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Abstract— The exponential growth of enterprise and 

scientific data has challenged longstanding assumptions 

in data management. Traditional data warehouses 

deliver mature relational semantics and predictable 

performance, but struggle with semi-structured 

modalities, iterative data science, and real-time signals. 

Data lakes, by contrast, scale elastically on commodity 

object stores and support diverse data types through 

schema-on-read, yet historically lacked transactional 

guarantees, strong governance, and consistent query 

performance. The Data Lakehouse architecture 

reconciles these trade-offs by layering warehouse-like 

ACID transactions, versioned metadata, and query 

optimization over open file formats in a cloud-native 

design. This paper provides a deep, holistic treatment of 

Lakehouse principles and practice. We (i) trace the 

intellectual lineage from MapReduce, Dremel, and Hive 

to modern log-structured table formats; (ii) formalize a 

reference architecture encompassing storage, 

transaction/metadata, and processing layers with a 

cross-cutting governance plane; (iii) present a 

comparative analysis of Delta Lake, Apache Iceberg, 

and Apache Hudi; (iv) synthesize performance 

considerations for vectorized execution, small-file 

mitigation, and streaming upsets; (v) examine 

governance and interoperability patterns for multi-cloud 

deployments; and (vi) explore emerging directions-  

including vector/tensor extensions for AI, zero-ETL 

pipelines, semantic integration, and carbon-aware 

optimization. Throughout, we anchor discussion in peer-

reviewed literature and production learnings, retaining 

resolvable DOIs for all referenced works. The result is a 

practitioner-ready, research-grounded blueprint for 

building resilient, interoperable, and AI-native data 

platforms. 

 

Index Terms— Data Lakehouse, Delta Lake, Apache 

Iceberg, Apache Hudi, Parquet, ORC, ACID 

Transactions, Metadata Governance, Big Data 

Architecture, Cloud Analytics, Machine Learning, 

Vector Databases 

 

 

 

 

I. INTRODUCTION 

 

Enterprises today generate unprecedented volumes 

of heterogeneous data: transactional records, 

clickstream logs, IoT telemetry, images and video, 

natural-language text, clinical measurements, and 

scientific experiments. Deriving value from such 

diversity requires an architecture that 

simultaneously supports batch analytics, interactive 

BI, real-time event processing, and iterative 

machine learning. Historically, organizations 

oscillated between two poles: data warehouses, 

emphasizing schema-on-write, optimized relational 

execution, and strong consistency; and data lakes, 

embracing schema-on-read, minimal ingestion 

friction, and scale-out storage on commodity cloud 

object stores. Each pole imposes structural 

compromises. Warehouses are costly for petabyte-

scale retention, inflexible for rapidly evolving 

schemas, and suboptimal for unstructured 

modalities. Lakes are agile and inexpensive but can 

devolve into data swamps when metadata is 

inconsistent, governance is weak, and transactional 

correctness is absent. Data Lakehouse seeks to 

merge these affordances by combining object-

storage economics and openness with warehouse-

grade reliability. This is realized via log-structured 

table formats, notably Delta Lake [1], Apache 

Iceberg [11], and Apache Hudi—which add ACID 

transactions, schema evolution, and time travel to 

open columnar files (Parquet/ORC) [9], [10]. 

Compute engines (Spark, Trino, Flink, and Photon) 

[8], [3] then exploit vectorization, statistics, and 

pushdown to achieve competitive performance. This 

manuscript expands prior surveys of lakes [13], [14] 

and enterprise overviews [15] by: (1) elucidating 

architectural invariants underpinning lakehouses; (2) 

systematizing design trade-offs across table formats; 

(3) synthesizing empirical insights from benchmarks 

such as LST-Bench [4]; and (4) articulating a 

research agenda for interoperability, AI-native 
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storage, and sustainability. We retain citations and 

DOIs as published to preserve traceability. 

 

II. HISTORICAL CONTEXT AND EVOLUTION  

 

A. From Warehouses to Lakes  

In the 1990s and early 2000s, enterprise data 

management centered on centralized warehouses. 

ETL pipelines materialized dimensional schemas for 

reporting and OLAP. Although performant, these 

systems struggled with semi-structured inputs and 

iterative analytics. A methodological pivot arrived 

with MapReduce [5], [22], which abstracted large-

scale parallelism over commodity clusters. Dremel 

[6], [12] demonstrated interactive, massively 

parallel query processing over nested columnar 

storage, influencing the Parquet/ORC ecosystem. 

Hive [7] adapted SQL semantics for the Hadoop 

stack. Spark unified iterative, streaming, and batch 

computation [8], fueling schema-on-read data lakes 

built atop HDFS and, later, cloud object stores. 

Despite elasticity and openness, data lakes often 

lacked robust metadata curation, lineage, and 

transactions, impairing trust and reusability. Without 

strong governance, organizations accumulated 

countless small files, inconsistent schemas, and ad 

hoc ingestion patterns, degrading query performance 

and reproducibility.  

 

B. From Lakes to Lakehouses  

Lakehouses emerged to address these gaps by 

introducing table-level transaction logs, snapshot 

isolation, and schema evolution over immutable 

files. Delta Lake [1] pioneered an append-only 

transaction log with checkpointing; Iceberg [11] 

advanced manifest trees and partition-spec evolution 

for petabyte scale; Hudi focused on low-latency 

CDC via copy-on-write and merge-on-read. 

Collectively, these innovations restored correctness 

and governance while retaining open formats. Cloud 

vendors converged on lakehouse-aligned offerings: 

BigLake [2] unifies BigQuery governance with 

multi-cloud object storage; analogous controls exist 

in AWS and Azure.  

 

C. Convergence and Interoperability 

 Modern enterprises operate heterogeneous stacks. 

Interoperability efforts (e.g., XTable [16]) translate 

metadata across Delta/Iceberg/Hudi, enabling cross-

engine reads/writes and reducing migration friction. 

The field is coalescing toward open, engine-agnostic 

semantics while vendor ecosystems differentiate on 

performance and tooling. 

  

III. CONCEPTUAL ARCHITECTURE AND 

DESIGN PRINCIPLES 

 

 We model a Lakehouse as three core layers: 

storage, metadata/transactions, and 

processing/consumption, governed by an orthogonal 

plane for security, lineage, and quality.  

 

A. Storage: Open Columnar on Object Stores.  

Object stores (e.g., S3, ADLS, GCS) offer 

durability, elasticity, and cost efficiency. Parquet 

and ORC encode columnar data with compression, 

encoding dictionaries, and statistics for predicate 

pruning [9], [10]. Practitioners should target file 

sizes (typically 128-1024MB) that balance overhead 

and parallelism, and use partitioning and clustering 

informed by workload predicates.  

 

B. Transactions and Metadata: Log-Structured 

Tables 

 Delta Lake maintains a monotonic log of atomic 

commits and optimizes with checkpoint files to cap 

planning cost [1]. Iceberg represents table state as 

snapshots that reference manifest lists and data files, 

enabling scalable planning and efficient row-level 

mutation [11]. Hudi exposes a commit timeline with 

instant-based versioning; merge-on-read balances 

ingestion latency with compaction overhead. LST 

Bench [4] formalizes evaluation axes: update 

intensity, small file pressure, multi-writer 

concurrency, and snapshot-planning latency. 

 

D. Processing: Multi-Engine, Multi-Modal 

Spark, Trino, and Flink access the same tables, 

enabling SQL, streaming, and ML. Photon 

demonstrates that vectorized execution and runtime 

code generation can meet or exceed the performance 

of closed warehouses on Lakehouse tables [3]. 

Engines exploit Parquet/ORC statistics, partition 

specs, and table-metadata indices for pushdown and 

data skipping. D. Governance: Catalog, Lineage, 

and Policy Governance unifies identity and access 

management, schema/version control, data-quality 

rules, and lineage. Surveys emphasize that 

automated metadata capture, constraint 

enforcement, and privacy-aware controls are 

prerequisites for sustainable lakes [13], [14]. In 

multi-cloud contexts, the BigLake model [2] 

illustrates federated policy enforcement.  
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IV. ADVANTAGES AND STRATEGIC 

OUTCOMES  

 

A lakehouse consolidates ETL, BI, and ML on a 

single substrate, reducing copy-and-transform cycles 

and associated data drift. Additional benefits 

include:  

• Economic efficiency via decoupled 

storage/compute and open formats (lower TCO, 

minimized lock-in). 

• Reliability from ACID transactions, snapshot 

isolation, and governed schemas. 

• Performance through vectorized execution, 

clustering, and statistics-driven pruning. 

• Reproducibility via time travel and immutable 

snapshots underpinning rigorous analytics and 

audits. AI-readiness by exposing curated 

features and labels directly on governed tables, 

reducing extract duplication.  

 

Industry analyses report substantial cost and cycle-

time reductions following lakehouse adoption [15].  

 

V. COMPARATIVE ANALYSIS OF TABLE 

FORMATS 

 

 We compare the three dominant table formats along 

with capabilities pertinent to enterprise deployment. 

Evidence draws on [4], [11], [16] and vendor-

neutral observations. Observations. Delta Lake 

emphasizes compaction and log checkpointing, 

yielding robust upsert performance under mixed 

streaming/batch. Iceberg’s manifest-based planning 

scales snapshot enumeration at extreme file counts 

and supports position deletes. Hudi’s merge-on-read 

offers ingestion latency advantages but relies on 

compaction policy tuning for read performance. 

Interoperability layers (e.g., XTable [16]) mitigate 

format lock-in for multi-engine estates. Table I 

summarizes the comparative study.   

 

VI. USE CASES AND SECTORAL PATTERNS  

 

A. Healthcare and Life Sciences 

Healthcare and biomedical research generate diverse 

datasets; electronic health records (EHR), diagnostic 

imaging, genomics, clinical notes, and wearable 

telemetry. Integrating such data requires strong 

governance, auditability, and interoperability while 

preserving privacy and compliance. The Data 

Lakehouse provides a practical foundation by 

consolidating heterogeneous sources under ACID-

compliant transactional control and enabling 

reproducible cohort analysis.  

 

Recent studies, such as the IEEE publication on AI-

Driven Data Lakehouse for Healthcare [20], 

demonstrate how lakehouse architecture can 

enhance interoperability, improve diagnostic 

accuracy, and support real-time anomaly detection 

for clinical decision support. The framework 

outlined in that work integrates secure data 

acquisition, unified metadata models, and advanced 

machine learning to drive predictive analytics in 

healthcare.  

 

Hospitals and public-health institutions increasingly 

employ lakehouse-based solutions for population 

health management, risk stratification, and 

operational forecasting, illustrating the societal 

benefits of this architecture when combined with 

responsible AI and robust data governance.  

 

B. Financial Services 

Banks combine transactional ledgers, behavioral 

telemetry, and third-party risk datasets. Snapshot 

isolation and lineage underpin regulatory reporting; 

streaming upserts enable near real-time fraud 

detection. Partition-evolution (Iceberg) and log 

compaction (Delta) facilitate long-horizon analytics. 

 

C. Academic and Research Institutions 

Research ecosystems integrate publications, citation 

graphs, grants, and datasets. ALITE [19] 

exemplifies scalable integration logic. Lakehouses 

buttress FAIR data principles, enabling 

reproducible, cross-domain analytics.  

 

D. Manufacturing and IoT 

Industrial telemetry requires low-latency ingestion 

with consistent analytical views. Hudi’s merge-on-

read patterns pair with curated batch views for 

planning/optimization; Iceberg’s scalable snapshots 

assist global estates executing multi-writer 

workloads. 

 

 

 

 



© OCT 2025 | IRE Journals | Volume 9 Issue 4 | ISSN: 2456-8880 
DOI: https://doi.org/10.64388/IREV9I4-1711258-3166 

IRE 1711258      ICONIC RESEARCH AND ENGINEERING JOURNALS            596 

TABLE I 

COMPARISON OF LEADING DATA LAKEHOUSE TABLE FORMATS 

Feature  Delta Lake  Apache Iceberg  Apache Hudi  

 Metadata Model Append-only transaction 

log (JSON/Parquet) with 

checkpointing 

Hierarchical manifests 

and snapshot metadata 

Commit timeline with 

instant versioning 

 ACID Transactions Full ACID compliance via 

optimistic concurrency 

Snapshot isolation with 

atomic replace commits 

ACID on copy-on-write; 

eventual for merge-on-

read 

Schema Evolution  Supports add/drop 

columns; automatic type 

promotion 

Full schema evolution 

with partition spec 

updates 

Supports column 

evolution and nullable 

enforcement 

Time Travel / 

Versioning  

Supported through commit 

history.  

 

Supported via snapshot 

rollback  

 

Supported via commit 

instants. 

 

Streaming Support Strong: micro-batch and 

streaming merges 

 

Moderate: via Flink and 

Spark streaming 

connectors 

Strong: native 

incremental pull and 

CDC ingestion 

Upsert/Delete 

Efficiency 

Optimized via data 

skipping and compaction 

Efficient delete/merge 

through position deletes. 

Native merge and delta 

streamer 

Multi-engine 

Interoperability 

Broad (Spark, Trino, 

Presto, Photon) 

Broad (Spark, Flink, 

Trino, Snowflake) 

Growing (Spark, Hive, 

Presto) 

Governance 

Integration 

Unity Catalog, AWS Glue, 

HMS 

Hive Metastore, AWS 

Glue, custom catalogs 

Hive Metastore, custom 

catalogs 

Typical Use Cases Unified analytics + ML, 

mixed workloads 

Petabyte-scale batch 

analytics; multi-writer 

concurrency 

Real-time ingestion, 

CDC-heavy pipelines 

 

VII. PERFORMANCE ENGINEERING IN 

LAKEHOUSES 

 

A. Query Execution and Vectorization 

Photon’s results [3] demonstrate that vectorized 

execution, runtime codegen, and cache-aware 

operators can rival closed warehouses on lakehouse 

tables. Parquet’s nested encoding continues to 

evolve; efficient scanning of nested structures 

improves complex analytics [21].  

 

B. File and Layout Policies 

Right-sizing Parquet/ORC files, materializing 

statistics, and clustering data by high-selectivity 

predicates reduce scan volume. Avoiding small files 

requires compaction and write rate control. Layout 

strategies should co-evolve with query patterns, e.g., 

adaptive Z-ordering or manifest-level clustering.  

 

C. Metadata Scalability 

Iceberg’s snapshot/manifest structure reduces 

planning overhead at billions of files [11]. Delta’s 

checkpoints bound log replay; Hudi’s timeline 

organizes instants for concurrent writers. LST-

Bench [4] quantifies differences across update-

heavy and multi-writer regimes.  

 

D. Streaming Upserts and CDC 

CDC requires sophisticated merge semantics with 

late-arriving events and idempotency. Delta’s 

MERGE INTO with structured streaming and 

Hudi’s DeltaStreamer illustrate patterns for 
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reconciling operational and analytical states without 

dual data stores.  

 

VIII. GOVERNANCE, SECURITY, QUALITY, 

AND LINEAGE  

 

A. Catalogs and Policy  

Central catalogs (Glue, Hive Metastore, Unity 

Catalog) hold schema versions, ACLs, and lineage. 

Column- and row-level security integrate with 

identity providers. Surveys [13], [14] stress 

continuous data-quality checks (freshness, 

uniqueness, referential integrity) and automated 

anomaly detection. 

 

B. Lineage and Reproducibility 

Transaction logs and snapshots furnish runtime 

lineage; integrating with orchestration metadata 

forms end-to-end provenance graphs. Time travel 

anchors reproducible analytics by pinning queries to 

immutable table states. These lineage artifacts not 

only enable auditability but also serve as a 

foundation for impact analysis, allowing teams to 

trace how downstream metrics or models are 

influenced by upstream schema or data changes. 

Furthermore, coupling lineage with policy-aware 

metadata supports automated compliance reporting 

and facilitates trust in data-driven decision systems. 

 

C. Multi-Cloud Governance 

Federated policy enforcement across clouds and 

regions is essential for global data estates. BigLake 

[2] models cross-location access with consistent 

semantics, foreshadowing wider standardization. 

 

IX. INTEROPERABILITY AND OPEN 

STANDARDS  

 

A. Format Interop 

As estates mix Delta, Iceberg, and Hudi, cross-

format metadata interoperability becomes critical. 

XTable [16] demonstrates bidirectional translation 

with minimal duplication, enabling incremental 

migration and choice of engines.  

 

B. Commit and Statistics Semantics 

Standardizing commit semantics (conflict detection, 

isolation levels) and file-level statistics (min/max, 

null counts, bloom filters) would enable more 

portable optimizations while preserving innovation. 

Establishing a unified specification across table 

formats would simplify cross-engine 

interoperability, ensuring consistent behavior for 

concurrent writes, schema evolution, and query 

planning. In addition, harmonized metadata 

definitions would facilitate advanced cost-based 

optimization and allow intelligent caching or 

prefetching strategies to operate uniformly across 

heterogeneous compute environments. 

 

X. AI, ML, AND VECTOR/TENSOR 

EXTENSIONS  

 

A. Vector-Native Tables 

Modern AI stacks require efficient storage for 

embeddings. Delta Tensor [17] proposes 

vector/tensor types in lake tables, enabling co-

resident BI and vector search. Tensor Lakehouse 

[18] targets scalable model-training corpora. These 

patterns underpin RAG, recommendations, and 

multimodal analytics without separate vector silos.  

 

B. Feature Stores and Reproducibility 

Lakehouse tables serve as durable feature stores 

with snapshot isolation, ensuring consistent 

alignment between model training and serving. 

Governance policies can protect PII/PHI while 

enabling masked experimentation.  

 

XI. CHALLENGES AND OPEN PROBLEMS 

 

A. Metadata Explosion 

At exabyte scale, listing operations, snapshot 

planning, and commit contention become acute. 

Research directions include predictive compaction, 

workload-aware clustering, and learned cost models 

[4]. 

 

B. Cross-Cloud Latency and Policy Drift 

Geographically distributed data requires policy 

convergence and latency-aware planning. BigLake’s 

patterns [2] suggest designs for federated 

governance. 

 

C. Semantic Integration and Entity Resolution  

Automating schema matching and entity resolution 

(e.g., ALITE [19]) reduces manual curation. 

Embedding-based similarity over governed tables 

offers promising improvements in accuracy. 

 

D. Benchmarking Beyond SQL 

LST-Bench [4] is a start. The community needs 

benchmarks for streaming joins, vector search, and 

ML ETL to capture real workloads.  
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E. Sustainability 

Carbon-aware scheduling, cache placement, and 

storage tiering are underexplored. Lakehouses can 

expose energy metrics to optimizers for greener 

plans. 

 

XII. ARCHITECTING LAKEHOUSES IN 

PRACTICE 

 

A. Design Heuristics  

• Choose table format by workload: heavy 

CDC/low latency (Hudi); massive batch with 

complex deletes (Iceberg); mixed workloads 

and ecosystem breadth (Delta).  

• Enforce naming, partitioning, and schema-

evolution conventions to avoid drift.  

• Instrument lineage and data-quality checks 

early to prevent swamp regression.  

• Co-design compaction and clustering with 

query predicates; reassess quarterly.  

• Separate storage and compute accounts/projects 

for blast radius control.  

 

B. Migration Patterns  

Incremental migration via external tables and 

interop (XTable [16]) reduces cutover risk. Start 

with non-critical domains, validate lineage, and 

expand. 

 

C. Operations 

Define SLOs for freshness, latency, and correctness. 

Automate compaction/optimize jobs. Track cost and 

performance regressions; iterate on partition specs 

and file sizes. 

 

XIII. FUTURE OUTLOOK 

 

Deeper unification, stronger guarantees, and greater 

automation across the data lifecycle will define the 

next generation of data lakehouses. First, zero-ETL 

pipelines will mature from point integrations to 

policy-driven materialization, where operational 

changes propagate to governed lakehouse tables 

with bounded freshness and declarative conflict 

resolution. This will be paired with true streaming-

by-default semantics, exactly-once, idempotent 

merges, and late-data reconciliation as first-class 

behavior across engines and table formats.  

 

Second, the lakehouse will become AI-native. 

Vector and tensor-aware tables will co-reside with 

classical columns, enabling retrieval-augmented 

generation, recommendation, and multimodal 

analytics without separate vector silos. Model-aware 

governance (feature lineage, consent provenance, 

and license tracking) will turn reproducibility from 

aspiration into default. Accelerated compute 

(GPU/TPU/DPU) will be scheduled jointly with 

data placement, merging query planning with model 

serving to minimize data movement.  

 

Third, interoperability will advance beyond 

metadata translation toward shared transaction 

semantics, statistics schemas, and row/column-level 

security models. Cross-cloud sharing will stabilize 

around portable, cryptographically verifiable 

manifests, making “read anywhere, govern 

centrally” routine. Domain-oriented data mesh will 

ride atop these standards, with contract-driven SLAs 

and autonomous quality remediation.  

 

Fourth, privacy and safety will move from bolt-ons 

to compiled-in guarantees. Native differential 

privacy, policy-aware query optimization, 

confidential computing enclaves, and audit-by-

construction logs will enable high-utility analytics 

under strict regulatory regimes. Semantic layers will 

encode organizational ontologies, letting users ask 

business questions while engines compile 

optimized, policy-compliant plans.  

 

Fifth, sustainability will become a planning 

objective. Carbon-aware cost models will steer 

storage tiering, compaction cadence, and accelerator 

selection, exposing energy metrics for governance 

and reporting. Finally, autonomous operations, 

learned compaction, adaptive partitioning, skew-

aware shuffles, and reinforcement-learned caching, 

will close the loop between observability and 

optimization. In sum, the lakehouse is evolving into 

an open, intelligent substrate where BI, AI, and real-

time decisioning converge, governed, portable, and 

increasingly self-optimizing.  

 

CONCLUSION 

 

The Data Lakehouse architecture has become a 

defining milestone in the evolution of data 

management. By integrating the flexibility of data 

lakes with the governance, performance, and 

transactional integrity of warehouses, it delivers a 

unified, scalable, and open foundation for analytics 

and artificial intelligence. Through innovations in 

log-structured metadata, ACID transactions, and 
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open columnar formats, the lakehouse resolves long-

standing challenges of data duplication, schema 

rigidity, and inconsistent governance. Empirical 

research and industry adoption show that modern 

lakehouses now rival proprietary warehouses in 

performance while offering cost efficiency and 

interoperability. Beyond analytics, the lakehouse is 

transforming how enterprises operationalize data for 

real-time intelligence, machine learning, and 

domain-driven design. With developments such as 

vector-native tables, federated governance, and 

zero-ETL architectures, the ecosystem is advancing 

toward intelligent, self-optimizing platforms that 

support both business and scientific innovation. Yet, 

challenges remain in metadata scalability, cross-

cloud governance, and sustainability areas ripe for 

continued research. Ultimately, the Data Lakehouse 

represents more than a convergence of technologies; 

it embodies a paradigm shift toward openness, 

reproducibility, and agility. As organizations 

increasingly rely on data for strategic differentiation, 

the lakehouse stands poised to serve as the 

cornerstone of next-generation, AI-driven 

enterprises. 
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