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Abstract- Weed detection and management remain major
challenges in modern agriculture, as weeds The
identification and control of weeds in agriculture has
been a major issue to modern agriculture, since the weeds
compete with crops over crucial resources, and lower
yield in case they are not well controlled. Manual
weeding, manual application of herbicides are traditional
techniques that are expensive but unsustainable to the
environment. This research experiment suggests a new
design with a real-time weed detector and assessor, based
on a revised version of You Only Look Once 8 nano
(YOLOv8n) model, trained with a Dual Attention Network
(DAN) as the backbone and a refined Feature Pyramid
Network (FPN) as the neck. An ensemble dataset was
generated based on 10,000 images of rice farms sampled
in Thuokpara, Enugu, Nigeria and was augmented with
publicly available datasets of Roboflow. Improved
YOLOv8n was trained to detect various species of weeds
in diverse conditions and combined with a Weed Severity
Index (WSI) algorithm to measure the growth of weed in
respect with the farm area. The experimental data proved
that the improved YOLOv8n model had 96% detection
probability, 100% accuracy, 99% recall, and F1-score of
92%, which are much better than the traditional models.
It was found that the DAN allowed better spatial and
channel attention and the enhanced FPN allowed good
multi-scale feature extraction, which guaranteed a good
detection even in case of occlusion and variable weed
sizes. The WSI model categorized severity of weed into
low, moderate, and high levels of severity as an
intervention to take action. The suggested system was also
confirmed by means of the software implementation and
is expected to be deployed on Unmanned Aerial Vehicles
(UAVs) having Simple Mail Transfer Protocol (SMTP)-
capable farmer notifications. The framework further
develops the field of precision agriculture through deep
learning, transfer learning, and automated severity
assessment, thereby lowering the number of herbicides
applied to the crop, increasing its yield, and enhancing
the environmental sustainability of farm management
methods.
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L INTRODUCTION

Weed detection and management are critical
components of smart agriculture, a farming approach
that leverages advanced technologies to optimize
crop production and resource use. As shown in Figure
1 where there is farm with weed and one without,
weeds keep competing with crops for nutrients,
water, and sunlight, can significantly reduce
agricultural yields if not properly controlled.
Traditional methods of weed management, such as
manual weeding and the use of chemical herbicides
are not only labor-intensive and costly but also pose
environmental risks. As the agricultural sector faces
the dual challenges of feeding a growing global
population and ensuring sustainability, smart
agriculture solutions like automated weed detection
and management systems have become increasingly
vital (Mckay et al., 2024).

In smart agriculture, weed detection systems often
rely on advanced image processing techniques and
machine learning algorithms to identify and classify
weeds in real-time. These systems use sensors,
drones, or ground-based cameras to capture images
of crop fields, which are then analyzed by algorithms,
typically powered by deep learning models (Gallo et
al., 2023). These models are trained on large datasets
of labeled images, enabling them to accurately
distinguish between crops and weeds. The precision
offered by these technologies allows for targeted
weed control, reducing the need for blanket
application  of minimizing
environmental impact (Lan et al., 2021).

herbicides and

Today, pre-trained models have evolved as a
promising tool to solve weed detection problems in
real-time. Several literatures has engaged algorithms
such as You Only Look Once version 8 (YOLOVS) in
Guo et al. (2024a), which were trained for real-time
detection of weed in rice farms. Lan et al. (2021)
trained two improved pre-trained models of
MobileNet-V2-Unet and FFB-BiSeNetV2. The
former was tailored towards improving speed of
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weed detection, while the latter later focused on
improved accuracy of recognition. Gallo et al. (2023)
also considered YOLOV3 and V7 for real-time
classification of weed in smart agriculture, while
Mckay et al. (2024) considered the Residual Network
(ResNet) series of 18, 34, and also Visual Geometry
Group with  16layers(VGG-16) for  weed
classification. While these studies have recorded high
accuracy in the classification of weed in a farm, there
is weakness in their reliability to correctly define
weed. This is because these models are evaluated
based on their ability to detect individual weeds
without a comprehensive assessment of the overall
weed population on the farm, which has resulted in
misrepresentation of weed situations. According to
Zimdadh (2018), a farm cannot be 100% weed-free
throughout the cultivation lifespan; however, an
accurate assessment of the population of weed with
respect to the size of the farm is needed to present a
reliable model for the classification of weed, and to
achieve this, this research presents a real-time model
for the detection of weed using a transfer learning

Proposed
Weed Data Weed
model classification
model

Test bed for

algorithm and an unmanned area vehicle in smart
agriculture. The major proposed contribution of the
work is to develop a model that can accurately detect
weed in a farm and then serve as input to another
algorithm that computes the percentage of weed
population with respect to the farm size. This model
will be integrated to formulate a reinforced solution
for real-time weed classification in smart agriculture
and will be deployed in a drone for remote sensing
and classification of weed in Nigeria.

IIL. THE PROPOSED SYSTEM

The proposed system for the detection of weed in
smart agriculture will be made of several components
which include data collection, data preparation,
development of new data model, an improved
YOLOvV8n, Dual Attention Network (DAN) model,
improved Feature Pyramid Network (FPN), training
of the model, testing and validation, experimental
testing and validation of result. The proposed system
block diagram was presented in the Figure 1;

Model
Deployment

Optimization
of Model

The Figure 1 presents the block diagram of the
proposed weed classification model. First data was
collected from a testbed at Thuokpara, Enugu,
Nigeria, and then used to form the primary dataset.
Secondly already existing dataset of rice weed was
collected from Robowflow repository and then
applied with the primary dataset to form the new data
model. In the next module, existing YOLOv-8n was
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Figure 1: Block diagram of the proposed system

be adopted, and then the backbone got improved with
DAN while the neck was improved with modified
Feature Pyramid Network (FPN). Collectively the
models were integrated to form the newYOLOv-8n.
In addition, an optimization algorithm was developed
which computes the population of weed with respect
to the farm size to determine if the farm has weed
situation or not. The model of YOLOvV-8n improved
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was trained with the dataset of weeds and then
generated the model which serves as input to the
optimization algorithm for the classification of weed
in the farm. To notify the farmer of the results, the
SMTP algorithm was used which employed email
approach to notify users of weed situation in the farm.

This was achieved with an adopted existing YOLOv-
8. This YOLOv-8 is made of four sections which are
the focus layer, the backbone, neck and head. The
backbone is made of spatial pyramid pooling function
which is responsible for feature extraction; however,
the fixed pooling size and filter sized make it not able
to facilitate multi-scale feature extraction process
which is an issue as it might affect correct
classification of weed in rice farm. In addition, the
inability for multiscale feature extraction limits the
model ability to address issues of same object
occlusion problem. To solve this problem, the DAN
Model was adopted. The DAN was developed as an
attention mechanism with adaptive filters, batch
normalization layers and different convolutional

sizes to formulate an adaptive mechanism for
improved multi-scale extraction. In addition, to
improve multi-scale feature identification, the FPN
was improved by adding additional Pyramid
Attention Network (PAN) for improved feature
identification. Collectively, the models were
integrated as the new YOLOv-8n model. To address
issues of false, negative and misrepresentation of
weed, an algorithm was developed which used the
input of the classification output to compute the
population of weed in the farm. Collectively this
presents the model for the classification of weed in
smart agriculture.

2.1 Data Collection

Images of various rice weeds were captured manually
using high-resolution cameras at different times of
the day to reflect varied lighting conditions. Each
image was focused on capturing clear, close-up views
of the weeds as they appeared within the rice fields.
Figures 2 - 4 presents the testbed where data were
collected considering different species of rice weeds.

Figure 3: Barnyard grass
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Figure 4: Blistering ammannia

Figure 2 and 4 presents the different classes of weed collected from the farm. The size of the data captured is
320320 resolutions. The total number of images captured is 10,000 as the sample size. Figure 5 presents the actual

rice farm without weeds.

The collected images were labeled and annotated
using the Roboflow tool, which allowed for efficient
bounding box generation and class assignment for
each weed type. After annotation, the image data,
along with corresponding metadata such as image
paths, weed types, annotation coordinates, and
timestamps, were systematically stored in a SQLite
database. This structured storage enabled seamless
integration with the deep learning model and allowed
for efficient retrieval during training, validation, and
real-time inference processes.

2.2 Dual Attention Network (DAN) and Improved
Feature Pyramid Network (FPN) Models

Optimizing YOLOv8n with a DAN and an improved
FPN is essential for enhancing rice weed detection,
where accuracy, scale sensitivity, and feature
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Figure 5: Rice farm without weeds

discrimination are critical. Rice fields often contain
complex backgrounds, varying weed sizes, and
occlusions, making it difficult for standard models to
differentiate between rice plants and diverse weed
species. Integrating DAN enables the model to focus
more effectively on relevant spatial and channel
features, enhancing its ability to distinguish subtle
differences between crops and weeds. Meanwhile, an
improved FPN enhances multi-scale feature fusion
by more accurately preserving fine-grained details
and contextual information across different layers,
which is crucial for detecting small or partially
hidden weeds. Together, these enhancements address
YOLOVS8’s limitations in feature refinement and
scale variation, leading to improved precision and
robustness in real-world rice field environments.
Figure 6 presents the flowchart of the DAN.
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Figure 6: The Flowchart of the DAN

The flowchart in Figure 6 illustrates the functioning
of the Dual Attention Network (DAN), beginning
with the input feature map, which contains raw
spatial and semantic information extracted from the
previous layers of the detection network. This map is
split into two attention paths: Position Attention and
Channel Attention. In the Position Attention path, a
feature similarity matrix is computed to determine the
correlation between different spatial locations,
enabling the network to weight the spatial location of
weed features more effectively. A check is performed
to ensure that clustered weed regions are properly
weighted, after which the refined spatial features are
aggregated with the original feature map. Meanwhile,
the Channel Attention path begins by analyzing the
channel filters, i.e., the various feature types
(textures, edges, etc.) across the depth of the input. It
then generates a channel attention map focusing on
weed-related textures and identifies the most relevant
feature channels for detection. A conditional check
ensures that the channel-based feature identification
is complete. Once both spatial and channel-wise
attentions are refined, their outputs are fused
together, producing an enriched fusion output that is
better at localizing and identifying weeds in complex
agricultural imagery.
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2.3 Improved Feature Pyramid Network FOR
YOLOV8n

The improved FPN is tailored towards maximizing
feature identification from the backbone using
weighted sum approach which better combines the
feature maps from different layers, making it rich for
better weed texture identification.

The features map dimension are reduced using eleven
(11) convolutions, then upsampling is applied or
higher feature identification, while downsampling is
applied for shallow layer detection.
Concatenation is applied using weighted sum to
fusion all feature maps, ten normalization using thirty
three (33) convolutions is applied to enhance the
feature quality and return the output. The Improved
FPN algorithms are presented as;

feature

FPN Algorithm
1. Start
2. Input features %% the multi-scale feature maps

from backbone
3. Reduce channel dimensions using 1 x1
convolutions.
Upsample higher-level feature maps
Downsample shallow layers
Concatenate features with weighted sum

NS A

Enhance features with 33 convolutional layers
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8. Apply batch normalization

9. Smooth feature with 3 %3 convolutions

10. Output enhanced multi-scale features for the
detection head

2.4 New Transfer Learning Model

The New transfer learning model integrated the DAN
algorithm and the improved FPN algorithm into the
backbone and the neck of the YOLOv8n as the
improved model suitable for weed classification.
Figure 7 presents the new YOLOv8n model.
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Figure 7: The Newly Enhanced YOLOv8n model

Figure 7 presents the architecture of the New
YOLOvV8n. In the diagram, the proposed DAN was
connected before the SPPF, while the Improved FPN
was connected in the two segments of the neck
region. This interconnection process facilitates the
optimized feature identification process, facilitating
deep and shallows feature maps detection before the
SPPF extraction process. In the Neck, the improved
FPN facilitates fine multi-scale features which are
normalized and enriched with diverse feature maps
which characterized weed. This architecture made up
the improved YOLOv8n for rice weed detection.

2.5 Training of the Model

The training of the new YOLOV8n model integrated
with DAN and an Improved FPN using a rice-weed
dataset involves feeding annotated images into a
modified detection pipeline that enhances feature
representation and attention. The Improved FPN
strengthens multi-scale detection by adaptively
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fusing spatial-semantic features scales,
particularly improving small weed detection under
complex backgrounds. Simultaneously, the DAN

channel attention,

across

module refines spatial and
allowing the model to focus more precisely on
discriminative weed patterns while suppressing
background noise and irrelevant crops. During
training, standard regularization was used to improve
generalization, while the loss function, comprising
objects of interest, classification, and localization
terms are optimized using backpropagation. The
enhanced model learns to distinguish visual
differences between rice and various weed types,
resulting in improved accuracy, robustness, and real-
time performance across different field conditions.

2.6 Weed Assessment Model

The weed assessment model is designed to quantify
and evaluate the severity of weed proliferation within
rice fields, ensuring that intervention is triggered only
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when weed presence surpasses a critical threshold.

The model operates by analyzing outputs from the

enhanced YOLOv8n classifier, which detects and

classifies weeds across an image. A mathematical

formulation is used to assess the Weed Severity Index

(WSI), which combines weed count, spatial

coverage, and weed-to-crop ratio.

Let

e N,,= total number of weeds instances

e N_is the number of rice crops instances detected

e A, is the total area covered by the weed
bounding boxes

e A, is the total image area of the camera

N, ) )
e D,= —A‘;’ = weed density per unit area
N .

e Ry~ A—i = weed to crop ratio

e (,= ‘:—“: * 100 which is the total area percentage

covered by weed
wSl = a.D, + B.Ry,. + y.C, Equation(1)
Where @, B,y € [0,1] are weighting coefficients such
that,ta + f+y =1, tuned based on field
importance. The WSI threshold is categorized as;
Low  WSI < ¢,
Moderate ¢p; < WSI < ¢,
High WSI = ¢,
Where ¢, and ¢, are threshold for weed severity.

Weed Assessment Algorithm

Start

Initialization of counter %% weed, crop and area
Loop through all detection
foriinrange(length of detections)

if detections[i] == "weed":

N,, « N,, + 1 %% detect all weeds

A,, < A,, + bounding_boxes[i] %% detect
all weed area

Nk R =

Predicted
Weeds

background

Weeds

Tru

Confusion Matrix Normalized

8. elseif detections[i] == "rice"

9. N, « N. + 1 %% detect all rice crops
10. Compute WSI

11. Classify weed level with decision base
12. Return output

13. End

2.7 System Implementation

The implementation of the rice weed detection and
monitoring system is based on an intelligent, modular
design that integrates deep learning, computer vision,
and automated communication. It was developed
with a focus on scalability, user accessibility, and
real-time processing of field images to assess weed
conditions and generate actionable feedback. The
system runs on a client-server architecture, allowing
users to interact with the application through a
graphical user interface, while backend modules
handle detection, assessment, and notifications.
Below are the proposed system requirements
necessary for effective implementation.

III. RESULT OF IMPROVED YOLOV-8N
TRAINING

Training of the improved YOLOv8n was done using
the prepared weed dataset. During the training
process confusion matrix was used to evaluate the
performance. Metric such as True Positive (TP),
False Positive (FP), recall, precision and flscore were
applied to evaluate the model performance. Figure 8
presents the confusion matrix. This normalized
confusion matrix provides insights into how well the
improved YOLOvS8n performs in detecting weeds in
rice fields, distinguishing between "Weeds" and
"Background”.

1.0

-02

' -0.0
background

Figure 8: Confusion Matrix of the Weed Detection Model Training
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Figure 8 presents the confusion matrix which
measures the TP and FP of the model performance in
weed detection. From the result, it was observed that
the weed detection TP recorded 0.96 which implied
that the model was able to classify weed from the
dataset images with 96% accuracy. The results also
recorded 0.04% FP. This implied that the model
recorded error of 4% during the classification
process, as it mistakenly classified the farm

Precision-Confidence Curve

background without weed as weed. In addition, it
correctly labels 100% of the background (non-weed
areas) as "background," showing that the model can
distinguish background of the farm from actual rice
weeds. The reason for the high classification success
was because the model trained was optimized with
the application of improved FPN and DAN. Figure 9
presents the precision confidence score of the model
performance in weed detection.

1.0

0.84

0.6 1

Precision

0.4

0.2 1

0.0

— Weeds
= all classes 1.00 at 0.919

0.0 0.2 0.4 0.6
Confidence

0.8 1.0

Figure 9: The Precision Confidence Graph

Precision measures the ability of the model in
correctly classifying weed in the rice farm. In the
results it was observed that the model recorded 1.00
as the precision results with a confidence value of
0.919. This result implied that the trained YOLOv8n
model was able to correctly classify weed in the rice
farm with 100% success rate, and 92% confidence
that the classification was positive.

Recall-Confidence Curve

1.0

In the next results, the recall performance was
evaluated. The recall measures the reliability of the
model. It ensures that the plant classified as rice weed
is actually rice weed. This is because there are
tendencies where the model will detect other plants
in the farm and mistakenly classify as weed. Figure
10 presents the recall graph.
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Figure 10: The Result of Recall
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From the results in Figure 10, it was observed that the
recall value for weed detection is 0.99. This result
means that the model was able to correctly classify
actual rice weed with 99% success rate. The reason
was because the model utilizes the DAN which
maximized feature extraction using a mix of channel
and position attention mechanism to optimize feature
map of weed extracted from the rice farm. In

10 Fl-Confidence Curve

addition, the FPN which applied weighted attention
to maximize multiscale feature identification was
also a factor which results to the high classification
success recorded for weed detection. Figure 11
presents fl-score of the model for the classification
of weed in rice farm. This measures the relationship
between precision and recall.

0.8 1

F1

0.4 4

0.2 1

— Weeds
all classes 0.92 at 0.421

0.0 0.2 0.4 0.6
Confidence

0.8 1.0

Figure 11: The F1-Score Confidence Score

Figure 11 presents the flscore of the model. This
result measures the model performance in correctly
classifying actual rice weed from the farm. From the
results, the Flscore reported 0.92 with 0.421
confidence score. The results implied that 92%
success rate was recorded in the model performance
in successfully classifying positively actual weed in
rice farm. The confidence score for the classification
performance is 42% which is ok, and implied that the
trained weed classification model was not able to just
classify weed in the rice farm correctly, but was able
to classified actual rice weed as the object of interest.

i Weet e

3.1 Experimental Validation of the Model with
software

This section presents the performance of the model
when it was deployed as a software application and
then tested as software. The software was developed
to allow access to videos, real time data acquisition
and images of practical farm settings with weed.
Figure 12 presents the results of the software
interface with the imported data of rice farm
containing weed.

Figure 12: The Result of the Software Implementation
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Figure 12 presents the data upload result of the weed
classification software. In the results, it was observed
that test data was imported into the model. This data
imported was identified by the trained YOLOv8n
which utilized the DAN to maximize feature
identification, then the neck which applied the

¥ Rice Weed Detector

improved FPN for multi scale feature identification
of features of different dimensions. The features are
used as input to classify weed in the farm and the
outcome, then assessed by the weed assessment
algorithm. The result was reported in Figure 13.

Figure 13: Result of the Weed Classification Software

Figure 13 presents the classification output of the
deep model for rice weed detection. The results
showed that the model was able to correctly classify
the portion of the farm with high severity of weed.

CONCLUSION

The proposed paper came up with an improved weed
detection and evaluation system that is specific to rice
farms in Nigeria to overcome the weaknesses of the
conventional weed management practices and
previous machine learning systems. The proposed
design enhanced the YOLOv8n model by
incorporating a Dual Attention Network (DAN) into
the backbone and an enhanced Feature Pyramid
Network (FPN) into the neck that would allow
extracting features at multiple scales and distinguish
weeds and crops more effectively. On 10,000 high-
resolution images of the fields that were taken at
Thuokpara, Enugu, and on pre-existing datasets of
rice weed on Roboflow, a hybrid dataset was
developed to ensure that the model was trained in
various lighting types and diverse weed species.

The better version of YOLOv8n model made major
performance improvements in training and

IRE 1711189

validation. The model achieved a true positive
detection rate of 96%, 100% precision and a 99%
recall indicating that it has the capability of
identifying rice weeds and reducing false positives
and negatives. The F1-score was 92% as well, which
is an affirmation that there existed a tradeoff between
precision and recall. Weed Severity Index (WSI)
model further enhanced the framework in quantifying
the weed population compared to the farm size by
categorized the severity as low, moderate or high.
This is because of its dual ability to detect and
determine the severity of the weed making the system
more reliable to be used in the real world compared
to the current models which detect single weeds.

To sum up, the incorporation of DAN and enhanced
FPN into YOLOv8n resulted in a highly precise, real-
time weed-detecting framework that could be used in
the field of precision agriculture. The training of this
model on unmanned aerial vehicles (UAVs), along
with the SMTP-driven notification systems, will
make sure that farmers are provided with the
information about the weed condition and
intervention in a timely manner. This work will help
in making agricultural practices more sustainable as
it will reduce excessive dependence on herbicides
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and enhance active farm management, therefore,
enhancing crop yields and resource-using efficiency.
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