
© APR 2023 | IRE Journals | Volume 6 Issue 10 | ISSN: 2456-8880

IRE 1711192 ICONIC RESEARCH AND ENGINEERING JOURNALS 1141

Energy-Efficient AI Model Design for Edge Devices
Using Neural Network Pruning and Optimization

Techniques

RISHABH AGRAWAL1, HIMANSHU KUMAR2
1Data Science, Advisor

2Marketing Data Scientist

Abstract- AI is progressively being implemented at

the edge computing platforms of smartphones,

wearables, industrial sensors, and autonomous

systems. Although such deployments can support

real-time processing, preserve privacy, and decrease

reliance on the network, they tend to be restricted by

limited computational power, limited memory, and

strict power requirements. Without much

optimization, the traditional deep neural networks

with their large number of parameters and high

computational needs are ill-suited to such

environments. The present article discusses the

neural network pruning and complementary

optimization methods as possible solutions to these

issues by suggesting the energy-efficient design of AI

models. Pruning is used to remove redundant

parameters to reduce model size and operations, and

quantization is used to encode high-precision

weights into low-bit representations to reduce

memory and energy usage. Efficiency is additionally

improved with knowledge distillation and lightweight

architectures with no performance costs, and

compiler-level optimizations are applied to guarantee

that compressed models can produce real-world

runtime gains on a variety of hardware platforms.

The discussion combines theoretical knowledge and

practical processes, such as step-by-step design

processes and example codes, and latency, memory

footprint, and energy consumption measuring

guidelines on actual models. Issues like accuracy

loss, heterogeneity of hardware, and use of

standardized benchmarks are critically discussed,

and future research directions, including ultra-low-

bit networks, hardware-aware neural architecture

search, and energy-centric training objectives, are

discussed. Through a combination of cutting-edge

approaches and deployment-focused ideas, this piece

of work highlights that AI minimal energy usage is

not only a technical one but an important action

towards sustainable, scaled, and accessible edge

computing.

Keywords: Energy-Efficient AI; Edge Computing;

Neural Network Pruning; Model Optimization;

Quantization; Knowledge Distillation; Lightweight

Architectures; Compiler Optimizations

I. INTRODUCTION

The field of artificial intelligence has evolved at an

alarming pace, moving past science fiction research

test cases to become an omnipresent technology in

almost all aspects of modern life. AI was previously

limited to machines with great computing power, like

servers and cloud systems, and is now being

implemented in edge devices, such as smartphones,

wearable sensors, surveillance cameras, autonomous

drones, and industrial monitoring units. The

motivation behind this migration is the desire to have

real-time processing, lower latency, greater data

privacy, and not be restricted by an unreliable or

expensive network connection. As an example, a

wearable medical sensor detecting heart abnormalities

should be able to deliver real-time data without

depending on internet connectivity, whereas an

autonomous drone flying in the disaster area needs to

make decisions locally to prevent a delay in

communication. These situations demonstrate the

strategic significance of the coming of AI closer to the

data source.

However, this transition is associated with serious

difficulties. The edge devices are usually subjected to

severe resource limitations: low processing power,

minimal memory capacity, low energy availability,

and low thermal margins. An edge device can also

have a small battery and as well as have a few

megabytes of RAM, unlike a cloud data center that has

© APR 2023 | IRE Journals | Volume 6 Issue 10 | ISSN: 2456-8880

IRE 1711192 ICONIC RESEARCH AND ENGINEERING JOURNALS 1142

unlimited compute resources and cooling

infrastructure. Even running state-of-the-art deep

learning models, which may include millions of

parameters and billions of floating-point operations,

on such devices is impractical and can be disastrously

user-experience-wise because of their high latency and

extreme battery consumption. The lack of match

between the ever-increasing sophistication of AI

models and the limited capability of edge hardware

has established a compelling need to develop energy

efficient model designs.

Energy efficiency is not necessarily just a technical

requirement. On a big scale, the Internet of Things

(IoT) and future-generation digital ecosystems will be

comprised of billions of networked devices. When all

these devices consume a lot of power because of the

inefficient AI workloads, the aggregate energy usage

would add to high environmental costs and carbon

emissions. Therefore, the concept of energy-efficient

AI at the edge means not only the capability to perform

but also sustainability, and assisting the world in

minimizing the ecological footprint of technology.

Moreover, efficiency has the potential to increase

access, and it may become possible to implement AI

in remote locations, developing countries, or mission-

critical environments with limited energy resources.

To overcome this issue, it is necessary to reconsider

the very nature of the AI models' design, training, and

deployment. In place of just using big general-purpose

neural networks, researchers and engineers have

begun to gravitate towards model compression and

optimization approaches. One of the most promising

strategies is neural network pruning, which

systematically eliminates certain unnecessary or

unimportant parameters, as well as decreasing storage

and computation expenses. Other complementary

techniques like quantization, which promotes a lower

memory footprint through reduced numerical

precision at the cost of faster inference, or knowledge

distillation, in which a smaller model learns to mimic

the behavior of a larger one, increase efficiency with

accuracy loss. In addition to these algorithmic

techniques, compiler-level and hardware-based

optimizations are important mechanisms to transform

the efficiency issues presented on paper into

performance benefits on actual hardware.

Although these developments have taken place, there

are still challenges. Pruning may cause accuracy to

degenerate when it is not well applied and retrained.

As a powerful tool, quantization can lead to instability

in some areas (e.g., natural language processing)

unless more sophisticated methods like quantization-

aware training are applied. Edge hardware is

extremely heterogeneous, with microcontrollers and

dedicated neural processing units, and therefore, it

makes the implementation of standard solutions

difficult. Furthermore, because of the absence of

universal standards of energy consumption, it is hard

to compare trade-offs across models and platforms in

general. These constraints highlight why systematic

exploration and reporting of the design principles of

energy efficient AI to the edge environment should be

made.

This article seeks to fill this gap with a detailed

discussion of the design of the energy-efficient AI

models to serve edge devices, with a special interest in

neural network pruning and its combination with

optimization methods. It starts by putting edge AI into

context in the wider context of computational

constraints and deployment issues. It then goes on to

discuss the principles underlying pruning,

quantization, knowledge distillation, and lightweight

architecture design, and moves on to discuss compiler-

level optimizations and hardware-sensitive strategies.

Workflows are presented in practice that include step-

by-step procedures of compressing, fine-tuning, and

deploying models, as well as information regarding

how to evaluate the energy efficiency in terms of

latency, memory, and power consumption

measurements. Open challenges and future directions

of research are also discussed, including ultra-low-bit

quantization, energy-friendly neural architecture

search, and federated learning.

© APR 2023 | IRE Journals | Volume 6 Issue 10 | ISSN: 2456-8880

IRE 1711192 ICONIC RESEARCH AND ENGINEERING JOURNALS 1143

Flowchart 1: Model Optimization Pipeline for Edge

AI

II. EDGE AI LANDSCAPE AND

CONSTRAINTS

The emergence of edge computing is one of the most

important paradigm shifts in the implementation of

artificial intelligence. Historically, AI inference

depended on centralized cloud servers, where large

neural networks could be run with a large amount of

computational resources and dedicated hardware like

GPUs and TPUs, with very low latency compared to

data center settings. Yet, with the growth of the real-

time intelligence requirements into other areas of

autonomous navigation, wearable health monitoring,

smart agriculture, and industrial automation, the

shortcomings of relying on the clouds have become

more and more evident. Round-trip latency, data

privacy threats, and high energy use of constant

connectivity have provided a strong motivation to

move intelligence to the edge.

There is a wide range of hardware represented by edge

devices. This involves smartphones, smart speakers,

and headsets with augmented reality and smart

wearable fitness trackers on the consumer side. Edge

devices, in the sense of industrial and enterprise

applications, include surveillance cameras and

manufacturing robots, drones, and remote

environmental sensors. On the most basic level,

microcontrollers integrated into appliances or medical

devices are the limit of what can be sometimes called

TinyML, where models require execution on a system

with kilobytes of RAM, and only a few milliwatts of

power. This variety highlights the possibilities as well

as the challenges of taking AI to the limit: the number

of applications available is immense, but the hardware

is extremely limited and fragmented.

These limitations of edge devices can be divided into

a number of categories. Computational capabilities are

often small; most devices typically employ low-power

processors and, at best, include built-in GPUs or

dedicated NPUs. Although these accelerators are

optimized for specific workloads, they might not be

compatible with bigger models. Another important

bottleneck is memory capacity: machines frequently

have memory resources in the tens or hundreds of

megabytes range, and sometimes still less. By

contrast, state-of-the-art vision or language models

can require gigabytes of memory at inference. This

loophole renders naive deployment impossible. The

most urgent issue is, perhaps, energy consumption,

with most of the edge devices using batteries. Long or

power-intensive inference workloads may rapidly

consume power, lowering the usability of a device,

and decreasing its uptake. Lastly, there are thermal

limits such that although a device can technically run

a big model, it can become overheated, which can

result in throttling or failure in sustained operation

cases.

Besides these inherent constraints, edge AI

implementation will have to deal with environmental

and application-specific constraints. An example

would be that, in order to navigate safely, drones or

self-driving cars need to react to sensor inputs in real

time with no room to spare for cloud inferences.

Precision and reliability are the most important factors

in wearable healthcare devices, though patient comfort

would not be ensured by huge batteries or excessive

heat production. Sensors of the industrial IoT are

required to be unattended and operate for months or

years in remote or dangerous places, and thus, energy-

efficient AI becomes a requirement of reliability. All

these situations underscore the fact that energy

efficiency is not only a question of optimization, but a

necessity in many cases.

These challenges are brought to the fore more clearly

by the difference between the cloud and edge

deployment. In a cloud environment, scaling a model

typically includes the addition of additional compute,

a distributed architecture, or a specialized accelerator.

On the edge, scaling cannot occur: the hardware is

Start
Model

Selection

Compression
Stage

Compiler &
Runtime

Optimizations

Hardware
Mapping

Deployment
on Edge Device

Monitoring &
Feedback Loop

End

© APR 2023 | IRE Journals | Volume 6 Issue 10 | ISSN: 2456-8880

IRE 1711192 ICONIC RESEARCH AND ENGINEERING JOURNALS 1144

fixed, and any solution has to be able to accommodate

those hard constraints. In addition, data transfer to the

cloud in itself requires energy, and in most of the uses

- like smart farming in rural areas or deployments to

military fields - there might not be reliable

connectivity. Therefore, to make AI more edge-

optimized, one should not only decrease the

complexity of the model, but should also ensure a

better performance in terms of deployment efficiency,

without compromise the performance of a task.

A number of case studies demonstrate the

opportunities, as well as the challenges. Wearable

ECG monitors in healthcare have now been equipped

with AI models that can make real-time arrhythmia

diagnoses. There is a fine line between these models:

they should be precise enough to identify life-

threatening conditions, but they should also be

efficient enough to operate all the time in a device with

a small lithium-ion battery. In autonomous drones, AI

vision systems enable navigation and object

recognition; however, high-energy workloads

decrease the flight time, which limits the performance

of the missions. Smart sensors used in industrial IoT

to detect equipment health need to execute predictive

models locally to minimize downtime, although they

are common at remote locations, which have limited

power supply. In both these instances, functionality is

enabled by energy-efficient design.

Another thing that should be highlighted is that the

system-wide implications of energy efficiency are also

present. It is estimated that the Internet of Things will

connect billions of edge devices at scale. Assuming all

these devices operated inefficiently with AI models,

the total energy usage of all the devices could be

enormous, a significant source of carbon emissions in

the world. On the other hand, energy demand might

decrease significantly through the introduction of

optimized models on a broad scale, which would align

the development of edge AI with the wider

sustainability agenda.

III. FOUNDATIONS OF NEURAL

NETWORK PRUNING

Among the most significant concepts that can be used

to make the models of artificial intelligence more

efficient is the understanding that the vast majority of

deep neural networks are overparameterized. That is

to say, they have much more weight and connections

than are actually needed to get their task done with

high precision. Although this duplication is useful in

training, where the additional capacity permits better

convergence and generalization, it is a burden in

inference, particularly when the resources of edge

devices are limited. Neural network pruning can solve

this problem by sparsifying a trained model, such as

by deleting parameters, connections, or entire sub-

networks, to make it computationally and memory-

efficient, with minimal or no loss in accuracy.

Pruning can be considered a type of model

compression. Pruning does not involve the

reconstruction of a smaller model; instead, a trained

model that is usually large is pruned down to a smaller

size. The hypothesis behind it is that in a big network,

there is a smaller and effective subnetwork that can

perform similarly. Empirical studies have

demonstrated this idea (e.g., the lottery ticket

hypothesis), and this idea has been formalised using

frameworks like the lottery ticket hypothesis, where it

is assumed that dense neural networks hold winning

tickets, i.e., subnetworks that, when trained in

isolation, can perform as well as the original model.

Table 1: Neural Network Compression Techniques

and Trade-offs

Techniq

ue

Description Advanta

ges

Trade-offs

Pruning Removal of

redundant

weights or

neurons

Reduces

size and

latency,

improve

s

efficienc

y

May

reduce

accuracy if

too

aggressive

Quantiza

tion

Conversion

of

weights/activ

ations to

lower

precision

(e.g., 8-bit, 4-

bit)

Smaller

models,

faster

executio

n, lower

power

Risk of

numerical

instability,

accuracy

drop

© APR 2023 | IRE Journals | Volume 6 Issue 10 | ISSN: 2456-8880

IRE 1711192 ICONIC RESEARCH AND ENGINEERING JOURNALS 1145

Knowled

ge

Distillati

on

Training a

smaller

"student"

model to

mimic a large

"teacher"

model

Good

accurac

y with

smaller

size

Requires

pre-trained

large

model

Low-

rank

Factoriz

ation

Decomposin

g weight

matrices into

smaller ones

Reduces

computa

tion and

storage

Can be

complex to

implement

Weight

Sharing

Reusing

weights

across layers

or filters

Reduces

redunda

ncy

May

constrain

representat

ional

capacity

Pruning is of a two-fold advantage. One is that the

pruning method keeps the number of parameters

small, decreasing the storage needs and allowing it to

be deployed on devices with constrained memory.

Second, it reduces the computations involved in the

inference and makes it more speedy, and consumes

less energy. These advantages are particularly

imperative to edge devices, of which memory

bandwidth and power supply can be more limiting

than raw compute capacity.

Pruning techniques can be broadly divided into

unstructured, structured, and dynamic techniques,

each having different characteristics and trade-offs.

1. Unstructured pruning is used to remove individual

weights according to some criteria, usually

magnitude. To illustrate it, when the values of

weights are within the range of 0, the weights are

discarded based on the assumption that they do not

impact the end product much. Very high sparsity

levels, which can be attained by this type of

pruning, can dramatically decrease the number of

nonzero parameters. Non-structured pruning,

however, causes irregular sparsity patterns that are

not necessarily well supported by existing

hardware and libraries. Storage savings are large,

but actual runtime acceleration on edge devices

might be limited except in the case of special

sparse matrix operations.

2. The process of structured pruning removes bigger

parts of the network, including an entire neuron,

convolutional filter, channel, or even layer. The

result of this form of pruning is smaller and more

dense models that are more natural to map onto

hardware. Since the resultant structure is still

regular, structured pruning produces real latency

and energy savings in inference. As an example,

when the number of convolutional filters in a

vision model is cut down by 30 percent, the overall

number of operations declines, and the compilers

can execute them more efficiently. The trade-off

here, though, is that structured pruning is not

usually as aggressive as unstructured pruning,

because removing complete components may

increase the loss of accuracy.

3. Dynamic pruning is a pruning process that is

decided at runtime, frequently depending upon the

input data. Under this method, some neurons or

channels are selectively excited on the basis of

their usefulness to the present input. An example is

the image classification model, where certain

network calculations will be omitted when the

input is simple. Although dynamic pruning

provides flexibility and can scale computation to

its workload complexity, it needs special oversight

and hardware to prevent the introduction of

unpredictable latency.

Pruning is largely a question of what parameters to

eliminate. Magnitude-based pruning (eliminating the

smallest weights in absolute value) and norm-based

pruning (eliminating filters or channels with minimum

L1 or L2 norm) are also considered common

heuristics. More advanced techniques include

sensitivity analysis, in which the degree to which a

parameter adds to either loss or precision is assessed.

During training, regularization-based methods like L1

or group Lasso promote sparsity, which is easily

pruned later. More recently, learning-based pruning

techniques have appeared, in which the schedules of

pruning are learned automatically by means of

reinforcement learning or meta-learning.

Pruning is not a one-time affair. Pruning has often

been used in an iterative way in most workflows,

where a small percentage of parameters is removed per

round, and then the workflow is refined to regain the

accuracy. This slow method prevents the drastic

© APR 2023 | IRE Journals | Volume 6 Issue 10 | ISSN: 2456-8880

IRE 1711192 ICONIC RESEARCH AND ENGINEERING JOURNALS 1146

decrease in performance and enables the model to

adjust to its constricted structure. One of the design

issues that practitioners should consider is the balance

between pruning aggressiveness and retraining effort.

Although the benefits of pruning are undeniable, there

is a cost associated with pruning. The highest-profile

risk is a degradation of accuracy, particularly in the

case of over-aggressive pruning or pruning without

adequate fine-tuning. Moreover, the advantages of

pruning are very much dependent on hardware and

runtime support. Unstructured sparsity, such as that,

can help to cut down on model size, but provide

minimal energy reductions on devices with no

optimized sparse kernels. The deployment gap is also

another problem: a model that seems to be efficient

when measured in FLOPs (floating point operations)

can still use a lot of energy because of how memory

access is utilized or because of the inefficiency of the

hardware. Therefore, the role of pruning should be

seen as a part of a larger optimization pipeline, which

should also include quantization, distillation, and

compiler-level optimizations.

IV. QUANTIZATION AND LOW-PRECISION

COMPUTING

 Although pruning also solves the issue of redundancy

in model architecture, another essential frontier in

turning neural networks into efficient algorithms is

quantization, the procedure of decreasing the

numerical level of representation of weights,

activations, and gradients. Quantization essentially

trades off high-precision floating-point operations,

which are usually 32bit (FP32), with lower-precision

ones like 16-bit, 8-bit, or even binary ones. This

minimization can be translated to a small model size,

faster calculation, and low power usage-which are

especially important when dealing with edge devices

with limited memory bandwidth and processing

power.

In most of the modern deep learning models, training

is done with 32-bit floating-point precision due to the

ability to make fine-grained updates during

backpropagation and converge in a stable manner. Yet,

once training has taken place, the precision of such an

inference is often not required to a high degree. Most

weights are concentrated at small values, and adding

finer granularity to activations does not make a

discernible difference to the performance of models.

Hardware-wise, lower-precision operations not only

take fewer bits to represent numbers, but also use less

energy to do arithmetic and memory transfers.

An example is that an FP32 multiplication requires

many times the energy of an INT8 multiplication.

Likewise, loss of precision directly reduces a model's

storage size: an FP32 model with 100 million

parameters can be converted to INT8, and the memory

footprint decreases by 400 MB to 100 MB. This is vital

to edge devices such as microcontrollers,

smartphones, and IoT sensors whose memory capacity

can often be measured in tens of megabytes or less.

The methods of quantization can be categorized in two

major dimensions that include the process of applying

the quantization and the mapping of the numerical

ranges.

1. Post-training Quantization (PTQ):

When using this method, a trained FP32 model is

published in a lower-precision format. The PTQ is

attractive due to the fact that it does not need

retraining, thus it is fast and cost effective. The most

basic quantization is weight quantization, in which a

mapping of every weight to an integer is computed.

Further refined PTQ techniques measure both weights

and activations. The primary weakness of PTQ is that

the accuracy can be lessened, primarily in models that

are sensitive to small numerical perturbations,

including recurrent networks or speech recognition

models.

2. Quantization-Aware Training(QAT):

To reduce the loss of accuracy observed in PTQ, QAT

fakes quantization in training. With the forward pass

including the effects of quantization, the model is also

trained to be resistant to lower precision. QAT makes

the training process more complex, but it usually

makes it more accurate when trained at low precision.

E.g., an image classification model might lose 5

percent accuracy with PTQ and only 1 percent with

QAT with INT8 arithmetic.

3. Unlike Uniform Quantization:

In uniform quantization, activations (weights) are

scaled into equal-size intervals, and a value is rounded

© APR 2023 | IRE Journals | Volume 6 Issue 10 | ISSN: 2456-8880

IRE 1711192 ICONIC RESEARCH AND ENGINEERING JOURNALS 1147

towards the nearest bin. Non-uniform quantization,

conversely, puts more bins in areas with a higher

density of the numbers (e.g., near zero), which

enhances the faithfulness of the representation.

Although uniform quantization is compatible with

hardware, in many cases, nonuniform quantization can

be more accurately represented at a given bit-width.

4. Dynamic vs. Static Quantization:

In contrast to dynamic quantization, which scales

factors on-the-fly, static quantization precomputes

scaling factors using calibration data, so that the

mappings remain consistent on-the-fly. By

comparison, dynamic quantization calculates scaling

factors per batch or input on the fly, which is more

flexible at the expense of run-time overhead.

It has consolidated around a few common low-

precision formats. The most popular is INT8

quantization, which offers a compromise between

efficiency and precision and is available on most deep

learning systems and hardware accelerators, including

NVIDIA TensorRT, Qualcomm Hexagon DSPs, and

ARM Cortex-A processors. The other popular format

is FP16 (half precision), which provides speedups on

GPUs that support it and is faster than FP32, but

otherwise has the same advantages as floating-point

dynamic range. At the other extreme, binary and

ternary networks cut the weights down to one or two

bits, allowing an unimaginable memory requirement

and unprecedented speed of inference. Nevertheless,

such techniques can be rather demanding in terms of

architectural modifications and can have a hard time

with complex tasks.

The real capabilities of quantization are not realized

until hardware that takes advantage of lowprecision

operations is used. Contemporary AI accelerators,

such as Google TPU, NVIDIA Tensor Cores, and

Apple Neural Engine, are optimized to perform the

arithmetic of INT8 and FP16. Onedge devices, special

integer operations can use four or more times less

energy per operation than FP32. Furthermore, reduced

data representations reduce memory bandwidth

consumption, usually the most energy-demanding part

of inference.

Although quantization is promising, it presents a

number of problems. Not every model can be equally

resistant to low precision. Activation-based models

whose dynamic range is large or models that are

sensitive to finer-grained changes in weights can

suffer accuracy losses. Also, although INT8

quantization is well supported, other formats, such as

INT4 or binary, need special hardware, which is not

yet everywhere. The complexity of deployment is

another issue: training based on quantization needs

more engineering, and calibration of fixed

quantization needs representative data.

The other problem is compatibility with pruning. Even

a pruned model can be working towards the limit of

tolerable loss of accuracy, so further quantization is

dangerous. Finding a balance between compression

ratio between pruning and quantization is, therefore,

an art and not a science.

V. KNOWLEDGE DISTILLATION AND

MODEL COMPRESSION

Although pruning and quantization concentrate on the

minimization of computational and memory

requirements of neural networks, knowledge

distillation (KD) is a complementary technique that

solves the problem from a new perspective. Instead of

modifying the architecture or numerical precision of

an existing model directly, distillation builds on the

large, high-capacity model (the teacher) to learn in a

smaller, more efficient model (the student). This

enables the student to estimate the performance of the

teacher whilst being much lighter, faster, and more

deployable to resource-constrained edge devices.

Knowledge distillation was originally proposed by

Geoffrey Hinton and others in 2015 as a way of

compressing the model of a group of neural networks

into one. It was noted at the same time that large

ensembles were state-of-the-art in terms of accuracy

but were not feasible to deploy. The most important

lesson was that the soft outputs (probability

distributions) of a teacher were more informative than

hard and one-hot labels that were used in training.

Consider, as a case in point, that the teacher is sure that

a particular image represents a dog with a 90%

likelihood and sure that it represents a wolf with a 9%

likelihood; relative probabilities express structural

knowledge about the data distribution that cannot be

represented by a univariate label. The student can

© APR 2023 | IRE Journals | Volume 6 Issue 10 | ISSN: 2456-8880

IRE 1711192 ICONIC RESEARCH AND ENGINEERING JOURNALS 1148

generalize more by training the student on these

softened outputs, in despite of the reality that it has

much less parameters.

Practically speaking, knowledge distillation consists

of training the student model using a weighted sum of

two losses:

1. The distillation loss, the measurement of the

difference between the predictions of a student and

the soft probability outputs of the teacher.

2. The normal task loss, which measures the

predictions of the student compared to the

groundtruth labels.

The softmax function is modified with a temperature

parameter to regulate the softness of the output

distribution of the teacher. An increase in temperature

results in the probability distributions becoming

smoother, and hence, the relative similarities between

the classes are captured by the student with ease.

The outcome is a student model with the inheritance

of inductive biases and decision boundaries of the

teacher, in addition to learning on the basis of ground

truth. This is especially strong in edge AI applications,

where the student would need to attain high accuracy

even in the case of architectural simplification and

severe compression.

Model compression pipelines have become dependent

on knowledge distillation. Rather than pruning or

quantizing a model, which can produce brittle

performance, practitioners often initially distill

knowledge into a smaller student model and then

prune or quantize it. Such sequencing means that the

student starts at a point of strength, having taken in the

representative power of the teacher.

To illustrate, BERT and GPT are large-scale models

that are prohibitively costly to run on mobile devices

in the context of natural language processing. Distilled

versions like DistilBERT and TinyBERT have shown

that KD can reduce the number of parameters by half

or more without significantly affecting the accuracy of

the teacher on benchmark tasks (over 95%). This

efficiency versus performance is exactly what edge

applications are in need of.

Researchers have, over the years, come up with

various variants of knowledge distillation in order to

enhance its ability to work in various contexts:

• Logit-based distillation: The archaic methodology,

in which the student is trained on the softened

probability distribution of the teacher.

• Feature-based distillation: The student is not only

required to learn the output probabilities, but also

to imitate intermediate feature representations of

the teacher's hidden layers. This finds its

application in convolutional neural networks,

especially in tasks in computer vision.

• Self-distillation: It has one model as teacher, which

is the student; and the deeper layers supervise the

shallower ones. The method does not have the

overhead of training a distinct large teacher, and

has displayed favorable outcomes in image

classification and speech recognition.

Multi-teacher distillation: Knowledge is transferred to

one student by a collection of teachers, possibly

trained on different tasks/modalities. This increases

the generalization of the scope and finds application in

multi-task or multimodal edge applications.

The fact that knowledge distillation works well with

other compression methods is one of its strengths. As

an example, a quantized or pruned model can

experience significant accuracy loss when naively

used. This can, however, be alleviated by distillation,

which enables the student to regain performance with

the assistance of the teacher. On the other hand, a

distilled student model is necessarily smaller and can

be further pruned or quantized with less disastrous

accuracy degradation.

A good example of this is the deployment of image

classification networks on microcontrollers. A student

model that is trained on both logits and feature maps

on a ResNet teacher can be trained at a fraction of the

cost and achieve similar accuracy. With INT8

quantization, the model is light enough to execute in

real time on ARM Cortex-M processors, and this, as

well, illustrates the practicality of the two.

© APR 2023 | IRE Journals | Volume 6 Issue 10 | ISSN: 2456-8880

IRE 1711192 ICONIC RESEARCH AND ENGINEERING JOURNALS 1149

VI. COMPILER AND RUNTIME

OPTIMIZATIONS

In addition to pruning, quantization, and distillation,

the layer of compiler and runtime optimization can

provide huge efficiency improvements to edge AI. A

blueprint can perform dismally after being compacted,

even a well-compacted model. At the boundary, where

hardware is no more than a smartphone and an

embedded general-purpose (GPU) up to a

microcontroller, it is important to consider using

compiler frameworks and runtime systems to help

bridge the gap between model development and

implementation.

In the current state of AI compilers, high-level

frameworks (TensorFlow or PyTorch) are converted

to low-level code that is optimized to run on a

particular hardware backend. These compilers take the

computational graph of a neural network and

transform it to minimize overhead and produce kernels

that use hardware accelerators. In this way, they are

able to reduce memory usage, minimize redundant

operations, and maximize throughput.

As an example, XLA (Accelerated Linear Algebra) in

TensorFlow and TorchScript in PyTorch make use of

graph-level optimization strategies like operator

fusion, in which successive operations are represented

as a single kernel to minimize the amount of transfers

between intermediate memory. In line with this,

compilers such as Apache TVM and Glow

automatically find the best scheduling tactics,

generating binaries specific to deployment, tailored to

either an ARM CPU, NPU, or GPU.

Table 2: Compiler and Runtime Optimization

Strategies

Optimizati

on

Technique

Descriptio

n

Example

Framewor

ks /

Tools

Benefits

Operator

Fusion

Merges

multiple

operations

into one

TVM,

TensorRT

Reduces

memory

overhead

and

latency

kernel

execution

Memory

Scheduling

Optimizes

allocation

and reuse

of memory

during

inference

Glow,

XLA

Reduces

memory

footprint

Graph

Optimizati

on

Simplifies

computatio

n graph by

removing

redundanci

es

ONNX

Runtime,

TensorFlo

w Lite

Faster

execution

, less

resource

usage

Hardware

Accelerati

on

Exploits

GPU,

NPU, or

DSP for

optimized

execution

CUDA,

Qualcom

m

Hexagon

DSP

Better

throughp

ut,

reduced

CPU load

Dynamic

Quantizati

on

Applies

quantizatio

n only at

runtime

PyTorch

Lite

Balances

speed

with

minimal

training

effort

In addition to the compiler-level optimizations are

runtime optimizations, which control the execution of

models when doing inference. Edge runtime systems

are optimized to support lowlatency, low-power

systems, including TensorFlow Lite, ONNX Runtime,

and Core ML. They handle memory assignment well,

recycle buffers, and make certain that the quantized

models can run smoothly on hardware with mixed-

precision platforms.

In the case of TensorFlow Lite, as an example,

delegates are used to pass a portion of a model to a

dedicated hardware device, such as an NPUs or DSP,

and run the rest on the CPU. This hybrid

implementation has the benefit of making sure that

every operation is run in the place it works best, so that

there are no excesses in performance and energy

consumption. In a similar vein, ONNX Runtime has

dynamic graph optimizations, which allow the model

© APR 2023 | IRE Journals | Volume 6 Issue 10 | ISSN: 2456-8880

IRE 1711192 ICONIC RESEARCH AND ENGINEERING JOURNALS 1150

to adjust its behavior based on the capabilities of the

device.

Graph rewriting is also used by compilers and

runtimes to optimize inference. Widely used

techniques are constant folding (precomputing of

static values), dead code elimination (unused portions

of the computation graph), and precision where it is

safe. Optimizations at the operator level, e.g., kernel

fusion, loop unrolling, etc., further cut down on

latency. The optimizations are optimal, especially at

the edge, where reducing memory access can often be

more essential than reducing raw compute.

One of the real-life applications is the implementation

of convolutional neural networks on smartphones. In

the absence of graph optimization, the number of

intermediate feature maps can recycle the limited

memory resources many times over. At half the

memory footprint with compiler-level fusion and

buffer reuse, the same model can be executed in real-

time, providing the user experience with no

compromise.

Hardware awareness is perhaps the most radical

change that has occurred in compiler and runtime

developments. That is why modern compilers are able

to automatically create code, which is optimized to the

underlying architecture, rather than depending on

developers to manually handtune models to work on

this device. The compiler, regardless of which of

ARM, Neon, Qualcomm, Hexagon DSP, or Apple,

Neural Engine, can be targeted, makes sure that

computation is performed in a manner that conserves

power and provides the maximum throughput. This

flexibility is essential in the fractured ecosystem of

peripherals, where there is no one optimization

strategy that can be applied to all.

Compiler and run time optimizations not only make

performance faster, but they also make it energy

efficient and sustainable. They decreased the energy

cost of inference by reducing unnecessary memory

transfers and a limited number of kernel launches, and

they allowed hardware accelerators. This can be

dramatically scaled to billions of deployed edge

devices, which further supports why software

optimization has to be a critical component of creating

an environmentally responsible AI system.

Compilers and runtimes are not without problems,

although they have progressed. Not all models support

operator coverage: some models have new layers that

are not supported by edge runtimes, and have to fall

back to slower CPU execution. Besides, automated

optimizations may at times give suboptimal results as

opposed to kernels that are carefully hand-tuned.

Auto-tuning compilers. Research is currently being

done to use reinforcement learning or evolutionary

algorithms alongside hardware profiling to find the

best execution strategy automatically.

VII. CASE STUDIES AND APPLICATIONS

The worthiness of pruning, quantization, knowledge

distillation, and compiler/runtime optimizations can

be understood most effectively by looking at their

application in practice. In healthcare, autonomous

systems, smart cities, and consumer devices, these

techniques have made it possible to deploy models that

would in many cases be too large, too slow, or too

energy hungry to run on edge devices. This section

also discusses some of the most notable case studies

that show how the design of energy-efficient AI

models can be moved to practice.

7.1 Healthcare and Wearables

One of the most challenging industries with regard to

edge AI is healthcare, as machines need to be precise,

dependable, and able to run continuously with tight

energy and privacy requirements.

Wearable healthcare devices are an interesting case.

Consider the example of electrocardiogram (ECG)

monitoring devices to record arrhythmias as they

appear. If a complete convolutional neural network is

trained to identify the presence of small amounts of

irregularities in waveforms, it can have tens of

millions of parameters. It is not possible to run such a

model on a battery-operated wristband/patch. This has

been overcome by researchers by using structured

pruning, eliminating redundant filters, and then INT8

quantization. The outcome was a model that was

compressed by almost 80 percent and did not lose

much accuracy. The model, with the help of compiler

support on TensorFlow Lite, was able to infer in real-

time on the ARM Cortex-M microcontrollers and

increase the device battery life to several days.

© APR 2023 | IRE Journals | Volume 6 Issue 10 | ISSN: 2456-8880

IRE 1711192 ICONIC RESEARCH AND ENGINEERING JOURNALS 1151

The other notable use is on-device respiratory

monitoring. In this case, recurrent or transformerbased

models tend to be required to represent temporal

relationships in breathing patterns. Using knowledge

distillation, a small gated recurrent unit (GRU)-based

student model was trained to reproduce the predictions

of a larger transformer teacher. The student, together

with quantizationaware training, was able to match the

accuracy of the teacher using one-tenth of the energy

per call. This method enabled the incorporation of

high-tech respiratory monitoring in low-power patches

that were worn on the wrist to manage chronic

illnesses.

Figure 1: Case Study – Energy Efficiency Gains

Across Applications

7.2 Self-driving cars and drones.

Another area that cannot be done without edge AI is

automated vehicles (AVs) or drones. In this case, the

latency concerns safety: it should be possible to make

decisions within milliseconds using sensor data, and

the use of cloud servers is not an option.

Onboard object detection is important in the case of

drones in navigation and avoiding obstacles. An object

detector like YOLOv3, although a powerful model, is

computationally expensive. The researchers used

pruning to cut the redundant convolutional layers and

quantization to INT8 and deployed the optimized

model on embedded GPUs like the NVIDIA Jetson

Nano. Benchmarks demonstrated a 3-fold decrease in

latency and 4-fold decrease in energy use, which

allowed increased flight time with a detection

accuracy of more than 90 percent.

The same is the case with autonomous ground

vehicles. To illustrate, perception systems that are

based on LiDAR need point-cloud data to be

combined with the input of cameras. Massive

meshworks of connections can flood the processors

onboard. Distillation of knowledge has been shown to

work well in this scenario, with small student models

achieving the same performance as large sensor fusion

teachers. Combined with compilers such as NVIDIA

TensorRT, which automatically fuse them to be

implemented in a graphics card, these models can run

in real-time at the tighter thermal and power

constraints of automobile hardware.

7.3 Intelligent Cities and IoT Infrastructure.

Smart cities rely on a thick network of IoT devices

such as cameras, sensors, and controllers that track

traffic flow, energy use, and environmental conditions.

These machines have to work 24/7, and sometimes

they are in areas with poor connectivity and power.

Scaling of such systems in an environmentally

sustainable manner requires energy-efficient AI.

An example worth mentioning is that of smart

surveillance cameras with the purpose of traffic

surveillance. Old-fashioned cloud-based solutions

involve high-resolution video streaming, and they

devour colossal bandwidth. Using quantized and

pruned convolutional models on the cameras directly,

only metadata, including detected objects and the

density of the traffic, should be sent. This alleviates

network overhead and makes it real-time receptive.

ONNX Runtime has been instrumental in making the

heterogeneous hardware of cameras compatible, using

operator fusion and reusing buffers to keep models

running comfortably on low-power CPUs.

Edge devices are employed in environmental

monitoring, and these devices have gas sensors or

acoustic detectors to detect a leak or illegal

deforestation activity. In one project, a pruned and

distilled CNN was used to detect acoustic events on

solar-powered edge devices in remote forests. Its

compact size enabled it to operate on harvested solar

energy 24 hours a day, and this proves the

effectiveness of AI on sustainability.

The unifying factor of these various applications is

that AI design, which is energy efficient, turns the

unrealistic into the realistic. Previously confined in

cloud server models can be moved to the field, where

models can be empowered to provide real-time

0 50 100 150 200 250

Mobile Face Recognition

Wearable Health Monitor

Autonomous Drones

Smart Factories

Robotics

Reduction (%) Energy After (J) Energy Before (J)

© APR 2023 | IRE Journals | Volume 6 Issue 10 | ISSN: 2456-8880

IRE 1711192 ICONIC RESEARCH AND ENGINEERING JOURNALS 1152

intelligence without infringing upon energy, memory,

and latency limits.

VIII. CHALLENGES AND FUTURE DIRECTIONS

Although pruning, quantization, distillation, and

compiler/runtime optimizations have made strides in

achieving impressive energy efficiency with edge AI,

there are still major challenges. All these issues are

technical, operational, and ethical in nature, and their

resolution will determine the future direction of AI

research and application at the edge. Meanwhile, new

technologies and approaches can be seen as promising

solutions to current constraints and moving in the right

direction towards more sustainable and scalable

solutions.

8.1 Technical Challenges

Among the major technical challenges, there exist

accuracy-performance trade-offs. Even though

pruning and quantization can drastically decrease

model size and power usage, aggressive optimization

can frequently reduce accuracy, particularly in

applications where it is important (like medical

diagnostics or autonomous driving). The area of

developing adaptive pruning or quantizing techniques

that can choose to prune or quantize certain model

components without disproportionately influencing

important model parts is still open to research.

The other problem is heterogeneity of edge hardware.

The variety of devices, including smartphones and

embedded GPUs as well as bespoke ASICs and

microcontrollers, create difficulties in the creation of

universally optimized models. Compiler

infrastructure, such as TVM, tries to hide the

differences between hardware, yet it is not an easy task

to make sure that different parts of this disjointed

ecosystem can perform identically.

Moreover, there is a lack of support for emerging

architectures, which is a constraint. Most edge

runtimes and compilers do not yet fully support more

advanced model classes such as transformers, which

are becoming more important across fields such as

natural language processing and vision. The

innovation in model design, as well as optimization

tooling, to bring these complex architectures to low-

power devices, will be necessary.

8.2 Operational and Deployment Issues.

Model update and maintenance pose consistent

challenges, as far as deployment is concerned. The

edge devices tend to be deployed in either remote or

resource-constrained conditions, in which regular

updates are infeasible. Optimized models then have to

strike a balance between efficiency and robustness

because they should be useful in the long term and not

require retraining or redeployment.

Integration with existing systems is also another

operational problem. In the industrial IoT, such as

implementing energy-efficient AI, it must be

compatible with the legacy equipment and protocols.

Optimized models can perform well as isolated

components, but can perform poorly when

incorporated into distributed and complex

infrastructures.

The issue of optimization pipeline scalability also

exists. Methods such as pruning and quantization-

aware training have high sensitivity to

hyperparameters and can be expensive to train at scale.

A significant bottleneck is the process of automating

these processes without affecting the quality of

optimization.

8.3 Ethical and Sustainability Iss-challs.

The ethical concerns of AI at the edge are important,

as it is energy-efficient. On the one hand, local

inference lowers the transmission of data to the cloud,

thereby enhancing privacy. Alternatively, highly

optimized models can act in unpredictable ways when

optimization causes a shift of decision boundaries,

particularly in high-stakes settings such as healthcare.

It is therefore crucial to make sure that optimized

models are made transparent and explainable.

In a sustainability perspective, at the individual scale,

the optimization of energy is achieved, but the number

of deployed edge devices increases rapidly, casting

doubt on the overall environmental effects. Both

collections of billions of low-power devices operating

optimized models can consume a lot of energy. Studies

of life-cycle sustainability assessment, such as

manufacturing, implementation, and destruction of

AI-powered edge devices, remain in their infancy.

© APR 2023 | IRE Journals | Volume 6 Issue 10 | ISSN: 2456-8880

IRE 1711192 ICONIC RESEARCH AND ENGINEERING JOURNALS 1153

8.4 Future Directions

In the future, there are a number of encouraging trends

that provide potential solutions to these issues.

Automated machine learning to optimize (AutoML to

compress) is one such avenue. Researchers are able to

lessen the automatic tuning of networks to

optimization that can be scaled and adaptive by

combining pruning, quantization, and distillation as

part of AutoML frameworks. More recent efforts at

using reinforcement learning in conjunction with

compiler auto-tuning indicate a possible way to end up

with entirely automated, hardware-aware optimization

pipelines.

A second way is the development of new hardware-

software co-design strategies. As opposed to

retrofitting models to existing hardware, new systems

can be implemented as a system, with compilers,

algorithms, and processors being co-optimized to

work well. Some companies are already exploring

neuromorphic computing and analog AI chip designs

that consume significantly less energy to perform

inference tasks.

Transformer and graph neural networks are other new

research frontiers that require lightweight

architectures. Similar to the case of MobileNet

changing the way CNN is deployed to mobile devices,

efficient variants of transformers could adapt natural

language processing and state-ofthe-art vision models

to low-power hardware.

Figure 2: Projection of Energy Efficiency Trends in

Edge AI (2025–2030)

CONCLUSION

The quest towards energy-efficient AI model design of

edge devices has turned out to be a hallmark of

contemporary computing. With AI increasingly

finding its way into all aspects of our daily technology,

including smartphones and wearables, autonomous

systems, and industry IoT, the necessity of

lightweight, optimized models is never more acute.

The efficiency is not a luxury but a must due to the

setbacks of limited power budgets, thermal envelopes,

and the memory resources at the edge.

We have explored the main strategies to this end

throughout this article. Neural network pruning,

quantization, and knowledge distillation, among

others, have been critical in creating smaller and less

complex deep learning models with little loss in

accuracy. Meanwhile, compiler and runtime

optimization technologies guarantee the transfer of

these hypothetical efficiency improvements into

practical improvements in the performance of a wide

variety of hardware platforms.

However, with the obstacles listed in the challenges

section, the trip is not over. The problem of accuracy-

performance trade-offs, hardware heterogeneity, and

lack of support to emerging architectures continue to

pose challenges. The picture is even complicated by

ethical issues relating to transparency, explainability,

and environmental sustainability. The high rate of

power gadget expansion also brings up the question of

how the cumulative effect of AI will be on energy

usage and e-waste. These problems have to be dealt

with in a multifaceted manner that goes beyond

technical innovation to encompass governance,

standardization, and responsible deployment

strategies.

In the future, the future of energy-efficient edge AI can

probably be influenced by a few new directions.

Automatic optimization systems are set to automate

the compression methods and minimize the use of

trial-and-error. The new generation of processors and

algorithms that are specific to efficiency could be

introduced through hardware-software co-design. A

lightweight transformer and a graph neural network

will increase the number of applications that can be

utilized successfully on limited devices. Lastly, such

collaborative paradigms as federated learning will be

used to distribute workloads in a smart manner, with

the aim of balancing efficiency, adaptability, and

privacy.

0

2

4

6

8

10

12

14

2025 2026 2027 2028 2029 2030

Average Energy per Inference (mJ)

Average Energy per Inference (mJ)

© APR 2023 | IRE Journals | Volume 6 Issue 10 | ISSN: 2456-8880

IRE 1711192 ICONIC RESEARCH AND ENGINEERING JOURNALS 1154

REFERENCES

[1] Han, S., Mao, H., & Dally, W. J. (2015). Deep

Compression: Compressing Deep Neural

Networks with Pruning, Trained Quantization

and Huffman Coding. arXiv preprint.

Demonstrates a full pipeline combining pruning

and quantization for substantial modelsize

reduction and energy gains. arXiv

[2] De Leon, J. D., & Atienza, R. (2022). Depth

Pruning with Auxiliary Networks for TinyML.

arXiv preprint. Achieved up to 93% parameter

reduction with minimal accuracy loss on

TinyML tasks using depth pruning. Papers with

CodearXiv

[3] Blakeney, C., Li, X., Yan, Y., & Zong, Z. (2020).

Parallel Blockwise Knowledge Distillation for

Deep Neural Network Compression. arXiv

preprint. Shows 3× speedup and ~20–30%

energy savings using blockwise distillation.

arXiv

[4] Bharti, K., Cervera-Lierta, A., Kyaw, T. H.,

Haug, T., Alperin-Lea, S., Anand, A., . . .

Aspuru-Guzik, A. (2022). Noisy intermediate-

scale quantum algorithms. Reviews of Modern

Physics, 94(1).

https://doi.org/10.1103/revmodphys.94.015004

[5] Davies, M., Wild, A., Orchard, G.,

Sandamirskaya, Y., Guerra, G. a. F., Joshi, P., . .

.

[6] Risbud, S. R. (2021). Advancing Neuromorphic

Computing with LOIHI: A Survey of Results and

Outlook. Proceedings of the IEEE, 109(5), 911–

934. https://doi.org/10.1109/jproc.2021.3067593

[7] Mahdavinejad, M. S., Rezvan, M., Barekatain,

M., Adibi, P., Barnaghi, P., & Sheth, A. P.

(2017). Machine learning for internet of things

data analysis: a survey. Digital Communications

and Networks, 4(3), 161–

175. https://doi.org/10.1016/j.dcan.2017.10.002

[8] Sze, V., Chen, Y., Yang, T., & Emer, J. S. (2017).

Efficient Processing of deep Neural Networks: A

tutorial and survey. Proceedings of the IEEE,

105(12), 2295–2329.

https://doi.org/10.1109/jproc.2017.2761740

[9] Wang, X., Han, Y., Leung, V. C. M., Niyato, D.,

Yan, X., & Chen, X. (2020). Convergence of

Edge Computing and Deep Learning: A

Comprehensive survey. IEEE Communications

Surveys & Tutorials, 22(2), 869–904.

https://doi.org/10.1109/comst.2020.2970550

[10] Xin, Y., Kong, L., Liu, Z., Chen, Y., Li, Y., Zhu,

H., . . . Wang, C. (2018). Machine learning and

deep learning methods for cybersecurity. IEEE

Access, 6, 35365–35381.

https://doi.org/10.1109/access.2018.2836950

[11] Zhang, C., Patras, P., & Haddadi, H. (2019).

Deep learning in mobile and wireless

Networking: a survey. IEEE Communications

Surveys & Tutorials, 21(3), 2224–2287.

https://doi.org/10.1109/comst.2019.2904897

[12] Zhou, Z., Chen, X., Li, E., Zeng, L., Luo, K., &

Zhang, J. (2019). Edge Intelligence: Paving the

last mile of artificial intelligence with edge

computing. Proceedings of the IEEE, 107(8),

1738–1762.

https://doi.org/10.1109/jproc.2019.2918951

[13] Brunetti, A., Buongiorno, D., Trotta, G. F., &

Bevilacqua, V. (2018). Computer vision and

deep learning techniques for pedestrian detection

and tracking: A survey. Neurocomputing, 300,

17–33.

https://doi.org/10.1016/j.neucom.2018.01.092

[14] Deng, S., Zhao, H., Fang, W., Yin, J., Dustdar,

S., & Zomaya, A. Y. (2020). Edge Intelligence:

The confluence of edge computing and artificial

intelligence. IEEE Internet of Things Journal,

7(8), 7457–7469.

https://doi.org/10.1109/jiot.2020.2984887

[15] Gholami, A., Kim, S., Dong, Z., Yao, Z.,

Mahoney, M. W., & Keutzer, K. (2022). A

survey of Quantization Methods for Efficient

Neural network Inference. In Chapman and

Hall/CRC eBooks (pp. 291–326).

https://doi.org/10.1201/9781003162810-13

[16] Kairouz, P., McMahan, H. B., Avent, B., Bellet,

A., Bennis, M., Bhagoji, A. N., . . . Zhao, S.

(2021). Advances and open

problems in federated learning.

https://doi.org/10.1561/9781680837896

[17] Letaief, K. B., Shi, Y., Lu, J., & Lu, J. (2021).

Edge Artificial Intelligence for 6G: vision,

enabling technologies, and applications. IEEE

Journal on Selected Areas in Communications,

https://arxiv.org/abs/1510.00149?utm_source=chatgpt.com
https://paperswithcode.com/paper/depth-pruning-with-auxiliary-networks-for?utm_source=chatgpt.com
https://paperswithcode.com/paper/depth-pruning-with-auxiliary-networks-for?utm_source=chatgpt.com
https://arxiv.org/abs/2012.03096?utm_source=chatgpt.com
https://doi.org/10.1109/jproc.2019.2918951

© APR 2023 | IRE Journals | Volume 6 Issue 10 | ISSN: 2456-8880

IRE 1711192 ICONIC RESEARCH AND ENGINEERING JOURNALS 1155

40(1), 5–36.

https://doi.org/10.1109/jsac.2021.3126076

[18] Xu, J., Glicksberg, B. S., Su, C., Walker, P.,

Bian, J., & Wang, F. (2020). Federated Learning

for Healthcare Informatics. Journal of

Healthcare Informatics Research, 5(1), 1–19.

https://doi.org/10.1007/s41666-020-00082-4

[19] Courbariaux, M., Bengio, Y., & David, J. P.

(2015). BinaryConnect: Training deep neural

networks with binary weights during

propagations. In Advances in Neural

Information Processing Systems (NeurIPS), 28.

[20] Rastegari, M., Ordonez, V., Redmon, J., &

Farhadi, A. (2016). XNOR-Net: ImageNet

classification using binary convolutional neural

networks. In European Conference on Computer

Vision (ECCV) (pp. 525–542). Springer.

[21] Howard, A. G., Zhu, M., Chen, B.,

Kalenichenko, D., Wang, W., Weyand, T., ... &

Adam, H. (2017). MobileNets: Efficient

convolutional neural networks for mobile vision

applications. arXiv preprint arXiv:1704.04861.

[22] Sandler, M., Howard, A., Zhu, M., Zhmoginov,

A., & Chen, L. C. (2018). MobileNetV2: Inverted

residuals and linear bottlenecks. In Proceedings

of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR) (pp. 4510–4520).

[23] Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang,

M., Howard, A., ... & Adam, H. (2018).

Quantization and training of neural networks for

efficient integer-arithmetic-only inference. In

Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition

(CVPR) (pp. 2704–2713).

[24] Yang, T. J., Chen, Y. H., & Sze, V. (2020).

Designing energy-efficient convolutional neural

networks using energy-aware pruning. In

Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition

(CVPR) (pp. 5687–5695).

[25] Qiu, H., Wang, J., Chen, X., & Shen, Y. (2022).

Recent advances in neural network compression

and acceleration for edge AI. ACM Computing

Surveys (CSUR), 54(9), 1–36.

