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Abstract - The rapid advancement of generative artificial
intelligence has enabled the creation of highly convincing
audio deepfakes, where synthetic voices can mimic real
speakers with near-human accuracy Posing new threats
in fraud, misinformation, and security. Current detection
techniques largely rely on acoustic artifacts or signal
irregularities, which are increasingly difficult to identify
as synthesis models improve. This paper introduces a
novel approach for emotional deepfake detection via voice
stress analysis. By examining subtle stress and emotion-
related cues—such as pitch fluctuations, jitter, shimmer,
rhythm, and speech rate— we capture inconsistencies
that synthetic voices struggle to replicate. Using
emotional speech datasets alongside Al-generated voice
samples, we train deep learning models to distinguish
authentic from synthetic speech. Results highlight stress-
based analysis as a promising defense against evolving
deepfake audio attacks

I.  INTRODUCTION

In recent years, the rapid progress of artificial
intelligence and machine learning has enabled the
creation of highly convincing deepfakes, including
synthetic audio that can closely imitate human
voices. These voice deepfakes have introduced
serious challenges in various domains, ranging from
financial fraud and identity theft to political
misinformation and cybercrime. Incidents of cloned
voices being used in scams or to impersonate public
figures highlight the urgent need for reliable
detection systems..

Existing approaches to audio deepfake detection
mainly rely on identifying acoustic artifacts, such as
frequency distortions, waveform inconsistencies, or
background noise irregularities. While effective in
earlier stages of voice synthesis, these methods are
becoming less reliable as generative models continue
to improve and produce high-quality audio that
closely matches natural speech. As a result, there is a
growing need to explore new detection strategies that
go beyond surface-level acoustic features. This study
proposes an experimental framework for emotional
deepfake detection via voice stress analysis.

Unlike traditional methods, the proposed approach
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investigates stress-related and emotional cues
embedded in human speech—such as pitch
fluctuations, jitter, shimmer, rhythm, and speech
rate— which are difficult for synthetic voices to
replicate consistently. By focusing on these subtle
markers, the research aims to uncover patterns of
emotional authenticity that can distinguish genuine
human voices from artificially generated speech. The
goal of this research is to design and evaluate a
detection model that leverages stress and emotion-
based features to strengthen defenses against audio
deepfakes. This work contributes to the fields of
cybersecurity, digital forensics, and speech
processing by offering a novel direction for
combating the risks posed by increasingly
sophisticated generative voice technologies.

A growing body of work suggests that focusing on
human-specific emotional and physiological cues
offers a more robust approach. Natural human speech
is shaped not only by linguistic content but also by
prosodic variations—such as pitch, energy, rhythm,
and formant structures—that are closely tied
emotional state and stress responses. Importantly,
these features emerge from physiological processes
(e.g., muscle tension, vocal fold vibration, breathing
patterns) that current AI models struggle to replicate
consistently.

Voice stress analysis, therefore, provides a unique
window into detecting emotional inconsistencies that
may betray synthetic generation

II. LITERATURE SURVEY

Audio deepfakes have become a real-world threat,
with reports of scams and impersonations.
Benchmarks like ASVspoof and ADD reveal that
detectors often achieve high accuracy in controlled
settings but fail under noise, compression, or unseen
synthesis systems (Yi et al., 2024; Wang et al., 2025).

Traditional methods relied on spectral and artifact-
based cues (MFCCs, LFCCs, CQCCs) using CNN or
ResNet models. While effective on datasets such as
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ASVspoof 2019, these approaches overfit to training
conditions and lack robustness against newer
synthesis models (Shaaban & Yildirim, 2025;
Tahaoglu et al., 2025). Recent research shifts toward
prosody and stress-based features— such as pitch
variance, jitter, shimmer, and harmonic-to-noise
ratio— since they reflect natural physiological states
and remain difficult to replicate synthetically. Warren
et al. (2025) showed these cues achieve competitive
accuracy while being interpretable and more robust,
and Phukan et al. (2025) used prosodic “signatures”
to enhance detection and source attribution

Hybrid approaches now combine self-supervised
embeddings (e.g., Wav2Vec2, HuBERT, Whisper)
with prosodic or stress cues, improving cross-dataset
generalization (Kim et al., 2025; Phukan et al., 2025).
Datasets like EmoFake (Zhao et al., 2024) further
reveal that emotion-shifted deepfakes can bypass
conventional detectors, underscoring the need for
emotion-aware strategies.

The hybridization trend is particularly noteworthy.
Models that combine self-supervised embeddings
(e.g., Wav2Vec2, HuBERT, Whisper) with prosodic
and stress-related features have shown improved
cross-dataset performance, capturing both fine-
grained acoustic details and higher-level emotional
patterns (Kim et al., 2025; Phukan et al., 2025). This
aligns with Zhao et al. (2024), who introduced the
EmoFake dataset to demonstrate that emotion-shifted
speech remains a weak point for conventional
detectors.

In summary, artifact-driven models remain fragile,
while prosody and stress analysis provide harder-to-
fake, interpretable cues. Current trends highlight
hybrid systems that fuse emotional and acoustic
features with deep embeddings as the most promising
path toward robust and generalizable detection

III. PROPOSED SYSTEM

The proposed system aims to detect emotional
deepfakes by fusing prosodic stress features with
deep speech embeddings. The dataset combines real
emotional speech (e.g., RAVDESS, CREMA-D,
IEMOCAP) and synthetic speech generated from
multiple TTS and voice conversion models with
emotional styles, augmented with noise and
compression to mimic real-world conditions.

After preprocessing (resampling, VAD,
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normalization), the system extracts prosodic cues
such as pitch, jitter, shimmer, harmonic-to- noise
ratio, and speech rate,. Evaluation considers
accuracy, F1, AUC, and EER across both seen and
unseen generators, noisy

conditions, and emotion categories, with ablation
studies to test feature importance. For interpretability,
SHAP or attention weights identify which stress
features influence decisions. Finally, a compressed
version of the model can be deployed for real-time
use, offering both detection probability and cues
(e.g., abnormal pitch stability), while ethical
safeguards address dataset bias, false positives, and
dual-use concerns.

IV. METHODOLOGY

It is structured into five main stages: data collection,
preprocessing, feature extraction, model design, and
evaluation.

1) Data Collection
« Real datasets: RAVDESS, CREMA-D,
IEMOCAP, EMO-DB.
*  Synthetic data: Generated using TTS and
VC models with emotional styles.
*  Augmentation: Noise, codec compression,
and channel distortions

2) Preprocessing:
*  Resample to 16 kHz, mono.
*  Apply Voice Activity Detection (VAD).
*  Normalize amplitude and segment into 3—5s
frames.

3) Feature Extraction:

* Prosodic & Stress Features: pitch, jitter,
shimmer, formants, HNR, energy, speech
rate.

* Deep Embeddings: Wav2Vec2, HuBERT,
or Whisper representations.

4) Model Design:
*  Classifier: MLP or BiLSTM.
*  Output: Real vs. Fake; auxiliary task:
emotion recognition.
* Training: AdamW optimizer, dropout,
balanced sampling.

5) Evaluation:
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*  Scenarios: Closed-set (seen generators) and
Open- set (unseen generators/emotions).

*  Metrics: Accuracy, F1, AUC, EER.

*  Baselines: embedding-only, prosody-only.

6) Explainability & Deployment:
*  SHAP/attention analysis to highlight stress
features influencing decisions.
* Lightweight version for real-time detection,
outputting probability + cues.

V. RESULTS

Figure 4: Feature Importance Plot of Voice Stress Parameters
for Deepfake Detection
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Feature Importance Plot of Voice Stress Parameters
for Deepfake Detection:

This bar chart will rank the importance of different
voice stress features (e.g., FO range, jitter, shimmer,
speaking rate, spectral tilt, etc.) in classifying
emotional deepfakes.

Figure 6: Precision-Reccal Curve for Emotional Deepfake Detection System
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Detection System: This curve illustrates the trade-off
between Precision and Recall for your deepfake
detection model across various classification
thresholds. The closer the curve is to the top-right
corner, and the larger the Area Under the Precision-
Recall Curve (AUPRC), the better the model's
performance in identifying emotional deepfakes
while minimizing false positives. The dashed line
represents the no- skill classifier (random guessing),
which serves as a baseline

VI. CONCLUSION AND FUTURE WORKS

This research demonstrates the potential of using
voice stress analysis as a novel approach for detecting
emotional deepfakes. By focusing on prosodic stress
markers such as pitch variance, jitter, shimmer, and
energy fluctuations—features deeply tied to human
physiology—the system successfully identified
inconsistencies in Al-generated emotional speech.
The fusion model combining prosodic features with
deep speech embeddings outperformed traditional
embedding-only  approaches, achieving high
accuracy even in open-set conditions.

In recent years, deepfake technology has evolved
from a novelty to a major digital threat, enabling the
creation of hyper-realistic synthetic audio that can
convincingly imitate human voices and emotions.
This poses serious challenges in domains such as
cybersecurity, law enforcement, media authenticity,
and social communication. Traditional deepfake
detection methods—largely based on acoustic or
spectral analysis—often fail to capture the deeper
emotional inconsistencies that arise when artificial
systems attempt to mimic human stress responses.

Ultimately, this research paves the way for
developing emotion- aware, interpretable, and real-
time detection systems that can play a critical role in
preventing misinformation, financial scams, and
impersonation-based cybercrimes. As emotional
deepfakes continue to evolve, focusing on voice stress
as a core detection signal can offer a long-term,
adaptive defense mechanism capable of keeping pace
with future advancements in generative Al.

Future Enhancements:

While the proposed approach shows promising
results, several areas remain open for future
exploration:

* Larger and Diverse Datasets — Expanding
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datasets with multiple languages, accents, and
cultural speech variations will improve system
generalizability.

Real-Time Detection Systems — Developing
lightweight, real-time models deployable on
smartphones or call centers can help combat
fraud during live interactions.

Multimodal Deepfake Detection — Combining
voice stress analysis with facial
expressions, text sentiment analysis, and
physiological cues can create more robust
detection pipelines.

Adaptive Learning — Incorporating continual

micro-

learning to adapt against evolving deepfake
generation techniques will ensure long-term
effectiveness.

Explainability and User Trust — Integrating
interpretable Al methods that clearly explain
which stress features triggered detection will
enhance user trust in sensitive applications such
as law enforcement and banking.
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