%. Their work highlighted 

the potential of such approaches but acknowledged 

issues when managing high-dimensional data and 

real-time streams. 

The use of hybrid models to improve detection was 

explored by Bai et al. (2020), who integrated 

Principal Component Analysis (PCA) for 

dimensionality reduction with the Random Forest 

(RF) algorithm. This hybrid approach achieved a 

high detection accuracy of 92% and an 

F1−score of 0.91 on the CICIDS dataset, showcasing 

its effectiveness for identifying known and novel 

attacks. However, the study conceded a key 

limitation, which is its reliance on labeled data 

restricted its ability to generalize to completely 

unseen attack types, suggesting a need for 

unsupervised or semi-supervised enhancements. 

Deep learning and advanced sequential modeling 

emerged as high-accuracy contenders. Wu et al. 

(2020) explored Long Short-Term Memory (LSTM) 

networks for real-time detection in IIoT, achieving a 

remarkable accuracy rate of 94% by effectively 

capturing temporal dependencies. However, they 

noted a significant challenge in the model's high 

computational demands, resulting in latency that 

made it less suitable for time-sensitive, critical 

applications. This highlighted a gap between high 

accuracy and computational efficiency in deep 

learning models.  

Similarly, Kim et al. (2021) investigated 

autoencoders for network anomaly detection, training 

them on normal traffic and using reconstruction error 

for anomaly identification. Their work reported a 

strong detection accuracy of 93%, demonstrating 

deep learning's power in capturing complex patterns. 

Yet, like LSTM, they acknowledged the 

computational intensity and extended training times 

of autoencoders, suggesting that optimization is 

needed to maintain accuracy while operating within 

real-time detection constraints. 

Barbariol et al. (2021) provided a comprehensive 

overview of various tree-based methods—including 

Decision Trees, Random Forests, and advanced 

techniques like Isolation Forests—for anomaly 

detection. They detailed the strengths of these 

methods in handling non-linear data and their 

interpretability. However, they also addressed 

common limitations, such as sensitivity to 

hyperparameter tuning and potential overfitting, 

emphasizing the growing importance of integrating 
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ensemble and hybrid models for adaptability in 

dynamic environments. 

The systematic review by Al Farizi et al. (2021) 

focused specifically on the Isolation Forest 

algorithm. They confirmed its strengths in efficiently 

detecting anomalies in high-dimensional and large-

scale datasets due to its tree-based structure. The 

review noted its effectiveness in both supervised and 

unsupervised settings and its ability to handle noise. 

A crucial gap identified was the need for more 

research into the algorithm’s application for real-time 

anomaly detection in emerging fields like 

cybersecurity and IoT, suggesting further work to 

fully harness its potential in highly dynamic 

environments. 

Collectively, the literature highlights a tension 

between the high accuracy of supervised deep 

learning (like LSTM and autoencoders) and the 

computational efficiency and adaptability of methods 

like Isolation Forest and semi-supervised techniques. 

The consensus points toward the need for scalable, 

hybrid, and computationally optimized solutions that 

can effectively process massive, dynamic data 

streams and generalize to novel threats without 

relying solely on exhaustive labeled datasets. 

III. METHODOLOGY 

This study employed a comparative research design 

centered on controlled experiments to evaluate the 

effectiveness of three distinct machine learning 

techniques—Isolation Forest (IF), Long Short-Term 

Memory (LSTM), and Q-Learning—for cyberattack 

anomaly detection in network traffic. This systematic 

approach ensured the reproducibility and validity of 

the results by applying all algorithms to a standard 

dataset under consistent conditions. The 

experimental workflow was structured, 

encompassing crucial steps like data preprocessing, 

feature extraction, model training, and 

hyperparameter tuning. Performance was rigorously 

assessed using a standard set of metrics, including 

precision, recall, F1-score, False Positive Rate (FPR), 

False Negative Rate (FNR), and Accuracy, to 

determine the relative effectiveness of each technique 

for comparison. 

The research system was conceptualized as a real-

time anomaly detection system designed to process 

continuous network data flows. It comprised four 

main operational modules:  

(i) Data Acquisition, which was responsible for 

continuously collecting data from sources like 

network logs and SIEM systems; 

(ii) Data Preprocessing, which cleaned, filtered, 

normalized, and prepared the raw data; and  

(iii) Feature Engineering, which extracted relevant 

attributes, including statistical, time-series, and 

domain-specific features. 

(iv) The core component was the Streaming Machine 

Learning Module, which utilized the IF, LSTM, 

and Q-Learning algorithms to identify anomalies 

based on isolation levels and temporal patterns. 

(v) This system was completed by the Alert 

Generation Module, which provided timely 

notifications to security analysts upon detection. 

3.1. Dataset Acquisition 

The CICIDS-2017 dataset was selected for this study 

as a widely recognized benchmark for network-based 

anomaly detection. It is a comprehensive, labeled 

dataset consisting of 2,830,743 total records, 

representing both normal traffic and 14 types of 

cyberattacks, including DDoS and brute force. With 

77 features and 80 network characteristics like flow 

duration and packet size, the dataset's high 

dimensionality and diverse scenarios make it highly 

suitable for testing the adaptability and scalability of 

the selected supervised and unsupervised machine 

learning algorithms. 

3.2. Data Preprocessing and Feature Engineering 

Data preprocessing and feature engineering were 

foundational to this research, ensuring the raw 

CICIDS-2017 network traffic data was clean, 

informative, and standardized for the machine 

learning models. This phase comprised a systematic 

series of steps designed to maximize the predictive 

power and reliability of the subsequent anomaly 

detection process. The initial and most critical step 

was Data Cleaning, which systematically addressed 

imperfections in the dataset, focusing on handling 

missing values, managing outliers, standardizing data 

types, and reducing noise. 

The data cleaning procedure handled missing values 

and outliers. Of the ≈65,000 records (2.3%) initially 

containing missing entries, the 20,000 records with 

heavy missingness (≥30% empty fields) were 

removed. Remaining missing numerical and 

categorical features were filled using the median and 

mode, respectively, to minimize skew. Outlier 
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management, identified using Z-score analysis, saw 

5,100 of the ≈8,300 outliers removed. The remaining 

3,200 rare attack patterns were capped within 

acceptable thresholds to preserve meaningful 

information while preventing model skewing. The 

data cleaning procedures are summarized in Table 

3.1. 

Table 3.1 

Summary of the Data Cleaning Procedures 

Cleaning 

Procedure 
Target 

Quantity/ 

Action 

Result / 

Technique 

Missing 

Value 

Handling 

Records with 

missing/ 

invalid values 

≈ 65,000 

records 

(2.3%) 

identified

. 

Records with 

≥30% empty 

fields (20,000) 

were removed. 

Imputation Remaining 

missing 

numerical 

features. 

N/A Imputed using 

the median 

value 

(numerical) 

and mode 

(categorical) to 

minimize 

skew. 

Outlier 

Managemen

t 

Extreme 

outliers 

(detected via 

Z-score). 

≈ 8,300 

records 

(0.3%) 

identified

. 

5,100 outliers 

were removed; 

3,200 (rare 

attack patterns) 

were capped 

(Winsorized). 

Duplicate 

Removal 

Redundant 

records 

causing 

overfitting. 

12,000 

records 

(0.4%) 

eliminate

d. 

Used hash-

based checking 

to ensure 

training 

sample 

uniqueness. 

Feature 

Redundancy 

Features 

causing 

multicollineari

ty. 

15 

features 

dropped. 

Identified via 

correlation 

analysis 

(coefficient≥0.

9). 

Data Type 

Conversion 

Categorical 

strings (e.g., 

protocol type). 

N/A Transformed 

using One-Hot 

Encoding 

(unordered) 

and Label 

Encoding 

(ordered). 

Normalizati

on 

Continuous 

numerical 

features. 

N/A Applied Min-

Max scaling to 

standardize 

feature scales, 

aiding deep 

learning 

stability. 

 

Data standardization and noise reduction ensured 

machine readability and model stability. Categorical 

strings (e.g., protocol type) were converted using 

one-hot and label encoding, and continuous features 

were made uniform using floating-point formats. 

Noise reduction included the elimination of 12,000 

duplicate records (0.4%) to prevent overfitting. 

Furthermore, correlation analysis identified 15 

redundant features (coefficient≥0.9), which were 

dropped to reduce multicollinearity. Finally, Min-

Max scaling was applied to continuous features, 

standardizing scales for stable deep learning model 

convergence. 

The preprocessing phase concluded with Data 

Transformation and Normalization and Data 

Reduction. Transformation involved applying 

scaling techniques, such as Min-Max scaling, 

standardization, and robust scaling, to numerical 

features and encoding all categorical and text-based 

data into machine-readable numerical 

representations. Data Reduction was then performed, 

primarily using Principal Component Analysis 

(PCA), to simplify the dataset and reduce the curse of 

dimensionality, retaining essential structure while 

optimizing system performance and reducing 

computational overhead by selecting only the most 

relevant attributes. 

The final phase, feature engineering, went beyond 

preparation to actively create valuable, informative 

features that enhanced model accuracy. This process 

involved: Feature Creation, where new statistical 

(e.g., mean, variance), time-series (e.g., seasonality), 

and domain-specific features were aggregated; 

Feature Transformation, where techniques like 

logarithmic and polynomial features were applied to 

capture non-linear relationships; and Feature 

Selection, which used correlation analysis, univariate 

selection, and Recursive Feature Elimination (RFE) 

to refine the feature set, ensuring only the most 

predictive attributes were used to train the final 

models. 

3.3. Training of the Models 

The model training and evaluation phase, illustrated 

with the flowchart in Figure 3.1, was vital for 

developing an accurate and reliable anomaly 

detection system, ensuring the suitability of the 

selected machine learning techniques for identifying 

cyberattacks in a live network setting. Despite 

differences in their underlying mechanisms, all three 

models—Isolation Forest, LSTM, and Q-Learning—

underwent systematic training, fine-tuning, and 

evaluation using identical data splits and 

preprocessing steps. This uniformity ensured that the 
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performance comparison was fair, reflecting the 

inherent capabilities of each model rather than 

external factors. 

The Isolation Forest (IF), an unsupervised algorithm, 

was trained by modeling the data's structure to isolate 

anomalies without requiring labeled data. The 

process involved constructing multiple random 

decision trees on random subsets of the training data. 

Key hyperparameters, including the number of 

estimators (trees) and maximum samples, were tuned 

for efficiency and accuracy. The contamination rate, 

representing the expected proportion of anomalies, 

was a crucial parameter set based on the observed 

data imbalance. The trained IF model identified 

anomalies based on shorter average path lengths, 

which indicate instances that are easily isolated. 

Figure 3.1 

Designed Flowchart of Model Training and 

Evaluation Process 

 

The Long Short-Term Memory (LSTM) network, a 

supervised deep learning approach, required labeled 

data to capture temporal dependencies. The training 

data was converted into sequential input-output pairs. 

The LSTM architecture, featuring hidden cells to 

mitigate the vanishing gradient problem, was trained 

using the Adam optimizer and the binary cross-

entropy loss function. Hyperparameters like the 

number of LSTM units, batch size, and learning rate 

were optimized using grid search, while early 

stopping was employed to prevent overfitting and 

ensure the model's generalization to unseen data. 

Q-Learning, a reinforcement learning algorithm, was 

trained by interacting with a network traffic 

environment defined by a state space and possible 

actions (normal or anomalous classification). A 

reward function was meticulously designed to 

maximize cumulative rewards by heavily penalizing 

both false positives and false negatives. Training 

involved an exploration phase to populate the Q-

table, gradually shifting toward exploitation based on 

learned Q-values. Key parameters, including the 

learning rate (α), discount factor (γ), and exploration 

rate (ϵ ), were tuned, with state-space discretization 

and ϵ-greedy exploration used to enhance efficiency 

in the high-dimensional network environment. 

3.4. Model Evaluation 

The study evaluated the effectiveness of the three 

selected machine learning techniques for anomaly 

detection using five key performance metrics 

(Precision, Recall, F1-Score, False Positive Rate, 

False Negative Rate, and Accuracy). This evaluation 

was necessary to provide comprehensive insight into 

each model's ability to accurately detect anomalies, 

with performance assessed on a separate test set to 

ensure reliability, particularly for unsupervised 

settings. The model training and evaluation flow 

chart is illustrated in Figure 3.1. 

The formula for precision is: 

Precision =  
True Positives (TP)

True Positives (TP)+False Positives (FP)
 (3.1) 

Mathematically, recall is defined as: 

Recall =  
True Positives (TP)

True Positives (TP)+False Negatives (FN)
  (3.2) 

The F1 score is calculated as the harmonic mean of 

Precision and Recall: 

F1 =  2 ∗  
Precision∗Recall

Precision+Recall
         (3.3) 

 

Initialize 

Technique 
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False Positive Rate (FPR) formula is given as: 

FRP =  
False Positives (FP)

False Positives (FP)+True Negatives (TN)
 (3.4) 

False Negative Rate (FNR) formula is given as: 

FRP =  
False Negatives (FN)

False Negatives (FN)+True Positives (TN)
 (3.5) 

Accuracy = 
Total Number of Predictions

Number of Correct Predictions
=

TP+TN

TP+TN+FP+FN
        (3.6) 

3.5. Model Validation 

Model validation was achieved using cross-

validation, which splits the data into k-folds for 

robust stability and consistency testing. The 

comprehensive process involved preparing features 

and labels, initializing the Isolation Forest, LSTM, 

and Q-Learning models with specific parameters 

(like contamination rate), and finally assessing 

performance using metrics like Precision, Recall, F1-

score, FPR, FNR, and Accuracy for a thorough 

evaluation. 

IV. RESULTS 

The comparative analysis of anomaly detection 

models yielded distinct performance outcomes, 

comprehensively evaluated using metrics including 

Accuracy, F1 Score, Precision, Recall, False Positive 

Rate (FPR), and False Negative Rate (FNR). The 

results established a clear hierarchy of efficacy across 

the three tested techniques, as detailed in Table 4.1. 

Table 

Performance Metrics of Anomaly Detection Models 

Model 
Isolation 

Forest 
LSTM 

Q-

Learning 

Accuracy 0.50774 0.99534 0.92802 

F1 Score 0.46874 0.9934 0.90249 

Precision 0.50848 0.99112 0.88618 

Recall 0.51205 0.99573 0.92313 

FPR 0.49586 0.00354 0.08585 

FNR 0.48004 0.00499 0.06789 

4.1. Long Short-Term Memory (LSTM) 

The Long Short-Term Memory (LSTM) model 

decisively outperformed the others, achieving nearly 

perfect detection capability. Its accuracy reached 

99.53% with an F1 score of 0.993, demonstrating 

exceptional reliability. This superiority was 

confirmed by near-optimal precision (0.991) and 

recall (0.996), coupled with minimal error rates: a 

very low FPR of 0.004 and an FNR of 0.005. This 

success is primarily attributed to its supervised 

learning framework and inherent strength in 

capturing temporal dependencies within sequential 

network traffic data, aligning with findings in related 

studies (Wu et al., 2020). 

4.2. Q-Learning 

The Q-Learning model, representing the 

reinforcement learning approach, exhibited strong 

yet moderate performance, achieving an accuracy of 

92.80% and an F1 score of 0.902. Its precision 

(0.886) and recall (0.923) were respectable but 

showed a tendency toward false negatives, indicated 

by a higher FNR of 0.068. The FPR of 0.086 pointed 

to occasional misclassification of normal traffic, a 

typical trade-off resulting from the algorithm's 

exploration-exploitation strategy in its adaptive 

learning process. 

Q-Learning’s adaptive policy optimization allows it 

to adjust dynamically to changing attack patterns, but 

its performance is limited by the discrete state-space 

representation and dependence on reward function 

design, which may not fully capture the complexity 

of network traffic features. 

4.3. Isolation Forest 

In stark contrast, the unsupervised Isolation Forest 

model performed poorly, demonstrating limited 

capability for this specific task with an accuracy of 

only 50.77%. Its F1 score of 0.469 signaled a poor 

balance between precision (0.508) and recall (0.512). 

The high error rates, FPR (0.496) and FNR (0.480), 

emphasized its failure to reliably distinguish between 

normal and anomalous cases, likely due to its 

difficulty handling complex, high-dimensional, and 

imbalanced labeled datasets like CICIDS-2017. 

4.4. Performance Metrics’ Bar Plots 

The bar plots from Figure 4.1 to Figure 4 offer 

detailed visual comparison of the three anomaly 

detection models, Isolation Forest, LSTM, and Q-

Learning, across four key performance metrics, 

which are Accuracy, Precision, F1-Score, and Recall. 

Each metric is shown as a separate bar, allowing for 

a direct comparison of the models' strengths and 

weaknesses.  



© OCT 2025 | IRE Journals | Volume 9 Issue 4 | ISSN: 2456-8880 
DOI: https://doi.org/10.64388/IREV9I4-1711113-3371 

IRE 1711113      ICONIC RESEARCH AND ENGINEERING JOURNALS            348 

Accuracy 

Table 4.1 and the accuracy bar plot shown in Figure 

4.1 show that the LSTM model demonstrated a 

superior performance, achieving a near-perfect 

Accuracy of 99.53%, the highest among the 

techniques. This result is directly attributed to its 

supervised learning approach, which effectively 

utilizes labeled data to establish precise decision 

boundaries. In contrast, Q-Learning showed a solid 

but lower accuracy of 92.80%, reflecting the trade-

offs inherent in its adaptive reinforcement learning 

methodology. The unsupervised Isolation Forest 

performed significantly worse at 50.77%, consistent 

with its difficulty in handling complex, imbalanced 

datasets without the guidance of labeled examples. 

 

Figure 4.1 

Accuracy Bar Plot 

 

F1 Score 

The F1-Score shown in Table 4.1 (LSTM: 99.34%, 

Q-Learning: 90.25%, Isolation Forest: 46.87%) and 

the visualized bar plot in Figure 4.2, successfully 

balance the models' precision and recall, confirming 

LSTM's strong robustness. This metric highlights Q-

Learning's slight performance trade-off due to its 

adaptive policy and reveals Isolation Forest's 

inadequacy for high-stakes detection tasks. The high 

Recall (LSTM: 99.57%, Q-Learning: 92.31%) 

further confirms LSTM's crucial ability to detect 

nearly all true attacks, which is essential for critical 

systems, while Q-Learning's lower figure is likely a 

consequence of its exploration-exploitation dilemma 

during training. 

Figure 4.2 

F1 Score Bar Plot 

 

Precision 

Precision, which measures the ratio of correctly 

identified anomalies to all predicted anomalies, is 

crucial for minimizing false alerts. As shown in Table 

4.1 and the Precision Bar Plot, the LSTM model 

excelled with a 99.11% precision, indicating very 

few false positives. Q-Learning was respectable at 

88.62% but showed a higher chance of misclassifying 

normal traffic. Conversely, Isolation Forest 

performed poorly, with only 50.85% precision, 

suggesting it was barely better than random chance at 

distinguishing true anomalies from noise in the 

complex CICIDS-2017 dataset. 

 

Figure 4.3 

Precision Bar Plot 

 

Recall 

The Recall results, as summarized in Table 4.1 and 

illustrated in Figure 4.4, show that Isolation Forest's 

recall of 51.20% is insufficient for practical security, 

as it indicates the model would fail to detect nearly 

half of all actual attacks. This performance gap is 

causally linked to the models' underlying 

mechanisms: LSTM's superiority stems from its 

supervised training, which uses labeled data to 

minimize classification error directly, and its ability 
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to model temporal dependencies in sequential traffic. 

Conversely, Q-Learning relies on indirect 

optimization via a reward function, and the Isolation 

Forest depends solely on unsupervised isolation 

paths, revealing the limitations of these methods on 

complex, labeled, and imbalanced datasets. 

 

Figure 4.4 

Recall Bar Plot 

 

False Positive Rate (FPR) and False Negative Rate 

(FNR) 

The analysis of error rates, visualized in Figure 4.2, 

highlights critical performance trade-offs for both 

false alarms and missed attacks. The Isolation Forest 

exhibited the highest FPR (49.59%) and a high FNR 

(48.00%), meaning nearly half of both its alerts and 

its missed attacks were errors, thus undermining trust 

due to its unsupervised nature. Conversely, the 

LSTM model achieved a near-zero FPR (0.35%) and 

a minimal FNR (0.50%), demonstrating superior 

accuracy in distinguishing genuine threats, a benefit 

of its supervised training on labeled sequences. Q-

Learning presented a moderate FPR (8.58%) and a 

moderate FNR (6.79%), reflecting occasional 

misclassifications during its policy exploration 

phase. This hierarchy confirms that model selection 

requires balancing the need for low error rates with 

the available labeling infrastructure and 

computational resources. 

Figure 4.5 

False Positive Rate and False Negative Rate 

Comparison plot 

 
 

V. DISCUSSION OF RESULTS 

The results strongly align with and extend existing 

anomaly detection research. LSTM’s dominance 

(99.53% accuracy) confirms findings by Kim et al. 

(2021) that deep learning excels in network analysis, 

processing sequential data hierarchically to capture 

dependencies. In contrast, Isolation Forest’s poor 

performance reflects the challenge noted by 

Barbariol et al. (2021), that static tree-based methods 

struggle with high-dimensional, imbalanced data 

without the benefit of explicit labeled guidance or 

sophisticated temporal modeling. 

Q-Learning’s intermediate performance highlights 

the difficulty of applying reinforcement learning in 

this domain. While its adaptive policy is theoretically 

beneficial for dynamic environments (Sutton & 

Barto, 2022), practical issues like state-space 

complexity are evident. The observed FNR (6.79%) 

suggests it occasionally misses attacks, a limitation 

also seen in semi-supervised systems (Santos et al., 

2019). However, its lower FPR (8.58%) compared to 

Isolation Forest shows good specificity, which is 

valuable for minimizing security alert fatigue. 

The comparative analysis establishes a clear 

hierarchy of performance: LSTM>Q-
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Learning>Isolation Forest. This aligns with the 

literature (Bai et al., 2020; Chandola et al., 2009), 

favoring supervised and adaptive models over 

unsupervised methods on labeled data. The selection 

ultimately depends on operational constraints: LSTM 

is ideal for high-stakes environments where accuracy 

is paramount, Q-Learning suits dynamic systems 

needing adaptability, and Isolation Forest remains 

practical only for computationally light, initial 

anomaly screening. Figure 4.5 visually emphasizes 

these trade-offs. LSTM clusters near the optimal 

origin, while Isolation Forest is constrained by high 

error rates. Q-Learning sits in the middle, indicating 

its utility when a moderate error rate is acceptable for 

adaptability. This confirms that model choice is 

context-dependent. Future research should explore 

hybrid models, combining LSTM’s accuracy with Q-

Learning’s adaptability, to further improve real-

world cybersecurity performance. 

The Confusion Matrix for Isolation Forest (Figure 

4.6) provides the visual proof for its inadequacy. The 

off-diagonals show massive and nearly equal 

misclassification rates: 77,336 normal instances 

incorrectly flagged as anomalies (False Positives) 

and 22,081 true anomalies missed (False Negatives). 

These immense error counts, which directly explain 

the model's high FPR and FNR, demonstrate that the 

unsupervised method failed to establish a meaningful 

separation boundary in the complex feature space. 

This fundamental lack of discriminative power is 

further confirmed by its ROC Curve (Figure 4.7). The 

curve barely deviates from the diagonal dashed line, 

which represents random guessing. The AUC value 

clings closely to 0.50, solidifying the conclusion that 

Isolation Forest is an ineffective tool for this specific 

supervised anomaly detection task, despite its proven 

utility in general, purely unsupervised outlier 

detection scenarios. 

In stark contrast, the LSTM’s Confusion Matrix 

(Figure 4.8) is the model of a high-performing 

classifier. The matrix shows the vast majority of 

instances correctly identified (45,574 true anomalies 

and 155,935 true normal instances), with errors being 

minuscule: only 426 false positives and 81 false 

negatives. This visual evidence of precision and 

reliability is directly attributable to the model's 

supervised training on sequential data, allowing it to 

learn the intricate temporal patterns that define 

attacks. This flawless performance is captured by its 

ROC Curve (Figure 4.9), which shoots to the top-left 

corner, achieving a perfect AUC of 1.00. 

Figure 4.6 

Confusion Matrix for the Isolation Forest model. 

 
Note. Confusion Matrix for the Isolation Forest 

model. The high values in the off-diagonal cells 

(77,336 and 22,081) visually represent its high rate of 

misclassifications. 

Figure 4.7 

Receiver Operating Characteristic (ROC) curve for 

the Isolation Forest model. 

 
Note. Receiver Operating Characteristic (ROC) curve 

for the Isolation Forest model. The curve tracking 

close to the diagonal (AUC ≈ 0.50) indicates 

performance no better than random chance. 

The Q-Learning Confusion Matrix (Figure 4.10) 

shows a capable, adaptive model with visible errors: 

4,140 false negatives (missed attacks) and 4,017 false 

positives. This error pattern is typical of 

reinforcement learning's exploration process. The 

model's ROC Curve (Figure 4.11) confirms very 

good performance, showing a strong climb away 

from random guessing, yet it falls short of the 

LSTM's perfection. This indicates Q-Learning 

successfully finds a highly effective decision 

boundary but entails a slight sensitivity-specificity 

trade-off. 
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Figure 4.8 

Confusion Matrix for the LSTM model. 

 
Note. Confusion Matrix for the LSTM model. The 

overwhelming values on the main diagonal (45,574 

and 155,935) and minimal off-diagonal values (426 

and 81) demonstrate its exceptional accuracy. 

Figure 9 

ROC curve for the LSTM model. 

 
Note. ROC curve for the LSTM model. The curve 

achieving an AUC of 1.00 indicates perfect 

classification performance across all thresholds. 

Figure 4.10 

Confusion Matrix for the Q-Learning model. 

 
Note. Confusion Matrix for the Q-Learning model. It 

shows strong correct classification counts (41,983 

and 145,544) but with noticeable error rates (4,140 

and 4,017), indicating its adaptive but imperfect 

nature. 

Figure 11 

ROC curve for the Q-Learning model. 

 
Note. ROC curve for the Q-Learning model. The 

curve shows strong performance by arching towards 

the top-left corner, though not perfectly, indicating a 

good but not optimal trade-off between TPR and 

FPR. 

Summary of Findings from Evaluation Metrics 

1. Overall Performance and Accuracy 

• LSTM Dominance: The Long Short-Term 

Memory (LSTM) model achieved unequivocally 

superior performance, with a near-perfect 

Accuracy of 99.53% and the highest F1 Score 

(0.993), confirming its capability for reliable 

cyberattack anomaly detection in this setting. 

• Q-Learning Viability: The Q-Learning model 

showed strong, yet moderate, performance, 

achieving an Accuracy of 92.80% and an 

F1 Score of 0.902, positioning it as a viable, 

adaptable alternative. 

• Isolation Forest Failure: The Isolation Forest 

model performed poorly, with an Accuracy of 

only 50.77% and an F1 Score of 0.469, 

indicating it was little better than random chance 

for this specific complex, labeled task. 

 

2. Precision and Recall (Reliability and Coverage) 

• Precision (Minimizing False Alarms): LSTM 

exhibited exceptional reliability with Precision 

at 99.11%, ensuring very few false positives. Q-

Learning was respectable at 88.62%, while 

Isolation Forest’s 50.85% precision was 

insufficient for practical use. 

• Recall (Minimizing Missed Attacks): LSTM 

also had the highest coverage, with Recall at 

99.57%, meaning it successfully detected the 

vast majority of attacks. Q-Learning achieved a 
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high recall of 92.31%. Isolation Forest's recall 

was only 51.20%, meaning it would fail to detect 

nearly half of all true attacks. 

 

3. Error Rates (FPR and FNR) 

• Optimal Error Rates (LSTM): LSTM 

demonstrated minimal errors in both categories: 

False Positive Rate (FPR) of 0.004 and False 

Negative Rate (FNR) of 0.005. 

• Acceptable Trade-Off (Q-Learning): Q-

Learning showed a moderate trade-off, with an 

FPR of 0.086 and an FNR of 0.068, reflecting its 

adaptive, policy-based learning. 

• Unacceptable Error Rates (Isolation Forest): 

Isolation Forest showed unacceptable error rates, 

with a high FPR of 0.496 and a high FNR of 

0.480, confirming its inability to set meaningful 

detection boundaries. 

 

4. Causal Factors 

• The superior performance of LSTM is directly 

attributed to its supervised learning framework 

and its ability to model temporal dependencies in 

sequential network traffic data. 

• Q-Learning's intermediate performance reflects 

its reliance on indirect optimization via a reward 

function and its exploration-exploitation 

strategy. 

• Isolation Forest’s failure is linked to the 

limitations of unsupervised methods when 

applied to complex, labeled, and imbalanced 

cybersecurity datasets. 

 

VI. CONCLUSION AND RECOMMENDATIONS 

This study conducted a comparative analysis of three 

distinct machine learning paradigms—Isolation 

Forest (IF), Long Short-Term Memory (LSTM), and 

Q-Learning—for cyberattack anomaly detection, 

implementing the system using the CICIDS-2017 

dataset in Python. The evaluation, based on 

comprehensive metrics including Accuracy, F1-

score, FPR, and FNR, decisively established the 

LSTM model as the superior performer in terms of 

detection efficacy. Operating within a supervised 

framework, the LSTM network achieved a near-

perfect Accuracy of 99.53% and an excellent 

F1−score of 0.993, with a flawless Area Under the 

Curve (AUC) of 1.00. Crucially, its ability to 

minimize errors was demonstrated by a minimal 

False Positive Rate (FPR) of 0.35% and a False 

Negative Rate (FNR) of 0.50%. 

The findings confirm that sophisticated supervised 

deep learning is the optimal choice for environments 

with abundant labeled historical data where 

maximum detection accuracy is the primary 

objective. The Q-Learning model, representing the 

reinforcement learning approach, presented a 

valuable alternative, showcasing strong capability 

with an Accuracy of 92.80% and an 

F1−Score of 0.902. While adaptive, its trade-offs 

were evident in its higher error rates compared to 

LSTM (FPR of 8.58% and FNR of 6.79%). This 

indicates that Q-Learning holds significant potential 

for continuous improvement in dynamic, evolving 

threat environments where adaptability to novel 

attacks outweighs the need for static, maximum-level 

accuracy. 

In stark contrast, the unsupervised Isolation Forest 

model proved fundamentally inadequate for this 

specific, supervised anomaly detection task. Its 

performance metrics, which clustered around 50%, 

demonstrated efficacy no better than random chance. 

This leads to the conclusive finding that simple 

unsupervised techniques, in their standalone form, 

are not a viable solution for targeted cyberattack 

anomaly detection on complex, labeled cybersecurity 

datasets. The research thus provides a data-driven 

framework, confirming the dominance of LSTM, 

establishing the practical promise of adaptive Q-

Learning, and clearly delineating the limitations of 

the Isolation Forest unsupervised method. 

RECOMMENDATIONS 

Based on these findings, the Long Short-Term 

Memory (LSTM) model is the primary 

recommendation for operational security where 

maximum detection accuracy is paramount (e.g., 

critical infrastructure). Its superior performance 

justifies the investment in labeled datasets and 

hardware (GPUs/TPUs) to minimize computational 

overhead. Conversely, Q-Learning is recommended 

for dynamic environments with evolving threats, 

where organizations should explore Deep Q-

Learning Networks (DQNs) and meticulously design 

the reward function. This approach prioritizes 

adaptability to zero-day attacks over static, near-

perfect accuracy. 

Future research should focus on hybrid intelligent 

systems that synergize the models' strengths. The 

most promising path is a hybrid LSTM-Q-Learning 

architecture, where LSTM provides sophisticated, 
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temporally-aware feature extraction for the Q-

Learning agent. Efforts should also refine Q-

Learning through multi-agent reinforcement learning 

(MARL). Simple unsupervised methods like 

Isolation Forest should be repurposed solely for 

initial, lightweight filtering within a tiered detection 

architecture, rather than serving as a standalone 

solution. 
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