
© OCT 2025 | IRE Journals | Volume 9 Issue 4 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I4-1711258-3166

IRE 1711258 ICONIC RESEARCH AND ENGINEERING JOURNALS 593

Data Lakehouse Architecture: Bridging the Gap

Between Data Lakes and Data Warehouses

MAYA THOMAS1, LAVANYA GONSALEZ2, RIBIN JACOB3, TINCY MATHEW4
1 Sikkim Manipal Institute of Technology, Gangtok, India

2 Krishna Kanta Handiqui State Open University, Rani Guwahati, India
3Sikkim Manipal Institute of Technology, Gangtok, India

4Sohra Government College, Cherrapunji, India

Abstract— The exponential growth of enterprise and

scientific data has challenged longstanding assumptions

in data management. Traditional data warehouses

deliver mature relational semantics and predictable

performance, but struggle with semi-structured

modalities, iterative data science, and real-time signals.

Data lakes, by contrast, scale elastically on commodity

object stores and support diverse data types through

schema-on-read, yet historically lacked transactional

guarantees, strong governance, and consistent query

performance. The Data Lakehouse architecture

reconciles these trade-offs by layering warehouse-like

ACID transactions, versioned metadata, and query

optimization over open file formats in a cloud-native

design. This paper provides a deep, holistic treatment of

Lakehouse principles and practice. We (i) trace the

intellectual lineage from MapReduce, Dremel, and Hive

to modern log-structured table formats; (ii) formalize a

reference architecture encompassing storage,

transaction/metadata, and processing layers with a

cross-cutting governance plane; (iii) present a

comparative analysis of Delta Lake, Apache Iceberg,

and Apache Hudi; (iv) synthesize performance

considerations for vectorized execution, small-file

mitigation, and streaming upsets; (v) examine

governance and interoperability patterns for multi-cloud

deployments; and (vi) explore emerging directions-

including vector/tensor extensions for AI, zero-ETL

pipelines, semantic integration, and carbon-aware

optimization. Throughout, we anchor discussion in peer-

reviewed literature and production learnings, retaining

resolvable DOIs for all referenced works. The result is a

practitioner-ready, research-grounded blueprint for

building resilient, interoperable, and AI-native data

platforms.

Index Terms— Data Lakehouse, Delta Lake, Apache

Iceberg, Apache Hudi, Parquet, ORC, ACID

Transactions, Metadata Governance, Big Data

Architecture, Cloud Analytics, Machine Learning,

Vector Databases

I. INTRODUCTION

Enterprises today generate unprecedented volumes

of heterogeneous data: transactional records,

clickstream logs, IoT telemetry, images and video,

natural-language text, clinical measurements, and

scientific experiments. Deriving value from such

diversity requires an architecture that

simultaneously supports batch analytics, interactive

BI, real-time event processing, and iterative

machine learning. Historically, organizations

oscillated between two poles: data warehouses,

emphasizing schema-on-write, optimized relational

execution, and strong consistency; and data lakes,

embracing schema-on-read, minimal ingestion

friction, and scale-out storage on commodity cloud

object stores. Each pole imposes structural

compromises. Warehouses are costly for petabyte-

scale retention, inflexible for rapidly evolving

schemas, and suboptimal for unstructured

modalities. Lakes are agile and inexpensive but can

devolve into data swamps when metadata is

inconsistent, governance is weak, and transactional

correctness is absent. Data Lakehouse seeks to

merge these affordances by combining object-

storage economics and openness with warehouse-

grade reliability. This is realized via log-structured

table formats, notably Delta Lake [1], Apache

Iceberg [11], and Apache Hudi—which add ACID

transactions, schema evolution, and time travel to

open columnar files (Parquet/ORC) [9], [10].

Compute engines (Spark, Trino, Flink, and Photon)

[8], [3] then exploit vectorization, statistics, and

pushdown to achieve competitive performance. This

manuscript expands prior surveys of lakes [13], [14]

and enterprise overviews [15] by: (1) elucidating

architectural invariants underpinning lakehouses; (2)

systematizing design trade-offs across table formats;

(3) synthesizing empirical insights from benchmarks

such as LST-Bench [4]; and (4) articulating a

research agenda for interoperability, AI-native

© OCT 2025 | IRE Journals | Volume 9 Issue 4 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I4-1711258-3166

IRE 1711258 ICONIC RESEARCH AND ENGINEERING JOURNALS 594

storage, and sustainability. We retain citations and

DOIs as published to preserve traceability.

II. HISTORICAL CONTEXT AND EVOLUTION

A. From Warehouses to Lakes

In the 1990s and early 2000s, enterprise data

management centered on centralized warehouses.

ETL pipelines materialized dimensional schemas for

reporting and OLAP. Although performant, these

systems struggled with semi-structured inputs and

iterative analytics. A methodological pivot arrived

with MapReduce [5], [22], which abstracted large-

scale parallelism over commodity clusters. Dremel

[6], [12] demonstrated interactive, massively

parallel query processing over nested columnar

storage, influencing the Parquet/ORC ecosystem.

Hive [7] adapted SQL semantics for the Hadoop

stack. Spark unified iterative, streaming, and batch

computation [8], fueling schema-on-read data lakes

built atop HDFS and, later, cloud object stores.

Despite elasticity and openness, data lakes often

lacked robust metadata curation, lineage, and

transactions, impairing trust and reusability. Without

strong governance, organizations accumulated

countless small files, inconsistent schemas, and ad

hoc ingestion patterns, degrading query performance

and reproducibility.

B. From Lakes to Lakehouses

Lakehouses emerged to address these gaps by

introducing table-level transaction logs, snapshot

isolation, and schema evolution over immutable

files. Delta Lake [1] pioneered an append-only

transaction log with checkpointing; Iceberg [11]

advanced manifest trees and partition-spec evolution

for petabyte scale; Hudi focused on low-latency

CDC via copy-on-write and merge-on-read.

Collectively, these innovations restored correctness

and governance while retaining open formats. Cloud

vendors converged on lakehouse-aligned offerings:

BigLake [2] unifies BigQuery governance with

multi-cloud object storage; analogous controls exist

in AWS and Azure.

C. Convergence and Interoperability

 Modern enterprises operate heterogeneous stacks.

Interoperability efforts (e.g., XTable [16]) translate

metadata across Delta/Iceberg/Hudi, enabling cross-

engine reads/writes and reducing migration friction.

The field is coalescing toward open, engine-agnostic

semantics while vendor ecosystems differentiate on

performance and tooling.

III. CONCEPTUAL ARCHITECTURE AND

DESIGN PRINCIPLES

 We model a Lakehouse as three core layers:

storage, metadata/transactions, and

processing/consumption, governed by an orthogonal

plane for security, lineage, and quality.

A. Storage: Open Columnar on Object Stores.

Object stores (e.g., S3, ADLS, GCS) offer

durability, elasticity, and cost efficiency. Parquet

and ORC encode columnar data with compression,

encoding dictionaries, and statistics for predicate

pruning [9], [10]. Practitioners should target file

sizes (typically 128-1024MB) that balance overhead

and parallelism, and use partitioning and clustering

informed by workload predicates.

B. Transactions and Metadata: Log-Structured

Tables

 Delta Lake maintains a monotonic log of atomic

commits and optimizes with checkpoint files to cap

planning cost [1]. Iceberg represents table state as

snapshots that reference manifest lists and data files,

enabling scalable planning and efficient row-level

mutation [11]. Hudi exposes a commit timeline with

instant-based versioning; merge-on-read balances

ingestion latency with compaction overhead. LST

Bench [4] formalizes evaluation axes: update

intensity, small file pressure, multi-writer

concurrency, and snapshot-planning latency.

D. Processing: Multi-Engine, Multi-Modal

Spark, Trino, and Flink access the same tables,

enabling SQL, streaming, and ML. Photon

demonstrates that vectorized execution and runtime

code generation can meet or exceed the performance

of closed warehouses on Lakehouse tables [3].

Engines exploit Parquet/ORC statistics, partition

specs, and table-metadata indices for pushdown and

data skipping. D. Governance: Catalog, Lineage,

and Policy Governance unifies identity and access

management, schema/version control, data-quality

rules, and lineage. Surveys emphasize that

automated metadata capture, constraint

enforcement, and privacy-aware controls are

prerequisites for sustainable lakes [13], [14]. In

multi-cloud contexts, the BigLake model [2]

illustrates federated policy enforcement.

© OCT 2025 | IRE Journals | Volume 9 Issue 4 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I4-1711258-3166

IRE 1711258 ICONIC RESEARCH AND ENGINEERING JOURNALS 595

IV. ADVANTAGES AND STRATEGIC

OUTCOMES

A lakehouse consolidates ETL, BI, and ML on a

single substrate, reducing copy-and-transform cycles

and associated data drift. Additional benefits

include:

• Economic efficiency via decoupled

storage/compute and open formats (lower TCO,

minimized lock-in).

• Reliability from ACID transactions, snapshot

isolation, and governed schemas.

• Performance through vectorized execution,

clustering, and statistics-driven pruning.

• Reproducibility via time travel and immutable

snapshots underpinning rigorous analytics and

audits. AI-readiness by exposing curated

features and labels directly on governed tables,

reducing extract duplication.

Industry analyses report substantial cost and cycle-

time reductions following lakehouse adoption [15].

V. COMPARATIVE ANALYSIS OF TABLE

FORMATS

 We compare the three dominant table formats along

with capabilities pertinent to enterprise deployment.

Evidence draws on [4], [11], [16] and vendor-

neutral observations. Observations. Delta Lake

emphasizes compaction and log checkpointing,

yielding robust upsert performance under mixed

streaming/batch. Iceberg’s manifest-based planning

scales snapshot enumeration at extreme file counts

and supports position deletes. Hudi’s merge-on-read

offers ingestion latency advantages but relies on

compaction policy tuning for read performance.

Interoperability layers (e.g., XTable [16]) mitigate

format lock-in for multi-engine estates. Table I

summarizes the comparative study.

VI. USE CASES AND SECTORAL PATTERNS

A. Healthcare and Life Sciences

Healthcare and biomedical research generate diverse

datasets; electronic health records (EHR), diagnostic

imaging, genomics, clinical notes, and wearable

telemetry. Integrating such data requires strong

governance, auditability, and interoperability while

preserving privacy and compliance. The Data

Lakehouse provides a practical foundation by

consolidating heterogeneous sources under ACID-

compliant transactional control and enabling

reproducible cohort analysis.

Recent studies, such as the IEEE publication on AI-

Driven Data Lakehouse for Healthcare [20],

demonstrate how lakehouse architecture can

enhance interoperability, improve diagnostic

accuracy, and support real-time anomaly detection

for clinical decision support. The framework

outlined in that work integrates secure data

acquisition, unified metadata models, and advanced

machine learning to drive predictive analytics in

healthcare.

Hospitals and public-health institutions increasingly

employ lakehouse-based solutions for population

health management, risk stratification, and

operational forecasting, illustrating the societal

benefits of this architecture when combined with

responsible AI and robust data governance.

B. Financial Services

Banks combine transactional ledgers, behavioral

telemetry, and third-party risk datasets. Snapshot

isolation and lineage underpin regulatory reporting;

streaming upserts enable near real-time fraud

detection. Partition-evolution (Iceberg) and log

compaction (Delta) facilitate long-horizon analytics.

C. Academic and Research Institutions

Research ecosystems integrate publications, citation

graphs, grants, and datasets. ALITE [19]

exemplifies scalable integration logic. Lakehouses

buttress FAIR data principles, enabling

reproducible, cross-domain analytics.

D. Manufacturing and IoT

Industrial telemetry requires low-latency ingestion

with consistent analytical views. Hudi’s merge-on-

read patterns pair with curated batch views for

planning/optimization; Iceberg’s scalable snapshots

assist global estates executing multi-writer

workloads.

© OCT 2025 | IRE Journals | Volume 9 Issue 4 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I4-1711258-3166

IRE 1711258 ICONIC RESEARCH AND ENGINEERING JOURNALS 596

TABLE I

COMPARISON OF LEADING DATA LAKEHOUSE TABLE FORMATS

Feature Delta Lake Apache Iceberg Apache Hudi

 Metadata Model Append-only transaction

log (JSON/Parquet) with

checkpointing

Hierarchical manifests

and snapshot metadata

Commit timeline with

instant versioning

 ACID Transactions Full ACID compliance via

optimistic concurrency

Snapshot isolation with

atomic replace commits

ACID on copy-on-write;

eventual for merge-on-

read

Schema Evolution Supports add/drop

columns; automatic type

promotion

Full schema evolution

with partition spec

updates

Supports column

evolution and nullable

enforcement

Time Travel /

Versioning

Supported through commit

history.

Supported via snapshot

rollback

Supported via commit

instants.

Streaming Support Strong: micro-batch and

streaming merges

Moderate: via Flink and

Spark streaming

connectors

Strong: native

incremental pull and

CDC ingestion

Upsert/Delete

Efficiency

Optimized via data

skipping and compaction

Efficient delete/merge

through position deletes.

Native merge and delta

streamer

Multi-engine

Interoperability

Broad (Spark, Trino,

Presto, Photon)

Broad (Spark, Flink,

Trino, Snowflake)

Growing (Spark, Hive,

Presto)

Governance

Integration

Unity Catalog, AWS Glue,

HMS

Hive Metastore, AWS

Glue, custom catalogs

Hive Metastore, custom

catalogs

Typical Use Cases Unified analytics + ML,

mixed workloads

Petabyte-scale batch

analytics; multi-writer

concurrency

Real-time ingestion,

CDC-heavy pipelines

VII. PERFORMANCE ENGINEERING IN

LAKEHOUSES

A. Query Execution and Vectorization

Photon’s results [3] demonstrate that vectorized

execution, runtime codegen, and cache-aware

operators can rival closed warehouses on lakehouse

tables. Parquet’s nested encoding continues to

evolve; efficient scanning of nested structures

improves complex analytics [21].

B. File and Layout Policies

Right-sizing Parquet/ORC files, materializing

statistics, and clustering data by high-selectivity

predicates reduce scan volume. Avoiding small files

requires compaction and write rate control. Layout

strategies should co-evolve with query patterns, e.g.,

adaptive Z-ordering or manifest-level clustering.

C. Metadata Scalability

Iceberg’s snapshot/manifest structure reduces

planning overhead at billions of files [11]. Delta’s

checkpoints bound log replay; Hudi’s timeline

organizes instants for concurrent writers. LST-

Bench [4] quantifies differences across update-

heavy and multi-writer regimes.

D. Streaming Upserts and CDC

CDC requires sophisticated merge semantics with

late-arriving events and idempotency. Delta’s

MERGE INTO with structured streaming and

Hudi’s DeltaStreamer illustrate patterns for

© OCT 2025 | IRE Journals | Volume 9 Issue 4 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I4-1711258-3166

IRE 1711258 ICONIC RESEARCH AND ENGINEERING JOURNALS 597

reconciling operational and analytical states without

dual data stores.

VIII. GOVERNANCE, SECURITY, QUALITY,

AND LINEAGE

A. Catalogs and Policy

Central catalogs (Glue, Hive Metastore, Unity

Catalog) hold schema versions, ACLs, and lineage.

Column- and row-level security integrate with

identity providers. Surveys [13], [14] stress

continuous data-quality checks (freshness,

uniqueness, referential integrity) and automated

anomaly detection.

B. Lineage and Reproducibility

Transaction logs and snapshots furnish runtime

lineage; integrating with orchestration metadata

forms end-to-end provenance graphs. Time travel

anchors reproducible analytics by pinning queries to

immutable table states. These lineage artifacts not

only enable auditability but also serve as a

foundation for impact analysis, allowing teams to

trace how downstream metrics or models are

influenced by upstream schema or data changes.

Furthermore, coupling lineage with policy-aware

metadata supports automated compliance reporting

and facilitates trust in data-driven decision systems.

C. Multi-Cloud Governance

Federated policy enforcement across clouds and

regions is essential for global data estates. BigLake

[2] models cross-location access with consistent

semantics, foreshadowing wider standardization.

IX. INTEROPERABILITY AND OPEN

STANDARDS

A. Format Interop

As estates mix Delta, Iceberg, and Hudi, cross-

format metadata interoperability becomes critical.

XTable [16] demonstrates bidirectional translation

with minimal duplication, enabling incremental

migration and choice of engines.

B. Commit and Statistics Semantics

Standardizing commit semantics (conflict detection,

isolation levels) and file-level statistics (min/max,

null counts, bloom filters) would enable more

portable optimizations while preserving innovation.

Establishing a unified specification across table

formats would simplify cross-engine

interoperability, ensuring consistent behavior for

concurrent writes, schema evolution, and query

planning. In addition, harmonized metadata

definitions would facilitate advanced cost-based

optimization and allow intelligent caching or

prefetching strategies to operate uniformly across

heterogeneous compute environments.

X. AI, ML, AND VECTOR/TENSOR

EXTENSIONS

A. Vector-Native Tables

Modern AI stacks require efficient storage for

embeddings. Delta Tensor [17] proposes

vector/tensor types in lake tables, enabling co-

resident BI and vector search. Tensor Lakehouse

[18] targets scalable model-training corpora. These

patterns underpin RAG, recommendations, and

multimodal analytics without separate vector silos.

B. Feature Stores and Reproducibility

Lakehouse tables serve as durable feature stores

with snapshot isolation, ensuring consistent

alignment between model training and serving.

Governance policies can protect PII/PHI while

enabling masked experimentation.

XI. CHALLENGES AND OPEN PROBLEMS

A. Metadata Explosion

At exabyte scale, listing operations, snapshot

planning, and commit contention become acute.

Research directions include predictive compaction,

workload-aware clustering, and learned cost models

[4].

B. Cross-Cloud Latency and Policy Drift

Geographically distributed data requires policy

convergence and latency-aware planning. BigLake’s

patterns [2] suggest designs for federated

governance.

C. Semantic Integration and Entity Resolution

Automating schema matching and entity resolution

(e.g., ALITE [19]) reduces manual curation.

Embedding-based similarity over governed tables

offers promising improvements in accuracy.

D. Benchmarking Beyond SQL

LST-Bench [4] is a start. The community needs

benchmarks for streaming joins, vector search, and

ML ETL to capture real workloads.

© OCT 2025 | IRE Journals | Volume 9 Issue 4 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I4-1711258-3166

IRE 1711258 ICONIC RESEARCH AND ENGINEERING JOURNALS 598

E. Sustainability

Carbon-aware scheduling, cache placement, and

storage tiering are underexplored. Lakehouses can

expose energy metrics to optimizers for greener

plans.

XII. ARCHITECTING LAKEHOUSES IN

PRACTICE

A. Design Heuristics

• Choose table format by workload: heavy

CDC/low latency (Hudi); massive batch with

complex deletes (Iceberg); mixed workloads

and ecosystem breadth (Delta).

• Enforce naming, partitioning, and schema-

evolution conventions to avoid drift.

• Instrument lineage and data-quality checks

early to prevent swamp regression.

• Co-design compaction and clustering with

query predicates; reassess quarterly.

• Separate storage and compute accounts/projects

for blast radius control.

B. Migration Patterns

Incremental migration via external tables and

interop (XTable [16]) reduces cutover risk. Start

with non-critical domains, validate lineage, and

expand.

C. Operations

Define SLOs for freshness, latency, and correctness.

Automate compaction/optimize jobs. Track cost and

performance regressions; iterate on partition specs

and file sizes.

XIII. FUTURE OUTLOOK

Deeper unification, stronger guarantees, and greater

automation across the data lifecycle will define the

next generation of data lakehouses. First, zero-ETL

pipelines will mature from point integrations to

policy-driven materialization, where operational

changes propagate to governed lakehouse tables

with bounded freshness and declarative conflict

resolution. This will be paired with true streaming-

by-default semantics, exactly-once, idempotent

merges, and late-data reconciliation as first-class

behavior across engines and table formats.

Second, the lakehouse will become AI-native.

Vector and tensor-aware tables will co-reside with

classical columns, enabling retrieval-augmented

generation, recommendation, and multimodal

analytics without separate vector silos. Model-aware

governance (feature lineage, consent provenance,

and license tracking) will turn reproducibility from

aspiration into default. Accelerated compute

(GPU/TPU/DPU) will be scheduled jointly with

data placement, merging query planning with model

serving to minimize data movement.

Third, interoperability will advance beyond

metadata translation toward shared transaction

semantics, statistics schemas, and row/column-level

security models. Cross-cloud sharing will stabilize

around portable, cryptographically verifiable

manifests, making “read anywhere, govern

centrally” routine. Domain-oriented data mesh will

ride atop these standards, with contract-driven SLAs

and autonomous quality remediation.

Fourth, privacy and safety will move from bolt-ons

to compiled-in guarantees. Native differential

privacy, policy-aware query optimization,

confidential computing enclaves, and audit-by-

construction logs will enable high-utility analytics

under strict regulatory regimes. Semantic layers will

encode organizational ontologies, letting users ask

business questions while engines compile

optimized, policy-compliant plans.

Fifth, sustainability will become a planning

objective. Carbon-aware cost models will steer

storage tiering, compaction cadence, and accelerator

selection, exposing energy metrics for governance

and reporting. Finally, autonomous operations,

learned compaction, adaptive partitioning, skew-

aware shuffles, and reinforcement-learned caching,

will close the loop between observability and

optimization. In sum, the lakehouse is evolving into

an open, intelligent substrate where BI, AI, and real-

time decisioning converge, governed, portable, and

increasingly self-optimizing.

CONCLUSION

The Data Lakehouse architecture has become a

defining milestone in the evolution of data

management. By integrating the flexibility of data

lakes with the governance, performance, and

transactional integrity of warehouses, it delivers a

unified, scalable, and open foundation for analytics

and artificial intelligence. Through innovations in

log-structured metadata, ACID transactions, and

© OCT 2025 | IRE Journals | Volume 9 Issue 4 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I4-1711258-3166

IRE 1711258 ICONIC RESEARCH AND ENGINEERING JOURNALS 599

open columnar formats, the lakehouse resolves long-

standing challenges of data duplication, schema

rigidity, and inconsistent governance. Empirical

research and industry adoption show that modern

lakehouses now rival proprietary warehouses in

performance while offering cost efficiency and

interoperability. Beyond analytics, the lakehouse is

transforming how enterprises operationalize data for

real-time intelligence, machine learning, and

domain-driven design. With developments such as

vector-native tables, federated governance, and

zero-ETL architectures, the ecosystem is advancing

toward intelligent, self-optimizing platforms that

support both business and scientific innovation. Yet,

challenges remain in metadata scalability, cross-

cloud governance, and sustainability areas ripe for

continued research. Ultimately, the Data Lakehouse

represents more than a convergence of technologies;

it embodies a paradigm shift toward openness,

reproducibility, and agility. As organizations

increasingly rely on data for strategic differentiation,

the lakehouse stands poised to serve as the

cornerstone of next-generation, AI-driven

enterprises.

REFERENCES

[1] M. Armbrust et al., “Delta Lake: High-

Performance ACID Table Storage over Cloud

Object Stores,” PVLDB, vol. 13, no. 12, 2020.

doi:10.14778/3415478.3415560

[2] J. Levandoski et al., “BigLake: BigQuery’s

Evolution Toward a Multi Cloud Lakehouse,”

SIGMOD, 2024.

doi:10.1145/3626246.3653388

[3] T. B. Samwel et al., “Photon: A Fast Query

Engine for Lakehouse Systems,” SIGMOD,

2022. doi:10.1145/3514221.3526054

[4] J. Camacho-Rodr´ıguez et al., “LST-Bench:

Benchmarking Log-Structured Tables in the

Cloud,” Proc. ACM on Management of Data,

2024. doi:10.1145/3639314

[5] J. Dean and S. Ghemawat, “MapReduce:

Simplified Data Processing on Large

Clusters,” Commun. ACM, 51(1), 2008.

doi:10.1145/1327452.1327492

[6] S. Melnik et al., “Dremel: Interactive Analysis

of Web-Scale Datasets,” VLDB, 2010.

doi:10.1145/1953122.1953148

[7] A. Thusoo et al., “Hive: A Warehousing

Solution over a Map-Reduce Framework,”

PVLDB, 2009.

doi:10.14778/1687553.1687609

[8] M. Zaharia et al., “Apache Spark: A Unified

Engine for Big Data Processing,” Commun.

ACM, 59(11), 2016. doi:10.1145/2934664

[9] X. Zeng et al., “An Empirical Evaluation of

Columnar Storage Formats,” PVLDB, 17(1),

2023. doi:10.14778/3626292.3626298

[10] T. Ivanov et al., “The Impact of Columnar File

Formats on SQL on-Hadoop,” Concurrency

and Computation: Practice and Experience,

32(20), 2020. doi:10.1002/cpe.5523

[11] A. Okolnychyi et al., “Petabyte-Scale Row-

Level Operations in Data Lakehouses,”

PVLDB, 17(12), 2024.

doi:10.14778/3685800.3685834

[12] S. Melnik et al., “Dremel: A Decade of

Interactive SQL Analysis at Web Scale,”

PVLDB, vol. 13, no. 12, 2020.

doi:10.14778/3415478.3415568

[13] R. Hai et al., “Data Lakes: A Survey of

Functions and Systems,” IEEE TKDE, 35(12),

2023. doi:10.1109/TKDE.2023.3270101

[14] P. Wieder and H. Nolte, “Toward Data Lakes

as Central Building Blocks for Data

Management and Analysis,” Frontiers in Big

Data, 2022. doi:10.3389/fdata.2022.945720

[15] A. Nambiar and D. Mundra, “An Overview of

Data Warehouse and Data Lake in Modern

Enterprise Data Management,” Big Data and

Cognitive Computing, 6(4), 2022.

doi:10.3390/bdcc6040132

[16] A. Agrawal et al., “XTable in Action:

Seamless Interoperability in Data Lakes,”

arXiv, 2401.09621, 2024.

doi:10.48550/arXiv.2401.09621

[17] Z. Bao et al., “Delta Tensor: Efficient Vector

and Tensor Storage in Delta Lake,” arXiv,

2405.03708, 2024.

doi:10.48550/arXiv.2405.03708

[18] R. Kienzler et al., “Tensor Lakehouse for

Foundation Model Training,” arXiv,

2309.02094, 2023.

doi:10.48550/arXiv.2309.02094

[19] A. Khatiwada et al., “Integrating Data Lake

Tables,” PVLDB, 16(4), 2022.

doi:10.14778/3574245.3574274

[20] S. M. Shaffi, S. Vengathattil, and J. Mehta,

“Enhancing Cloud Security Through AI-

Driven Anomaly Detection and Advanced

Machine Learning Algorithms,” Proc. 8th

IEEE Int. Symp. on Big Data and Applied

© OCT 2025 | IRE Journals | Volume 9 Issue 4 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I4-1711258-3166

IRE 1711258 ICONIC RESEARCH AND ENGINEERING JOURNALS 600

Statistics (ISBDAS 2025), 2025.

doi:10.1109/ISBDAS64762.2025.11116832

[21] N. Rey et al., “Nested Parquet Is Flat, Why

Not Use It? How To Scan Nested Parquet

Efficiently,” SIGMOD, 2025.

doi:10.1145/3725329

[22] J. Dean and S. Ghemawat, “MapReduce: A

Flexible Data Processing Tool,” Commun.

ACM, 53(1), 2010.

doi:10.1145/1629175.1629198

