© APR 2023 | IRE Journals | Volume 6 Issue 10 | ISSN: 2456-8880

Energy-Efficient Al Model Design for Edge Devices
Using Neural Network Pruning and Optimization
Techniques

RISHABH AGRAWAL'!, HIMANSHU KUMAR?
'Data Science, Advisor
’Marketing Data Scientist

Abstract- Al is progressively being implemented at
the edge computing platforms of smartphones,
wearables, industrial sensors, and autonomous
systems. Although such deployments can support
real-time processing, preserve privacy, and decrease
reliance on the network, they tend to be restricted by
limited computational power, limited memory, and
strict power requirements. Without much
optimization, the traditional deep neural networks
with their large number of parameters and high
computational needs are ill-suited to such
environments. The present article discusses the
neural network pruning and complementary
optimization methods as possible solutions to these
issues by suggesting the energy-efficient design of AI
models. Pruning is used to remove redundant
parameters to reduce model size and operations, and
quantization is used to encode high-precision
weights into low-bit representations to reduce
memory and energy usage. Efficiency is additionally
improved with knowledge distillation and lightweight
architectures with no performance costs, and
compiler-level optimizations are applied to guarantee
that compressed models can produce real-world
runtime gains on a variety of hardware platforms.
The discussion combines theoretical knowledge and
practical processes, such as step-by-step design
processes and example codes, and latency, memory
footprint, and energy consumption measuring
guidelines on actual models. Issues like accuracy
loss, heterogeneity of hardware, and use of
standardized benchmarks are critically discussed,
and future research directions, including ultra-low-
bit networks, hardware-aware neural architecture
search, and energy-centric training objectives, are
discussed. Through a combination of cutting-edge
approaches and deployment-focused ideas, this piece
of work highlights that AI minimal energy usage is
not only a technical one but an important action

IRE 1711192

towards sustainable, scaled, and accessible edge
computing.

Keywords: Energy-Efficient AI; Edge Computing;
Neural Network Pruning; Model Optimization;
Quantization; Knowledge Distillation; Lightweight
Architectures; Compiler Optimizations

L INTRODUCTION

The field of artificial intelligence has evolved at an
alarming pace, moving past science fiction research
test cases to become an omnipresent technology in
almost all aspects of modern life. Al was previously
limited to machines with great computing power, like
servers and cloud systems, and is now being
implemented in edge devices, such as smartphones,
wearable sensors, surveillance cameras, autonomous
drones, and industrial monitoring units. The
motivation behind this migration is the desire to have
real-time processing, lower latency, greater data
privacy, and not be restricted by an unreliable or
expensive network connection. As an example, a
wearable medical sensor detecting heart abnormalities
should be able to deliver real-time data without
depending on internet connectivity, whereas an
autonomous drone flying in the disaster area needs to
make decisions locally to prevent a delay in
communication. These situations demonstrate the
strategic significance of the coming of Al closer to the
data source.

However, this transition is associated with serious
difficulties. The edge devices are usually subjected to
severe resource limitations: low processing power,
minimal memory capacity, low energy availability,
and low thermal margins. An edge device can also
have a small battery and as well as have a few
megabytes of RAM, unlike a cloud data center that has

ICONIC RESEARCH AND ENGINEERING JOURNALS 1141

© APR 2023 | IRE Journals | Volume 6 Issue 10 | ISSN: 2456-8880

unlimited compute resources and cooling
infrastructure. Even running state-of-the-art deep
learning models, which may include millions of
parameters and billions of floating-point operations,
on such devices is impractical and can be disastrously
user-experience-wise because of their high latency and
extreme battery consumption. The lack of match
between the ever-increasing sophistication of Al
models and the limited capability of edge hardware
has established a compelling need to develop energy
efficient model designs.

Energy efficiency is not necessarily just a technical
requirement. On a big scale, the Internet of Things
(IoT) and future-generation digital ecosystems will be
comprised of billions of networked devices. When all
these devices consume a lot of power because of the
inefficient Al workloads, the aggregate energy usage
would add to high environmental costs and carbon
emissions. Therefore, the concept of energy-efficient
Al at the edge means not only the capability to perform
but also sustainability, and assisting the world in
minimizing the ecological footprint of technology.
Moreover, efficiency has the potential to increase
access, and it may become possible to implement Al
in remote locations, developing countries, or mission-
critical environments with limited energy resources.
To overcome this issue, it is necessary to reconsider
the very nature of the Al models' design, training, and
deployment. In place of just using big general-purpose
neural networks, researchers and engineers have
begun to gravitate towards model compression and
optimization approaches. One of the most promising
strategies is neural network pruning, which
systematically eliminates certain unnecessary or
unimportant parameters, as well as decreasing storage
and computation expenses. Other complementary
techniques like quantization, which promotes a lower
memory footprint through reduced numerical
precision at the cost of faster inference, or knowledge
distillation, in which a smaller model learns to mimic
the behavior of a larger one, increase efficiency with
accuracy loss. In addition to these algorithmic
techniques, compiler-level and hardware-based
optimizations are important mechanisms to transform
the efficiency issues presented on paper into
performance benefits on actual hardware.

IRE 1711192

Although these developments have taken place, there
are still challenges. Pruning may cause accuracy to
degenerate when it is not well applied and retrained.
As a powerful tool, quantization can lead to instability
in some areas (e.g., natural language processing)
unless more sophisticated methods like quantization-
aware training are applied. Edge hardware is
extremely heterogeneous, with microcontrollers and
dedicated neural processing units, and therefore, it
makes the implementation of standard solutions
difficult. Furthermore, because of the absence of
universal standards of energy consumption, it is hard
to compare trade-offs across models and platforms in
general. These constraints highlight why systematic
exploration and reporting of the design principles of
energy efficient Al to the edge environment should be
made.

This article seeks to fill this gap with a detailed
discussion of the design of the energy-efficient Al
models to serve edge devices, with a special interest in
neural network pruning and its combination with
optimization methods. It starts by putting edge Al into
context in the wider context of computational
constraints and deployment issues. It then goes on to
discuss the principles underlying pruning,
quantization, knowledge distillation, and lightweight
architecture design, and moves on to discuss compiler-
level optimizations and hardware-sensitive strategies.
Workflows are presented in practice that include step-
by-step procedures of compressing, fine-tuning, and
deploying models, as well as information regarding
how to evaluate the energy efficiency in terms of
latency, memory, and power consumption
measurements. Open challenges and future directions
of research are also discussed, including ultra-low-bit
quantization, energy-friendly neural architecture
search, and federated learning.

ICONIC RESEARCH AND ENGINEERING JOURNALS 1142

© APR 2023 | IRE Journals | Volume 6 Issue 10 | ISSN: 2456-8880

Flowchart 1: Model Optimization Pipeline for Edge
Al

n%

Hardware N Deployment

Mapping on Edge Device

I
M

Monitoring & N
Feedback Loop

IL. EDGE AI LANDSCAPE AND
CONSTRAINTS

The emergence of edge computing is one of the most
important paradigm shifts in the implementation of
artificial intelligence. Historically, Al inference
depended on centralized cloud servers, where large
neural networks could be run with a large amount of
computational resources and dedicated hardware like
GPUs and TPUs, with very low latency compared to
data center settings. Yet, with the growth of the real-
time intelligence requirements into other areas of
autonomous navigation, wearable health monitoring,
smart agriculture, and industrial automation, the
shortcomings of relying on the clouds have become
more and more evident. Round-trip latency, data
privacy threats, and high energy use of constant
connectivity have provided a strong motivation to
move intelligence to the edge.

There is a wide range of hardware represented by edge
devices. This involves smartphones, smart speakers,
and headsets with augmented reality and smart
wearable fitness trackers on the consumer side. Edge
devices, in the sense of industrial and enterprise
applications, include surveillance cameras and
manufacturing robots, drones, and remote
environmental sensors. On the most basic level,
microcontrollers integrated into appliances or medical
devices are the limit of what can be sometimes called
TinyML, where models require execution on a system
with kilobytes of RAM, and only a few milliwatts of
power. This variety highlights the possibilities as well
as the challenges of taking Al to the limit: the number

IRE 1711192

of applications available is immense, but the hardware
is extremely limited and fragmented.

These limitations of edge devices can be divided into
anumber of categories. Computational capabilities are
often small; most devices typically employ low-power
processors and, at best, include built-in GPUs or
dedicated NPUs. Although these accelerators are
optimized for specific workloads, they might not be
compatible with bigger models. Another important
bottleneck is memory capacity: machines frequently
have memory resources in the tens or hundreds of
megabytes range, and sometimes still less. By
contrast, state-of-the-art vision or language models
can require gigabytes of memory at inference. This
loophole renders naive deployment impossible. The
most urgent issue is, perhaps, energy consumption,
with most of the edge devices using batteries. Long or
power-intensive inference workloads may rapidly
consume power, lowering the usability of a device,
and decreasing its uptake. Lastly, there are thermal
limits such that although a device can technically run
a big model, it can become overheated, which can
result in throttling or failure in sustained operation
cases.

Besides these inherent constraints, edge Al
implementation will have to deal with environmental
and application-specific constraints. An example
would be that, in order to navigate safely, drones or
self-driving cars need to react to sensor inputs in real
time with no room to spare for cloud inferences.
Precision and reliability are the most important factors
in wearable healthcare devices, though patient comfort
would not be ensured by huge batteries or excessive
heat production. Sensors of the industrial IoT are
required to be unattended and operate for months or
years in remote or dangerous places, and thus, energy-
efficient Al becomes a requirement of reliability. All
these situations underscore the fact that energy
efficiency is not only a question of optimization, but a
necessity in many cases.

These challenges are brought to the fore more clearly
by the difference between the cloud and edge
deployment. In a cloud environment, scaling a model
typically includes the addition of additional compute,
a distributed architecture, or a specialized accelerator.
On the edge, scaling cannot occur: the hardware is

ICONIC RESEARCH AND ENGINEERING JOURNALS 1143

© APR 2023 | IRE Journals | Volume 6 Issue 10 | ISSN: 2456-8880

fixed, and any solution has to be able to accommodate
those hard constraints. In addition, data transfer to the
cloud in itself requires energy, and in most of the uses
- like smart farming in rural areas or deployments to
military fields - there might not be reliable
connectivity. Therefore, to make AI more edge-
optimized, one should not only decrease the
complexity of the model, but should also ensure a
better performance in terms of deployment efficiency,
without compromise the performance of a task.

A number of case studies demonstrate the
opportunities, as well as the challenges. Wearable
ECG monitors in healthcare have now been equipped
with Al models that can make real-time arrhythmia
diagnoses. There is a fine line between these models:
they should be precise enough to identify life-
threatening conditions, but they should also be
efficient enough to operate all the time in a device with
a small lithium-ion battery. In autonomous drones, Al
vision systems enable navigation and object
recognition; however, high-energy = workloads
decrease the flight time, which limits the performance
of the missions. Smart sensors used in industrial IoT
to detect equipment health need to execute predictive
models locally to minimize downtime, although they
are common at remote locations, which have limited
power supply. In both these instances, functionality is
enabled by energy-efficient design.

Another thing that should be highlighted is that the
system-wide implications of energy efficiency are also
present. It is estimated that the Internet of Things will
connect billions of edge devices at scale. Assuming all
these devices operated inefficiently with Al models,
the total energy usage of all the devices could be
enormous, a significant source of carbon emissions in
the world. On the other hand, energy demand might
decrease significantly through the introduction of
optimized models on a broad scale, which would align
the development of edge Al with the wider
sustainability agenda.

III. FOUNDATIONS OF NEURAL
NETWORK PRUNING

Among the most significant concepts that can be used

to make the models of artificial intelligence more
efficient is the understanding that the vast majority of

IRE 1711192

deep neural networks are overparameterized. That is
to say, they have much more weight and connections
than are actually needed to get their task done with
high precision. Although this duplication is useful in
training, where the additional capacity permits better
convergence and generalization, it is a burden in
inference, particularly when the resources of edge
devices are limited. Neural network pruning can solve
this problem by sparsifying a trained model, such as
by deleting parameters, connections, or entire sub-
networks, to make it computationally and memory-
efficient, with minimal or no loss in accuracy.

Pruning can be considered a type of model
compression. Pruning does not involve the
reconstruction of a smaller model; instead, a trained
model that is usually large is pruned down to a smaller
size. The hypothesis behind it is that in a big network,
there is a smaller and effective subnetwork that can
perform similarly. Empirical studies have
demonstrated this idea (e.g., the lottery ticket
hypothesis), and this idea has been formalised using
frameworks like the lottery ticket hypothesis, where it
is assumed that dense neural networks hold winning
tickets, i.e., subnetworks that, when trained in
isolation, can perform as well as the original model.

Table 1: Neural Network Compression Techniques
and Trade-offs

Techniq | Description Advanta | Trade-offs

ue ges

Pruning | Removal of | Reduces | May
redundant size and | reduce
weights or | latency, | accuracy if

neurons improve | too
s aggressive
efficienc
y
Quantiza | Conversion Smaller | Risk of
tion of models, | numerical
weights/activ | faster instability,
ations to | executio | accuracy
lower n, lower | drop
precision power
(e.g., 8-bit, 4-
bit)

ICONIC RESEARCH AND ENGINEERING JOURNALS 1144

© APR 2023 | IRE Journals | Volume 6 Issue 10 | ISSN: 2456-8880

Knowled | Training a | Good Requires
ge smaller accurac | pre-trained
Distillati | "student" y with | large
on model to | smaller | model
mimic a large | size
"teacher"
model
Low- Decomposin | Reduces | Can be
rank g weight | computa | complex to
Factoriz | matrices into | tion and | implement
ation smaller ones | storage
Weight Reusing Reduces | May
Sharing | weights redunda | constrain
across layers | ncy representat
or filters ional
capacity

Pruning is of a two-fold advantage. One is that the
pruning method keeps the number of parameters
small, decreasing the storage needs and allowing it to
be deployed on devices with constrained memory.
Second, it reduces the computations involved in the
inference and makes it more speedy, and consumes
less energy. These advantages are particularly
imperative to edge devices, of which memory
bandwidth and power supply can be more limiting
than raw compute capacity.

Pruning techniques can be broadly divided into
unstructured, structured, and dynamic techniques,
each having different characteristics and trade-offs.

1. Unstructured pruning is used to remove individual
weights according to some criteria, usually
magnitude. To illustrate it, when the values of
weights are within the range of 0, the weights are
discarded based on the assumption that they do not
impact the end product much. Very high sparsity
levels, which can be attained by this type of
pruning, can dramatically decrease the number of
nonzero parameters. Non-structured pruning,
however, causes irregular sparsity patterns that are
not necessarily well supported by existing
hardware and libraries. Storage savings are large,
but actual runtime acceleration on edge devices
might be limited except in the case of special
sparse matrix operations.

IRE 1711192

2. The process of structured pruning removes bigger
parts of the network, including an entire neuron,
convolutional filter, channel, or even layer. The
result of this form of pruning is smaller and more
dense models that are more natural to map onto
hardware. Since the resultant structure is still
regular, structured pruning produces real latency
and energy savings in inference. As an example,
when the number of convolutional filters in a
vision model is cut down by 30 percent, the overall
number of operations declines, and the compilers
can execute them more efficiently. The trade-off
here, though, is that structured pruning is not
usually as aggressive as unstructured pruning,
because removing complete components may
increase the loss of accuracy.

3. Dynamic pruning is a pruning process that is
decided at runtime, frequently depending upon the
input data. Under this method, some neurons or
channels are selectively excited on the basis of
their usefulness to the present input. An example is
the image classification model, where certain
network calculations will be omitted when the
input is simple. Although dynamic pruning
provides flexibility and can scale computation to
its workload complexity, it needs special oversight
and hardware to prevent the introduction of
unpredictable latency.

Pruning is largely a question of what parameters to
eliminate. Magnitude-based pruning (eliminating the
smallest weights in absolute value) and norm-based
pruning (eliminating filters or channels with minimum
L1 or L2 norm) are also considered common
heuristics. More advanced techniques include
sensitivity analysis, in which the degree to which a
parameter adds to either loss or precision is assessed.
During training, regularization-based methods like L1
or group Lasso promote sparsity, which is easily
pruned later. More recently, learning-based pruning
techniques have appeared, in which the schedules of
pruning are learned automatically by means of
reinforcement learning or meta-learning.

Pruning is not a one-time affair. Pruning has often
been used in an iterative way in most workflows,
where a small percentage of parameters is removed per
round, and then the workflow is refined to regain the
accuracy. This slow method prevents the drastic

ICONIC RESEARCH AND ENGINEERING JOURNALS 1145

© APR 2023 | IRE Journals | Volume 6 Issue 10 | ISSN: 2456-8880

decrease in performance and enables the model to
adjust to its constricted structure. One of the design
issues that practitioners should consider is the balance
between pruning aggressiveness and retraining effort.

Although the benefits of pruning are undeniable, there
is a cost associated with pruning. The highest-profile
risk is a degradation of accuracy, particularly in the
case of over-aggressive pruning or pruning without
adequate fine-tuning. Moreover, the advantages of
pruning are very much dependent on hardware and
runtime support. Unstructured sparsity, such as that,
can help to cut down on model size, but provide
minimal energy reductions on devices with no
optimized sparse kernels. The deployment gap is also
another problem: a model that seems to be efficient
when measured in FLOPs (floating point operations)
can still use a lot of energy because of how memory
access is utilized or because of the inefficiency of the
hardware. Therefore, the role of pruning should be
seen as a part of a larger optimization pipeline, which
should also include quantization, distillation, and
compiler-level optimizations.

Iv. QUANTIZATION AND LOW-PRECISION
COMPUTING

Although pruning also solves the issue of redundancy
in model architecture, another essential frontier in
turning neural networks into efficient algorithms is
quantization, the procedure of decreasing the
numerical level of representation of weights,
activations, and gradients. Quantization essentially
trades off high-precision floating-point operations,
which are usually 32bit (FP32), with lower-precision
ones like 16-bit, 8-bit, or even binary ones. This
minimization can be translated to a small model size,
faster calculation, and low power usage-which are
especially important when dealing with edge devices
with limited memory bandwidth and processing
power.

In most of the modern deep learning models, training
is done with 32-bit floating-point precision due to the
ability to make fine-grained wupdates during
backpropagation and converge in a stable manner. Yet,
once training has taken place, the precision of such an
inference is often not required to a high degree. Most
weights are concentrated at small values, and adding

IRE 1711192

finer granularity to activations does not make a
discernible difference to the performance of models.
Hardware-wise, lower-precision operations not only
take fewer bits to represent numbers, but also use less
energy to do arithmetic and memory transfers.

An example is that an FP32 multiplication requires
many times the energy of an INT8 multiplication.
Likewise, loss of precision directly reduces a model's
storage size: an FP32 model with 100 million
parameters can be converted to INT8, and the memory
footprint decreases by 400 MB to 100 MB. This is vital
to edge devices such as microcontrollers,
smartphones, and [oT sensors whose memory capacity
can often be measured in tens of megabytes or less.

The methods of quantization can be categorized in two
major dimensions that include the process of applying
the quantization and the mapping of the numerical
ranges.

1. Post-training Quantization (PTQ):

When using this method, a trained FP32 model is
published in a lower-precision format. The PTQ is
attractive due to the fact that it does not need
retraining, thus it is fast and cost effective. The most
basic quantization is weight quantization, in which a
mapping of every weight to an integer is computed.
Further refined PTQ techniques measure both weights
and activations. The primary weakness of PTQ is that
the accuracy can be lessened, primarily in models that
are sensitive to small numerical perturbations,
including recurrent networks or speech recognition
models.

2. Quantization-Aware Training(QAT):

To reduce the loss of accuracy observed in PTQ, QAT
fakes quantization in training. With the forward pass
including the effects of quantization, the model is also
trained to be resistant to lower precision. QAT makes
the training process more complex, but it usually
makes it more accurate when trained at low precision.
E.g., an image classification model might lose 5
percent accuracy with PTQ and only 1 percent with
QAT with INTS arithmetic.

3. Unlike Uniform Quantization:
In uniform quantization, activations (weights) are
scaled into equal-size intervals, and a value is rounded

ICONIC RESEARCH AND ENGINEERING JOURNALS 1146

© APR 2023 | IRE Journals | Volume 6 Issue 10 | ISSN: 2456-8880

towards the nearest bin. Non-uniform quantization,
conversely, puts more bins in areas with a higher
density of the numbers (e.g., near zero), which
enhances the faithfulness of the representation.
Although uniform quantization is compatible with
hardware, in many cases, nonuniform quantization can
be more accurately represented at a given bit-width.

4. Dynamic vs. Static Quantization:

In contrast to dynamic quantization, which scales
factors on-the-fly, static quantization precomputes
scaling factors using calibration data, so that the
mappings remain consistent on-the-fly. By
comparison, dynamic quantization calculates scaling
factors per batch or input on the fly, which is more
flexible at the expense of run-time overhead.

It has consolidated around a few common low-
precision formats. The most popular is INT8
quantization, which offers a compromise between
efficiency and precision and is available on most deep
learning systems and hardware accelerators, including
NVIDIA TensorRT, Qualcomm Hexagon DSPs, and
ARM Cortex-A processors. The other popular format
is FP16 (half precision), which provides speedups on
GPUs that support it and is faster than FP32, but
otherwise has the same advantages as floating-point
dynamic range. At the other extreme, binary and
ternary networks cut the weights down to one or two
bits, allowing an unimaginable memory requirement
and unprecedented speed of inference. Nevertheless,
such techniques can be rather demanding in terms of
architectural modifications and can have a hard time
with complex tasks.

The real capabilities of quantization are not realized
until hardware that takes advantage of lowprecision
operations is used. Contemporary Al accelerators,
such as Google TPU, NVIDIA Tensor Cores, and
Apple Neural Engine, are optimized to perform the
arithmetic of INT8 and FP16. Onedge devices, special
integer operations can use four or more times less
energy per operation than FP32. Furthermore, reduced
data representations reduce memory bandwidth
consumption, usually the most energy-demanding part
of inference.

Although quantization is promising, it presents a
number of problems. Not every model can be equally

IRE 1711192

resistant to low precision. Activation-based models
whose dynamic range is large or models that are
sensitive to finer-grained changes in weights can
suffer accuracy losses. Also, although INTS
quantization is well supported, other formats, such as
INT4 or binary, need special hardware, which is not
yet everywhere. The complexity of deployment is
another issue: training based on quantization needs
more engineering, and calibration of fixed
quantization needs representative data.

The other problem is compatibility with pruning. Even
a pruned model can be working towards the limit of
tolerable loss of accuracy, so further quantization is
dangerous. Finding a balance between compression
ratio between pruning and quantization is, therefore,
an art and not a science.

V. KNOWLEDGE DISTILLATION AND
MODEL COMPRESSION

Although pruning and quantization concentrate on the
minimization of computational and memory
requirements of neural networks, knowledge
distillation (KD) is a complementary technique that
solves the problem from a new perspective. Instead of
modifying the architecture or numerical precision of
an existing model directly, distillation builds on the
large, high-capacity model (the teacher) to learn in a
smaller, more efficient model (the student). This
enables the student to estimate the performance of the
teacher whilst being much lighter, faster, and more
deployable to resource-constrained edge devices.

Knowledge distillation was originally proposed by
Geoffrey Hinton and others in 2015 as a way of
compressing the model of a group of neural networks
into one. It was noted at the same time that large
ensembles were state-of-the-art in terms of accuracy
but were not feasible to deploy. The most important
lesson was that the soft outputs (probability
distributions) of a teacher were more informative than
hard and one-hot labels that were used in training.
Consider, as a case in point, that the teacher is sure that
a particular image represents a dog with a 90%
likelihood and sure that it represents a wolf with a 9%
likelihood; relative probabilities express structural
knowledge about the data distribution that cannot be
represented by a univariate label. The student can

ICONIC RESEARCH AND ENGINEERING JOURNALS 1147

© APR 2023 | IRE Journals | Volume 6 Issue 10 | ISSN: 2456-8880

generalize more by training the student on these
softened outputs, in despite of the reality that it has
much less parameters.

Practically speaking, knowledge distillation consists
of training the student model using a weighted sum of
two losses:

1. The distillation loss, the measurement of the
difference between the predictions of a student and
the soft probability outputs of the teacher.

2. The normal task loss, which measures the
predictions of the student compared to the
groundtruth labels.

The softmax function is modified with a temperature
parameter to regulate the softness of the output
distribution of the teacher. An increase in temperature
results in the probability distributions becoming
smoother, and hence, the relative similarities between
the classes are captured by the student with ease.

The outcome is a student model with the inheritance
of inductive biases and decision boundaries of the
teacher, in addition to learning on the basis of ground
truth. This is especially strong in edge Al applications,
where the student would need to attain high accuracy
even in the case of architectural simplification and
severe compression.

Model compression pipelines have become dependent
on knowledge distillation. Rather than pruning or
quantizing a model, which can produce brittle
performance, practitioners often initially distill
knowledge into a smaller student model and then
prune or quantize it. Such sequencing means that the
student starts at a point of strength, having taken in the
representative power of the teacher.

To illustrate, BERT and GPT are large-scale models
that are prohibitively costly to run on mobile devices
in the context of natural language processing. Distilled
versions like DistilBERT and TinyBERT have shown
that KD can reduce the number of parameters by half
or more without significantly affecting the accuracy of
the teacher on benchmark tasks (over 95%). This
efficiency versus performance is exactly what edge
applications are in need of.

IRE 1711192

Researchers have, over the years, come up with
various variants of knowledge distillation in order to
enhance its ability to work in various contexts:

o Logit-based distillation: The archaic methodology,
in which the student is trained on the softened
probability distribution of the teacher.

o Feature-based distillation: The student is not only
required to learn the output probabilities, but also
to imitate intermediate feature representations of
the teacher's hidden layers. This finds its
application in convolutional neural networks,
especially in tasks in computer vision.

o Seclf-distillation: It has one model as teacher, which
is the student; and the deeper layers supervise the
shallower ones. The method does not have the
overhead of training a distinct large teacher, and
has displayed favorable outcomes in image
classification and speech recognition.

Multi-teacher distillation: Knowledge is transferred to
one student by a collection of teachers, possibly
trained on different tasks/modalities. This increases
the generalization of the scope and finds application in
multi-task or multimodal edge applications.

The fact that knowledge distillation works well with
other compression methods is one of its strengths. As
an example, a quantized or pruned model can
experience significant accuracy loss when naively
used. This can, however, be alleviated by distillation,
which enables the student to regain performance with
the assistance of the teacher. On the other hand, a
distilled student model is necessarily smaller and can
be further pruned or quantized with less disastrous
accuracy degradation.

A good example of this is the deployment of image
classification networks on microcontrollers. A student
model that is trained on both logits and feature maps
on a ResNet teacher can be trained at a fraction of the
cost and achieve similar accuracy. With INTS
quantization, the model is light enough to execute in
real time on ARM Cortex-M processors, and this, as
well, illustrates the practicality of the two.

ICONIC RESEARCH AND ENGINEERING JOURNALS 1148

© APR 2023 | IRE Journals | Volume 6 Issue 10 | ISSN: 2456-8880

VL COMPILER AND RUNTIME
OPTIMIZATIONS

In addition to pruning, quantization, and distillation,
the layer of compiler and runtime optimization can
provide huge efficiency improvements to edge Al. A
blueprint can perform dismally after being compacted,
even a well-compacted model. At the boundary, where
hardware is no more than a smartphone and an
embedded general-purpose (GPU) up to a
microcontroller, it is important to consider using
compiler frameworks and runtime systems to help
bridge the gap between model development and
implementation.

In the current state of AI compilers, high-level
frameworks (TensorFlow or PyTorch) are converted
to low-level code that is optimized to run on a
particular hardware backend. These compilers take the
computational graph of a neural network and
transform it to minimize overhead and produce kernels
that use hardware accelerators. In this way, they are
able to reduce memory usage, minimize redundant
operations, and maximize throughput.

As an example, XLA (Accelerated Linear Algebra) in
TensorFlow and TorchScript in PyTorch make use of
graph-level optimization strategies like operator
fusion, in which successive operations are represented
as a single kernel to minimize the amount of transfers
between intermediate memory. In line with this,
compilers such as Apache TVM and Glow
automatically find the best scheduling tactics,
generating binaries specific to deployment, tailored to
either an ARM CPU, NPU, or GPU.

Table 2: Compiler and Runtime Optimization

Strategies
Optimizati | Descriptio | Example | Benefits
on n Framewor
Technique ks /
Tools
Operator Merges TVM, Reduces
Fusion multiple TensorRT | memory
operations overhead
into one and
latency

IRE 1711192

kernel
execution
Memory Optimizes | Glow, Reduces
Scheduling | allocation | XLA memory
and reuse footprint
of memory
during
inference
Graph Simplifies | ONNX Faster
Optimizati | computatio | Runtime, | execution
on n graph by | TensorFlo |, less
removing | w Lite resource
redundanci usage
es
Hardware | Exploits CUDA, Better
Accelerati | GPU, Qualcom | throughp
on NPU, or | m ut,
DSP for | Hexagon | reduced
optimized | DSP CPU load
execution
Dynamic Applies PyTorch Balances
Quantizati | quantizatio | Lite speed
on n only at with
runtime minimal
training
effort

ICONIC RESEARCH AND ENGINEERING JOURNALS

In addition to the compiler-level optimizations are
runtime optimizations, which control the execution of
models when doing inference. Edge runtime systems
are optimized to support lowlatency, low-power
systems, including TensorFlow Lite, ONNX Runtime,
and Core ML. They handle memory assignment well,
recycle buffers, and make certain that the quantized
models can run smoothly on hardware with mixed-
precision platforms.

In the case of TensorFlow Lite, as an example,
delegates are used to pass a portion of a model to a
dedicated hardware device, such as an NPUs or DSP,
and run the rest on the CPU. This hybrid
implementation has the benefit of making sure that
every operation is run in the place it works best, so that
there are no excesses in performance and energy
consumption. In a similar vein, ONNX Runtime has
dynamic graph optimizations, which allow the model

1149

© APR 2023 | IRE Journals | Volume 6 Issue 10 | ISSN: 2456-8880

to adjust its behavior based on the capabilities of the
device.

Graph rewriting is also used by compilers and
runtimes to optimize inference. Widely used
techniques are constant folding (precomputing of
static values), dead code elimination (unused portions
of the computation graph), and precision where it is
safe. Optimizations at the operator level, e.g., kernel
fusion, loop unrolling, etc., further cut down on
latency. The optimizations are optimal, especially at
the edge, where reducing memory access can often be
more essential than reducing raw compute.

One of the real-life applications is the implementation
of convolutional neural networks on smartphones. In
the absence of graph optimization, the number of
intermediate feature maps can recycle the limited
memory resources many times over. At half the
memory footprint with compiler-level fusion and
buffer reuse, the same model can be executed in real-
time, providing the user experience with no
compromise.

Hardware awareness is perhaps the most radical
change that has occurred in compiler and runtime
developments. That is why modern compilers are able
to automatically create code, which is optimized to the
underlying architecture, rather than depending on
developers to manually handtune models to work on
this device. The compiler, regardless of which of
ARM, Neon, Qualcomm, Hexagon DSP, or Apple,
Neural Engine, can be targeted, makes sure that
computation is performed in a manner that conserves
power and provides the maximum throughput. This
flexibility is essential in the fractured ecosystem of
peripherals, where there is no one optimization
strategy that can be applied to all.

Compiler and run time optimizations not only make
performance faster, but they also make it energy
efficient and sustainable. They decreased the energy
cost of inference by reducing unnecessary memory
transfers and a limited number of kernel launches, and
they allowed hardware accelerators. This can be
dramatically scaled to billions of deployed edge
devices, which further supports why software
optimization has to be a critical component of creating
an environmentally responsible Al system.

IRE 1711192

Compilers and runtimes are not without problems,
although they have progressed. Not all models support
operator coverage: some models have new layers that
are not supported by edge runtimes, and have to fall
back to slower CPU execution. Besides, automated
optimizations may at times give suboptimal results as
opposed to kernels that are carefully hand-tuned.
Auto-tuning compilers. Research is currently being
done to use reinforcement learning or evolutionary
algorithms alongside hardware profiling to find the
best execution strategy automatically.

VII. CASE STUDIES AND APPLICATIONS

The worthiness of pruning, quantization, knowledge
distillation, and compiler/runtime optimizations can
be understood most effectively by looking at their
application in practice. In healthcare, autonomous
systems, smart cities, and consumer devices, these
techniques have made it possible to deploy models that
would in many cases be too large, too slow, or too
energy hungry to run on edge devices. This section
also discusses some of the most notable case studies
that show how the design of energy-efficient Al
models can be moved to practice.

7.1 Healthcare and Wearables

One of the most challenging industries with regard to
edge Al is healthcare, as machines need to be precise,
dependable, and able to run continuously with tight
energy and privacy requirements.

Wearable healthcare devices are an interesting case.
Consider the example of electrocardiogram (ECQ)
monitoring devices to record arrhythmias as they
appear. If a complete convolutional neural network is
trained to identify the presence of small amounts of
irregularities in waveforms, it can have tens of
millions of parameters. It is not possible to run such a
model on a battery-operated wristband/patch. This has
been overcome by researchers by using structured
pruning, eliminating redundant filters, and then INTS8
quantization. The outcome was a model that was
compressed by almost 80 percent and did not lose
much accuracy. The model, with the help of compiler
support on TensorFlow Lite, was able to infer in real-
time on the ARM Cortex-M microcontrollers and
increase the device battery life to several days.

ICONIC RESEARCH AND ENGINEERING JOURNALS 1150

© APR 2023 | IRE Journals | Volume 6 Issue 10 | ISSN: 2456-8880

The other notable use is on-device respiratory
monitoring. In this case, recurrent or transformerbased
models tend to be required to represent temporal
relationships in breathing patterns. Using knowledge
distillation, a small gated recurrent unit (GRU)-based
student model was trained to reproduce the predictions
of a larger transformer teacher. The student, together
with quantizationaware training, was able to match the
accuracy of the teacher using one-tenth of the energy
per call. This method enabled the incorporation of
high-tech respiratory monitoring in low-power patches
that were worn on the wrist to manage chronic
illnesses.

Robotics

Smart Factories

Drones

Wearable Health Monitor

Mobile Face Re

0 50 100 150 200 250

® Reduction (%) Energy After () ™ Energy Before (J)

Figure 1: Case Study — Energy Efficiency Gains
Across Applications

7.2 Self-driving cars and drones.

Another area that cannot be done without edge Al is
automated vehicles (AVs) or drones. In this case, the
latency concerns safety: it should be possible to make
decisions within milliseconds using sensor data, and
the use of cloud servers is not an option.

Onboard object detection is important in the case of
drones in navigation and avoiding obstacles. An object
detector like YOLOV3, although a powerful model, is
computationally expensive. The researchers used
pruning to cut the redundant convolutional layers and
quantization to INT8 and deployed the optimized
model on embedded GPUs like the NVIDIA Jetson
Nano. Benchmarks demonstrated a 3-fold decrease in
latency and 4-fold decrease in energy use, which
allowed increased flight time with a detection
accuracy of more than 90 percent.

The same is the case with autonomous ground

vehicles. To illustrate, perception systems that are
based on LiDAR need point-cloud data to be

IRE 1711192

combined with the input of cameras. Massive
meshworks of connections can flood the processors
onboard. Distillation of knowledge has been shown to
work well in this scenario, with small student models
achieving the same performance as large sensor fusion
teachers. Combined with compilers such as NVIDIA
TensorRT, which automatically fuse them to be
implemented in a graphics card, these models can run
in real-time at the tighter thermal and power
constraints of automobile hardware.

7.3 Intelligent Cities and [oT Infrastructure.

Smart cities rely on a thick network of IoT devices
such as cameras, sensors, and controllers that track
traffic flow, energy use, and environmental conditions.
These machines have to work 24/7, and sometimes
they are in areas with poor connectivity and power.
Scaling of such systems in an environmentally
sustainable manner requires energy-efficient Al

An example worth mentioning is that of smart
surveillance cameras with the purpose of traffic
surveillance. Old-fashioned cloud-based solutions
involve high-resolution video streaming, and they
devour colossal bandwidth. Using quantized and
pruned convolutional models on the cameras directly,
only metadata, including detected objects and the
density of the traffic, should be sent. This alleviates
network overhead and makes it real-time receptive.
ONNX Runtime has been instrumental in making the
heterogeneous hardware of cameras compatible, using
operator fusion and reusing buffers to keep models
running comfortably on low-power CPUs.

Edge devices are employed in environmental
monitoring, and these devices have gas sensors or
acoustic detectors to detect a leak or illegal
deforestation activity. In one project, a pruned and
distilled CNN was used to detect acoustic events on
solar-powered edge devices in remote forests. Its
compact size enabled it to operate on harvested solar
energy 24 hours a day, and this proves the
effectiveness of Al on sustainability.

The unifying factor of these various applications is
that Al design, which is energy efficient, turns the
unrealistic into the realistic. Previously confined in
cloud server models can be moved to the field, where
models can be empowered to provide real-time

ICONIC RESEARCH AND ENGINEERING JOURNALS 1151

© APR 2023 | IRE Journals | Volume 6 Issue 10 | ISSN: 2456-8880

intelligence without infringing upon energy, memory,
and latency limits.

VIII. CHALLENGES AND FUTURE DIRECTIONS

Although pruning, quantization, distillation, and
compiler/runtime optimizations have made strides in
achieving impressive energy efficiency with edge Al,
there are still major challenges. All these issues are
technical, operational, and ethical in nature, and their
resolution will determine the future direction of Al
research and application at the edge. Meanwhile, new
technologies and approaches can be seen as promising
solutions to current constraints and moving in the right
direction towards more sustainable and scalable
solutions.

8.1 Technical Challenges

Among the major technical challenges, there exist
accuracy-performance trade-offs. Even though
pruning and quantization can drastically decrease
model size and power usage, aggressive optimization
can frequently reduce accuracy, particularly in
applications where it is important (like medical
diagnostics or autonomous driving). The area of
developing adaptive pruning or quantizing techniques
that can choose to prune or quantize certain model
components without disproportionately influencing
important model parts is still open to research.

The other problem is heterogeneity of edge hardware.
The variety of devices, including smartphones and
embedded GPUs as well as bespoke ASICs and
microcontrollers, create difficulties in the creation of
universally optimized models. Compiler
infrastructure, such as TVM, tries to hide the
differences between hardware, yet it is not an easy task
to make sure that different parts of this disjointed
ecosystem can perform identically.

Moreover, there is a lack of support for emerging
architectures, which is a constraint. Most edge
runtimes and compilers do not yet fully support more
advanced model classes such as transformers, which
are becoming more important across fields such as
natural language processing and vision. The
innovation in model design, as well as optimization
tooling, to bring these complex architectures to low-
power devices, will be necessary.

IRE 1711192

8.2 Operational and Deployment Issues.

Model update and maintenance pose consistent
challenges, as far as deployment is concerned. The
edge devices tend to be deployed in either remote or
resource-constrained conditions, in which regular
updates are infeasible. Optimized models then have to
strike a balance between efficiency and robustness
because they should be useful in the long term and not
require retraining or redeployment.

Integration with existing systems is also another
operational problem. In the industrial IoT, such as
implementing energy-efficient Al, it must be
compatible with the legacy equipment and protocols.
Optimized models can perform well as isolated
components, but can perform poorly when
incorporated into distributed and complex
infrastructures.

The issue of optimization pipeline scalability also
exists. Methods such as pruning and quantization-
aware training have high sensitivity to
hyperparameters and can be expensive to train at scale.
A significant bottleneck is the process of automating
these processes without affecting the quality of
optimization.

8.3 Ethical and Sustainability Iss-challs.

The ethical concerns of Al at the edge are important,
as it is energy-efficient. On the one hand, local
inference lowers the transmission of data to the cloud,
thereby enhancing privacy. Alternatively, highly
optimized models can act in unpredictable ways when
optimization causes a shift of decision boundaries,
particularly in high-stakes settings such as healthcare.
It is therefore crucial to make sure that optimized
models are made transparent and explainable.

In a sustainability perspective, at the individual scale,
the optimization of energy is achieved, but the number
of deployed edge devices increases rapidly, casting
doubt on the overall environmental effects. Both
collections of billions of low-power devices operating
optimized models can consume a lot of energy. Studies
of life-cycle sustainability assessment, such as
manufacturing, implementation, and destruction of
Al-powered edge devices, remain in their infancy.

ICONIC RESEARCH AND ENGINEERING JOURNALS 1152

© APR 2023 | IRE Journals | Volume 6 Issue 10 | ISSN: 2456-8880

8.4 Future Directions

In the future, there are a number of encouraging trends
that provide potential solutions to these issues.
Automated machine learning to optimize (AutoML to
compress) is one such avenue. Researchers are able to
lessen the automatic tuning of networks to
optimization that can be scaled and adaptive by
combining pruning, quantization, and distillation as
part of AutoML frameworks. More recent efforts at
using reinforcement learning in conjunction with
compiler auto-tuning indicate a possible way to end up
with entirely automated, hardware-aware optimization
pipelines.

A second way is the development of new hardware-
software co-design strategies. As opposed to
retrofitting models to existing hardware, new systems
can be implemented as a system, with compilers,
algorithms, and processors being co-optimized to
work well. Some companies are already exploring
neuromorphic computing and analog Al chip designs
that consume significantly less energy to perform
inference tasks.

Transformer and graph neural networks are other new
research frontiers that require lightweight
architectures. Similar to the case of MobileNet
changing the way CNN is deployed to mobile devices,
efficient variants of transformers could adapt natural
language processing and state-ofthe-art vision models
to low-power hardware.

Average Energy per Inference (mJ)

2025 2026 2027 2028 2029 2030

= Average Energy per Inference (mJ)

Figure 2: Projection of Energy Efficiency Trends in
Edge AI (2025-2030)

CONCLUSION
The quest towards energy-efficient Al model design of

edge devices has turned out to be a hallmark of

IRE 1711192

contemporary computing. With Al increasingly
finding its way into all aspects of our daily technology,
including smartphones and wearables, autonomous
systems, and industry IoT, the necessity of
lightweight, optimized models is never more acute.
The efficiency is not a luxury but a must due to the
setbacks of limited power budgets, thermal envelopes,
and the memory resources at the edge.

We have explored the main strategies to this end
throughout this article. Neural network pruning,
quantization, and knowledge distillation, among
others, have been critical in creating smaller and less
complex deep learning models with little loss in
accuracy. Meanwhile, compiler and runtime
optimization technologies guarantee the transfer of
these hypothetical efficiency improvements into
practical improvements in the performance of a wide
variety of hardware platforms.

However, with the obstacles listed in the challenges
section, the trip is not over. The problem of accuracy-
performance trade-offs, hardware heterogeneity, and
lack of support to emerging architectures continue to
pose challenges. The picture is even complicated by
ethical issues relating to transparency, explainability,
and environmental sustainability. The high rate of
power gadget expansion also brings up the question of
how the cumulative effect of Al will be on energy
usage and e-waste. These problems have to be dealt
with in a multifaceted manner that goes beyond
technical innovation to encompass governance,
standardization, and responsible deployment
strategies.

In the future, the future of energy-efficient edge Al can
probably be influenced by a few new directions.
Automatic optimization systems are set to automate
the compression methods and minimize the use of
trial-and-error. The new generation of processors and
algorithms that are specific to efficiency could be
introduced through hardware-software co-design. A
lightweight transformer and a graph neural network
will increase the number of applications that can be
utilized successfully on limited devices. Lastly, such
collaborative paradigms as federated learning will be
used to distribute workloads in a smart manner, with
the aim of balancing efficiency, adaptability, and
privacy.

ICONIC RESEARCH AND ENGINEERING JOURNALS 1153

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

IRE 1711192

© APR 2023 | IRE Journals | Volume 6 Issue 10 | ISSN: 2456-8880

REFERENCES

Han, S., Mao, H., & Dally, W. J. (2015). Deep
Compression: Compressing Deep Neural
Networks with Pruning, Trained Quantization
and Huffman Coding. arXiv preprint.
Demonstrates a full pipeline combining pruning
and quantization for substantial modelsize
reduction and energy gains. arXiv

De Leon, J. D., & Atienza, R. (2022). Depth
Pruning with Auxiliary Networks for TinyML.
arXiv preprint. Achieved up to 93% parameter
reduction with minimal accuracy loss on
TinyML tasks using depth pruning. Papers with
CodearXiv

Blakeney, C., Li, X., Yan, Y., & Zong, Z. (2020).
Parallel Blockwise Knowledge Distillation for
Deep Neural Network Compression. arXiv
preprint. Shows 3% speedup and ~20-30%
energy savings using blockwise distillation.
arXiv

Bharti, K., Cervera-Lierta, A., Kyaw, T. H.,
Haug, T., Alperin-Lea, S., Anand, A., . . .
Aspuru-Guzik, A. (2022). Noisy intermediate-
scale quantum algorithms. Reviews of Modern

Physics, 94(1).
https://doi.org/10.1103/revmodphys.94.015004
Davies, M., Wild, A., Orchard, G,

Sandamirskaya, Y., Guerra, G. a. F., Joshi, P., . .

Risbud, S. R. (2021). Advancing Neuromorphic
Computing with LOIHI: A Survey of Results and
Outlook. Proceedings of the IEEE, 109(5), 911—
934. https://doi.org/10.1109/jproc.2021.3067593

Mahdavinejad, M. S., Rezvan, M., Barekatain,
M., Adibi, P., Barnaghi, P., & Sheth, A. P.
(2017). Machine learning for internet of things
data analysis: a survey. Digital Communications
and Networks, 4(3), 161-

175. https://doi.org/10.1016/j.dcan.2017.10.002

Sze, V.,Chen, Y., Yang, T., & Emer, J. S. (2017).
Efficient Processing of deep Neural Networks: A
tutorial and survey. Proceedings of the IEEE,
105(12), 2295-2329.
https://doi.org/10.1109/jproc.2017.2761740

Wang, X., Han, Y., Leung, V. C. M., Niyato, D.,
Yan, X., & Chen, X. (2020). Convergence of

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

ICONIC RESEARCH AND ENGINEERING JOURNALS

Edge Computing and Deep Learning: A
Comprehensive survey. /[EEE Communications
Surveys & Tutorials, 22(2), 869-904.
https://doi.org/10.1109/comst.2020.2970550

Xin, Y., Kong, L., Liu, Z., Chen, Y., Li, Y., Zhu,
H., ... Wang, C. (2018). Machine learning and
deep learning methods for cybersecurity. /IEEE
Access, 6, 35365-35381.
https://doi.org/10.1109/access.2018.2836950

Zhang, C., Patras, P., & Haddadi, H. (2019).
Deep learning in mobile and wireless
Networking: a survey. IEEE Communications
Surveys & Tutorials, 21(3), 2224-2287.
https://doi.org/10.1109/comst.2019.2904897
Zhou, Z., Chen, X., Li, E., Zeng, L., Luo, K., &
Zhang, J. (2019). Edge Intelligence: Paving the
last mile of artificial intelligence with edge
computing. Proceedings of the IEEE, 107(8),
1738-1762.
https://doi.org/10.1109/jproc.2019.2918951

Brunetti, A., Buongiorno, D., Trotta, G. F., &
Bevilacqua, V. (2018). Computer vision and
deep learning techniques for pedestrian detection
and tracking: A survey. Neurocomputing, 300,
17-33.
https://doi.org/10.1016/j.neucom.2018.01.092

Deng, S., Zhao, H., Fang, W., Yin, J., Dustdar,
S., & Zomaya, A. Y. (2020). Edge Intelligence:
The confluence of edge computing and artificial
intelligence. [EEE Internet of Things Journal,
7(8), 7457-7469.
https://doi.org/10.1109/ji0t.2020.2984887

Gholami, A., Kim, S., Dong, Z., Yao, Z.,
Mahoney, M. W., & Keutzer, K. (2022). A
survey of Quantization Methods for Efficient
Neural network Inference. In Chapman and
Hall/CRC eBooks (pp- 291-326).
https://doi.org/10.1201/9781003162810-13

Kairouz, P., McMahan, H. B., Avent, B., Bellet,
A., Bennis, M., Bhagoji, A. N., . . . Zhao, S.
(2021). Advances and
problems in federated learning.

https://doi.org/10.1561/9781680837896

Letaief, K. B., Shi, Y., Lu, J., & Lu, J. (2021).
Edge Artificial Intelligence for 6G: vision,
enabling technologies, and applications. /EEE

open

Journal on Selected Areas in Communications,

1154

https://arxiv.org/abs/1510.00149?utm_source=chatgpt.com
https://paperswithcode.com/paper/depth-pruning-with-auxiliary-networks-for?utm_source=chatgpt.com
https://paperswithcode.com/paper/depth-pruning-with-auxiliary-networks-for?utm_source=chatgpt.com
https://arxiv.org/abs/2012.03096?utm_source=chatgpt.com
https://doi.org/10.1109/jproc.2019.2918951

[18]

[19]

(20]

[21]

[22]

[23

—

[24]

[25]

IRE 1711192

© APR 2023 | IRE Journals | Volume 6 Issue 10 | ISSN: 2456-8880

40(1), 5-36.
https://doi.org/10.1109/jsac.2021.3126076

Xu, J., Glicksberg, B. S., Su, C., Walker, P.,
Bian, J., & Wang, F. (2020). Federated Learning
for Healthcare Informatics. Journal of
Healthcare Informatics Research, 5(1), 1-19.
https://doi.org/10.1007/s41666-020-00082-4

Courbariaux, M., Bengio, Y., & David, J. P.
(2015). BinaryConnect: Training deep neural
networks — with binary weights during
propagations. In Advances in Neural
Information Processing Systems (NeurIPS), 28.

Rastegari, M., Ordonez, V., Redmon, J., &
Farhadi, A. (2016). XNOR-Net: ImageNet
classification using binary convolutional neural
networks. In European Conference on Computer
Vision (ECCV) (pp. 525-542). Springer.
Howard, A. G., Zhu, M., Chen, B,
Kalenichenko, D., Wang, W., Weyand, T., ... &
Adam, H. (2017). MobileNets: Efficient
convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861.

Sandler, M., Howard, A., Zhu, M., Zhmoginov,
A., & Chen, L. C. (2018). MobileNetV2: Inverted
residuals and linear bottlenecks. In Proceedings
of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (pp. 4510-4520).

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang,
M., Howard, A., .. & Adam, H. (2018).
Quantization and training of neural networks for
efficient integer-arithmetic-only inference. In
Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition
(CVPR) (pp. 2704-2713).

Yang, T. J., Chen, Y. H., & Sze, V. (2020).
Designing energy-efficient convolutional neural
networks using energy-aware pruning. In
Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition

(CVPR) (pp. 5687-5695).
Qiu, H., Wang, J., Chen, X., & Shen, Y. (2022).
Recent advances in neural network compression

and acceleration for edge AI. ACM Computing
Surveys (CSUR), 54(9), 1-36.

ICONIC RESEARCH AND ENGINEERING JOURNALS

1155

