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Abstract- Weed detection and management remain major 

challenges in modern agriculture, as weeds The 

identification and control of weeds in agriculture has 

been a major issue to modern agriculture, since the weeds 

compete with crops over crucial resources, and lower 

yield in case they are not well controlled. Manual 

weeding, manual application of herbicides are traditional 

techniques that are expensive but unsustainable to the 

environment. This research experiment suggests a new 

design with a real-time weed detector and assessor, based 

on a revised version of You Only Look Once 8 nano 

(YOLOv8n) model, trained with a Dual Attention Network 

(DAN) as the backbone and a refined Feature Pyramid 

Network (FPN) as the neck. An ensemble dataset was 

generated based on 10,000 images of rice farms sampled 

in Ihuokpara, Enugu, Nigeria and was augmented with 

publicly available datasets of Roboflow. Improved 

YOLOv8n was trained to detect various species of weeds 

in diverse conditions and combined with a Weed Severity 

Index (WSI) algorithm to measure the growth of weed in 

respect with the farm area. The experimental data proved 

that the improved YOLOv8n model had 96% detection 

probability, 100% accuracy, 99% recall, and F1-score of 

92%, which are much better than the traditional models. 

It was found that the DAN allowed better spatial and 

channel attention and the enhanced FPN allowed good 

multi-scale feature extraction, which guaranteed a good 

detection even in case of occlusion and variable weed 

sizes. The WSI model categorized severity of weed into 

low, moderate, and high levels of severity as an 

intervention to take action. The suggested system was also 

confirmed by means of the software implementation and 

is expected to be deployed on Unmanned Aerial Vehicles 

(UAVs) having Simple Mail Transfer Protocol (SMTP)-

capable farmer notifications. The framework further 

develops the field of precision agriculture through deep 

learning, transfer learning, and automated severity 

assessment, thereby lowering the number of herbicides 

applied to the crop, increasing its yield, and enhancing 

the environmental sustainability of farm management 

methods. 
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I. INTRODUCTION 

 

Weed detection and management are critical 

components of smart agriculture, a farming approach 

that leverages advanced technologies to optimize 

crop production and resource use. As shown in Figure 

1 where there is farm with weed and one without, 

weeds keep competing with crops for nutrients, 

water, and sunlight, can significantly reduce 

agricultural yields if not properly controlled. 

Traditional methods of weed management, such as 

manual weeding and the use of chemical herbicides 

are not only labor-intensive and costly but also pose 

environmental risks. As the agricultural sector faces 

the dual challenges of feeding a growing global 

population and ensuring sustainability, smart 

agriculture solutions like automated weed detection 

and management systems have become increasingly 

vital (Mckay et al., 2024). 

 

In smart agriculture, weed detection systems often 

rely on advanced image processing techniques and 

machine learning algorithms to identify and classify 

weeds in real-time. These systems use sensors, 

drones, or ground-based cameras to capture images 

of crop fields, which are then analyzed by algorithms, 

typically powered by deep learning models (Gallo et 

al., 2023). These models are trained on large datasets 

of labeled images, enabling them to accurately 

distinguish between crops and weeds. The precision 

offered by these technologies allows for targeted 

weed control, reducing the need for blanket 

application of herbicides and minimizing 

environmental impact (Lan et al., 2021). 

 

Today, pre-trained models have evolved as a 

promising tool to solve weed detection problems in 

real-time. Several literatures has engaged algorithms 

such as You Only Look Once version 8 (YOLOv8) in 

Guo et al. (2024a), which were trained for real-time 

detection of weed in rice farms. Lan et al. (2021) 

trained two improved pre-trained models of 

MobileNet-V2-Unet and FFB-BiSeNetV2. The 

former was tailored towards improving speed of 
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weed detection, while the latter later focused on 

improved accuracy of recognition. Gallo et al. (2023) 

also considered YOLOV3 and V7 for real-time 

classification of weed in smart agriculture, while 

Mckay et al. (2024) considered the Residual Network 

(ResNet) series of 18, 34, and also Visual Geometry 

Group with 16layers(VGG-16) for weed 

classification. While these studies have recorded high 

accuracy in the classification of weed in a farm, there 

is weakness in their reliability to correctly define 

weed. This is because these models are evaluated 

based on their ability to detect individual weeds 

without a comprehensive assessment of the overall 

weed population on the farm, which has resulted in 

misrepresentation of weed situations. According to 

Zimdadh (2018), a farm cannot be 100% weed-free 

throughout the cultivation lifespan; however, an 

accurate assessment of the population of weed with 

respect to the size of the farm is needed to present a 

reliable model for the classification of weed, and to 

achieve this, this research presents a real-time model 

for the detection of weed using a transfer learning 

algorithm and an unmanned area vehicle in smart 

agriculture. The major proposed contribution of the 

work is to develop a model that can accurately detect 

weed in a farm and then serve as input to another 

algorithm that computes the percentage of weed 

population with respect to the farm size. This model 

will be integrated to formulate a reinforced solution 

for real-time weed classification in smart agriculture 

and will be deployed in a drone for remote sensing 

and classification of weed in Nigeria.  

 

II. THE PROPOSED SYSTEM 

 

The proposed system for the detection of weed in 

smart agriculture will be made of several components 

which include data collection, data preparation, 

development of new data model, an improved 

YOLOv8n, Dual Attention Network (DAN) model, 

improved Feature Pyramid Network (FPN), training 

of the model, testing and validation, experimental 

testing and validation of result. The proposed system 

block diagram was presented in the Figure 1; 

 

 
Figure 1: Block diagram of the proposed system 

 

The Figure 1 presents the block diagram of the 

proposed weed classification model. First data was 

collected from a testbed at Ihuokpara, Enugu, 

Nigeria, and then used to form the primary dataset. 

Secondly already existing dataset of rice weed was 

collected from Robowflow repository and then 

applied with the primary dataset to form the new data 

model. In the next module, existing YOLOv-8n was 

be adopted, and then the backbone got improved with 

DAN while the neck was improved with modified 

Feature Pyramid Network (FPN). Collectively the 

models were integrated to form the newYOLOv-8n. 

In addition, an optimization algorithm was developed 

which computes the population of weed with respect 

to the farm size to determine if the farm has weed 

situation or not. The model of YOLOv-8n improved 
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was trained with the dataset of weeds and then 

generated the model which serves as input to the 

optimization algorithm for the classification of weed 

in the farm. To notify the farmer of the results, the 

SMTP algorithm was used which employed email 

approach to notify users of weed situation in the farm. 

 

This was achieved with an adopted existing YOLOv-

8. This YOLOv-8 is made of four sections which are 

the focus layer, the backbone, neck and head. The 

backbone is made of spatial pyramid pooling function 

which is responsible for feature extraction; however, 

the fixed pooling size and filter sized make it not able 

to facilitate multi-scale feature extraction process 

which is an issue as it might affect correct 

classification of weed in rice farm. In addition, the 

inability for multiscale feature extraction limits the 

model ability to address issues of same object 

occlusion problem. To solve this problem, the DAN 

Model was adopted. The DAN was developed as an 

attention mechanism with adaptive filters, batch 

normalization layers and different convolutional 

sizes to formulate an adaptive mechanism for 

improved multi-scale extraction. In addition, to 

improve multi-scale feature identification, the FPN 

was improved by adding additional Pyramid 

Attention Network (PAN) for improved feature 

identification. Collectively, the models were 

integrated as the new YOLOv-8n model. To address 

issues of false, negative and misrepresentation of 

weed, an algorithm was developed which used the 

input of the classification output to compute the 

population of weed in the farm. Collectively this 

presents the model for the classification of weed in 

smart agriculture. 

 

2.1 Data Collection 

Images of various rice weeds were captured manually 

using high-resolution cameras at different times of 

the day to reflect varied lighting conditions. Each 

image was focused on capturing clear, close-up views 

of the weeds as they appeared within the rice fields. 

Figures 2 - 4 presents the testbed where data were 

collected considering different species of rice weeds. 

 

 
Figure 2: Rice Flatsedge 

 

 
Figure 3: Barnyard grass 
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Figure 4: Blistering ammannia 

 

Figure 2 and 4 presents the different classes of weed collected from the farm. The size of the data captured is 

320320 resolutions. The total number of images captured is 10,000 as the sample size. Figure 5 presents the actual 

rice farm without weeds. 

 

 
Figure 5: Rice farm without weeds 

 

The collected images were labeled and annotated 

using the Roboflow tool, which allowed for efficient 

bounding box generation and class assignment for 

each weed type. After annotation, the image data, 

along with corresponding metadata such as image 

paths, weed types, annotation coordinates, and 

timestamps, were systematically stored in a SQLite 

database. This structured storage enabled seamless 

integration with the deep learning model and allowed 

for efficient retrieval during training, validation, and 

real-time inference processes. 

 

2.2 Dual Attention Network (DAN) and Improved 

Feature Pyramid Network (FPN) Models 

Optimizing YOLOv8n with a DAN and an improved 

FPN is essential for enhancing rice weed detection, 

where accuracy, scale sensitivity, and feature 

discrimination are critical. Rice fields often contain 

complex backgrounds, varying weed sizes, and 

occlusions, making it difficult for standard models to 

differentiate between rice plants and diverse weed 

species. Integrating DAN enables the model to focus 

more effectively on relevant spatial and channel 

features, enhancing its ability to distinguish subtle 

differences between crops and weeds. Meanwhile, an 

improved FPN enhances multi-scale feature fusion 

by more accurately preserving fine-grained details 

and contextual information across different layers, 

which is crucial for detecting small or partially 

hidden weeds. Together, these enhancements address 

YOLOv8’s limitations in feature refinement and 

scale variation, leading to improved precision and 

robustness in real-world rice field environments. 

Figure 6 presents the flowchart of the DAN. 
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Figure 6: The Flowchart of the DAN 

 

The flowchart in Figure 6 illustrates the functioning 

of the Dual Attention Network (DAN), beginning 

with the input feature map, which contains raw 

spatial and semantic information extracted from the 

previous layers of the detection network. This map is 

split into two attention paths: Position Attention and 

Channel Attention. In the Position Attention path, a 

feature similarity matrix is computed to determine the 

correlation between different spatial locations, 

enabling the network to weight the spatial location of 

weed features more effectively. A check is performed 

to ensure that clustered weed regions are properly 

weighted, after which the refined spatial features are 

aggregated with the original feature map. Meanwhile, 

the Channel Attention path begins by analyzing the 

channel filters, i.e., the various feature types 

(textures, edges, etc.) across the depth of the input. It 

then generates a channel attention map focusing on 

weed-related textures and identifies the most relevant 

feature channels for detection. A conditional check 

ensures that the channel-based feature identification 

is complete. Once both spatial and channel-wise 

attentions are refined, their outputs are fused 

together, producing an enriched fusion output that is 

better at localizing and identifying weeds in complex 

agricultural imagery.  

 

2.3 Improved Feature Pyramid Network FOR 

YOLOv8n 

The improved FPN is tailored towards maximizing 

feature identification from the backbone using 

weighted sum approach which better combines the 

feature maps from different layers, making it rich for 

better weed texture identification. 

The features map dimension are reduced using eleven 

(11) convolutions, then upsampling is applied or 

higher feature identification, while downsampling is 

applied for shallow layer feature detection. 

Concatenation is applied using weighted sum to 

fusion all feature maps, ten normalization using thirty 

three (33) convolutions is applied to enhance the 

feature quality and return the output. The Improved 

FPN algorithms are presented as; 

 

FPN Algorithm  

1. Start 

2. Input features %% the multi-scale feature maps 

from backbone  

3. Reduce channel dimensions using 1×1 

convolutions. 

4. Upsample higher-level feature maps  

5. Downsample shallow layers  

6. Concatenate features with weighted sum 

7. Enhance features with 33 convolutional layers   
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8. Apply batch normalization  

9. Smooth feature with  3×3 convolutions  

10. Output enhanced multi-scale features for the 

detection head  

 

 

2.4 New Transfer Learning Model 

The New transfer learning model integrated the DAN 

algorithm and the improved FPN algorithm into the 

backbone and the neck of the YOLOv8n as the 

improved model suitable for weed classification. 

Figure 7 presents the new YOLOv8n model. 

 

 
Figure 7: The Newly Enhanced YOLOv8n model 

 

Figure 7 presents the architecture of the New 

YOLOv8n. In the diagram, the proposed DAN was 

connected before the SPPF, while the Improved FPN 

was connected in the two segments of the neck 

region. This interconnection process facilitates the 

optimized feature identification process, facilitating 

deep and shallows feature maps detection before the 

SPPF extraction process. In the Neck, the improved 

FPN facilitates fine multi-scale features which are 

normalized and enriched with diverse feature maps 

which characterized weed. This architecture made up 

the improved YOLOv8n for rice weed detection. 

 

2.5 Training of the Model 

The training of the new YOLOV8n model integrated 

with DAN and an Improved FPN using a rice-weed 

dataset involves feeding annotated images into a 

modified detection pipeline that enhances feature 

representation and attention. The Improved FPN 

strengthens multi-scale detection by adaptively 

fusing spatial-semantic features across scales, 

particularly improving small weed detection under 

complex backgrounds. Simultaneously, the DAN 

module refines spatial and channel attention, 

allowing the model to focus more precisely on 

discriminative weed patterns while suppressing 

background noise and irrelevant crops. During 

training, standard regularization was used to improve 

generalization, while the loss function, comprising 

objects of interest, classification, and localization 

terms are optimized using backpropagation. The 

enhanced model learns to distinguish visual 

differences between rice and various weed types, 

resulting in improved accuracy, robustness, and real-

time performance across different field conditions. 

 

2.6 Weed Assessment Model 

The weed assessment model is designed to quantify 

and evaluate the severity of weed proliferation within 

rice fields, ensuring that intervention is triggered only 
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when weed presence surpasses a critical threshold. 

The model operates by analyzing outputs from the 

enhanced YOLOv8n classifier, which detects and 

classifies weeds across an image. A mathematical 

formulation is used to assess the Weed Severity Index 

(WSI), which combines weed count, spatial 

coverage, and weed-to-crop ratio. 

Let  

• 𝑁𝑤= total number of weeds instances 

• 𝑁𝑐 is the number of rice crops instances detected 

• 𝐴𝑤 is the total area covered by the weed 

bounding boxes 

• 𝐴𝑡 is the total image area of the camera 

• 𝐷𝑤 =
𝑁𝑤

𝐴𝑡
 = weed density per unit area 

• 𝑅𝑤𝑐= 
𝑁𝑐

𝐴𝑡
 = weed to crop ratio 

• 𝐶𝑤= 
𝐴𝑤

𝐴𝑡
∗ 100 which is the total area percentage 

covered by weed 

𝑊𝑆𝐼 =  𝛼. 𝐷𝑤 +  𝛽. 𝑅𝑤𝑐 +  𝛾. 𝐶𝑤 Equation(1) 

Where 𝛼, 𝛽, 𝛾 ∈ [0,1] are weighting coefficients such 

that, 𝛼 + 𝛽 + 𝛾 = 1, tuned based on field 

importance. The WSI threshold is categorized as; 

Low 𝑊𝑆𝐼 < 𝜑1 

Moderate 𝜑1  ≤ 𝑊𝑆𝐼 < 𝜑2 

High 𝑊𝑆𝐼 ≥ 𝜑2 

Where 𝜑1 𝑎𝑛𝑑 𝜑2 are threshold for weed severity.   

 

Weed Assessment Algorithm  

1. Start 

2. Initialization of counter %% weed, crop and area 

3. Loop through all detection  

4. 𝑓𝑜𝑟 𝑖 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒(𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠) 

5. 𝑖𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠[𝑖]  ==  "𝑤𝑒𝑒𝑑": 

6. 𝑁𝑤  ←  𝑁𝑤  +  1 %% detect all weeds 

7. 𝐴𝑤  ←  𝐴𝑤  +  𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔_𝑏𝑜𝑥𝑒𝑠[𝑖] %% detect 

all weed area  

8. 𝑒𝑙𝑠𝑒 𝑖𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠[𝑖]  ==  "𝑟𝑖𝑐𝑒": 

9. 𝑁𝑐  ←  𝑁𝑐  +  1 %% detect all rice crops  

10. Compute WSI 

11. Classify weed level with decision base 

12. Return output 

13. End  

 

2.7 System Implementation 

The implementation of the rice weed detection and 

monitoring system is based on an intelligent, modular 

design that integrates deep learning, computer vision, 

and automated communication. It was developed 

with a focus on scalability, user accessibility, and 

real-time processing of field images to assess weed 

conditions and generate actionable feedback. The 

system runs on a client-server architecture, allowing 

users to interact with the application through a 

graphical user interface, while backend modules 

handle detection, assessment, and notifications. 

Below are the proposed system requirements 

necessary for effective implementation. 

 

III. RESULT OF IMPROVED YOLOV-8N 

TRAINING 

 

Training of the improved YOLOv8n was done using 

the prepared weed dataset. During the training 

process confusion matrix was used to evaluate the 

performance. Metric such as True Positive (TP), 

False Positive (FP), recall, precision and f1score were 

applied to evaluate the model performance. Figure 8 

presents the confusion matrix. This normalized 

confusion matrix provides insights into how well the 

improved YOLOv8n performs in detecting weeds in 

rice fields, distinguishing between "Weeds" and 

"Background”. 

 
Figure 8: Confusion Matrix of the Weed Detection Model Training 
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Figure 8 presents the confusion matrix which 

measures the TP and FP of the model performance in 

weed detection. From the result, it was observed that 

the weed detection TP recorded 0.96 which implied 

that the model was able to classify weed from the 

dataset images with 96% accuracy. The results also 

recorded 0.04% FP. This implied that the model 

recorded error of 4% during the classification 

process, as it mistakenly classified the farm 

background without weed as weed. In addition, it 

correctly labels 100% of the background (non-weed 

areas) as "background," showing that the model can 

distinguish background of the farm from actual rice 

weeds. The reason for the high classification success 

was because the model trained was optimized with 

the application of improved FPN and DAN. Figure 9 

presents the precision confidence score of the model 

performance in weed detection. 

 

 
Figure 9: The Precision Confidence Graph 

 

Precision measures the ability of the model in 

correctly classifying weed in the rice farm. In the 

results it was observed that the model recorded 1.00 

as the precision results with a confidence value of 

0.919. This result implied that the trained YOLOv8n 

model was able to correctly classify weed in the rice 

farm with 100% success rate, and 92% confidence 

that the classification was positive. 

In the next results, the recall performance was 

evaluated. The recall measures the reliability of the 

model. It ensures that the plant classified as rice weed 

is actually rice weed. This is because there are 

tendencies where the model will detect other plants 

in the farm and mistakenly classify as weed. Figure 

10 presents the recall graph.  

 
Figure 10: The Result of Recall 
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From the results in Figure 10, it was observed that the 

recall value for weed detection is 0.99. This result 

means that the model was able to correctly classify 

actual rice weed with 99% success rate. The reason 

was because the model utilizes the DAN which 

maximized feature extraction using a mix of channel 

and position attention mechanism to optimize feature 

map of weed extracted from the rice farm. In 

addition, the FPN which applied weighted attention 

to maximize multiscale feature identification was 

also a factor which results to the high classification 

success recorded for weed detection. Figure 11 

presents f1-score of the model for the classification 

of weed in rice farm. This measures the relationship 

between precision and recall. 

 

 
Figure 11: The F1-Score Confidence Score 

 

Figure 11 presents the f1score of the model. This 

result measures the model performance in correctly 

classifying actual rice weed from the farm. From the 

results, the F1score reported 0.92 with 0.421 

confidence score. The results implied that 92% 

success rate was recorded in the model performance 

in successfully classifying positively actual weed in 

rice farm. The confidence score for the classification 

performance is 42% which is ok, and implied that the 

trained weed classification model was not able to just 

classify weed in the rice farm correctly, but was able 

to classified actual rice weed as the object of interest. 

3.1 Experimental Validation of the Model with 

software 

This section presents the performance of the model 

when it was deployed as a software application and 

then tested as software. The software was developed 

to allow access to videos, real time data acquisition 

and images of practical farm settings with weed. 

Figure 12 presents the results of the software 

interface with the imported data of rice farm 

containing weed.  

 

 
Figure 12: The Result of the Software Implementation 
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Figure 12 presents the data upload result of the weed 

classification software. In the results, it was observed 

that test data was imported into the model. This data 

imported was identified by the trained YOLOv8n 

which utilized the DAN to maximize feature 

identification, then the neck which applied the 

improved FPN for multi scale feature identification 

of features of different dimensions. The features are 

used as input to classify weed in the farm and the 

outcome, then assessed by the weed assessment 

algorithm. The result was reported in Figure 13.  

 

 
Figure 13: Result of the Weed Classification Software 

 

Figure 13 presents the classification output of the 

deep model for rice weed detection. The results 

showed that the model was able to correctly classify 

the portion of the farm with high severity of weed. 

 

CONCLUSION 

 

The proposed paper came up with an improved weed 

detection and evaluation system that is specific to rice 

farms in Nigeria to overcome the weaknesses of the 

conventional weed management practices and 

previous machine learning systems. The proposed 

design enhanced the YOLOv8n model by 

incorporating a Dual Attention Network (DAN) into 

the backbone and an enhanced Feature Pyramid 

Network (FPN) into the neck that would allow 

extracting features at multiple scales and distinguish 

weeds and crops more effectively. On 10,000 high-

resolution images of the fields that were taken at 

Ihuokpara, Enugu, and on pre-existing datasets of 

rice weed on Roboflow, a hybrid dataset was 

developed to ensure that the model was trained in 

various lighting types and diverse weed species. 

 

The better version of YOLOv8n model made major 

performance improvements in training and 

validation. The model achieved a true positive 

detection rate of 96%, 100% precision and a 99% 

recall indicating that it has the capability of 

identifying rice weeds and reducing false positives 

and negatives. The F1-score was 92% as well, which 

is an affirmation that there existed a tradeoff between 

precision and recall. Weed Severity Index (WSI) 

model further enhanced the framework in quantifying 

the weed population compared to the farm size by 

categorized the severity as low, moderate or high. 

This is because of its dual ability to detect and 

determine the severity of the weed making the system 

more reliable to be used in the real world compared 

to the current models which detect single weeds. 

 

To sum up, the incorporation of DAN and enhanced 

FPN into YOLOv8n resulted in a highly precise, real-

time weed-detecting framework that could be used in 

the field of precision agriculture. The training of this 

model on unmanned aerial vehicles (UAVs), along 

with the SMTP-driven notification systems, will 

make sure that farmers are provided with the 

information about the weed condition and 

intervention in a timely manner. This work will help 

in making agricultural practices more sustainable as 

it will reduce excessive dependence on herbicides 
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and enhance active farm management, therefore, 

enhancing crop yields and resource-using efficiency. 
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