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Abstract- In this paper, firstly, definitions and 

classifications of integral equations are described. Next, 

Adomian decomposition method is observed. Moreover, 

Adomian decomposition method is set out with the aim of 

solving linear and nonlinear Volterra integral equations. 

Finally, some applications are expressed to demonstrate 

the effectiveness of Adomian decomposition methods for 

solving linear and nonlinear Volterra integral equations. 
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I. INTRODUCTION 

Integral equations play an important role in 

mathematical modeling by providing a powerful 

framework for describing relationship between 

functions in terms of integral. The problems in the 

piratical fields can be constructed by Mathematical 

models and Adomian decomposition method is used 

in order to get the solutions. These equations are 

applied in various filed such as physics, biology, 

economic and population growth. The unknown 

function u(x)  appears inside an integral sign is 

called an integral equation. The common type of 

integral equation in u(x)  is  

q(x)

p(x)
u(x) f (x) λ κ(x, t)u(t)dt,= +   

where the limits of integration are p(x) and q(x) ,

κ(x, t)  which is called the kernel of the integral 

equation is a function of two variables x  and t and 

λ is a constant parameter. 

1.1 Definition 

In Volterra integral equations, at least one of the 

limits of integration is a variable.  

For the first kind Volterra integral equations, the 

unknown function u(x)  appears only inside integral 

sign in the form: 

x

0
f (x) κ(x, t)u(t)dt.=                           (1)  

However, in Volterra integral equations of the second 

kind, the unknown function u(x)  appears inside and 

outside the integral sign in the form: 

0

x
u(x) f (x) λ κ(x, t)u(t)dt.= +                      (2) 

The kernel κ(x, t)  and the function f (x)  are the 

given real-valued functions, and λ  is a parameter. 

The second kind of Volterra integral equation can be 

classified homogeneous and inhomogeneous 

according to the value of the function f (x). If f (x) is 

identically zero, the equation is called homogeneous 

whereas it is called inhomogeneous or 

nonhomogeneous if the function f (x) 0. The 

Volterra integral equations appear in operator theory 

and it can be derived from initial value problems with 

given initial conditions.  

1.2 Linearity concept  

If the exponent of the unknown function u(x)  inside 

the integral sign is one, it is called the linear integral 

equation. The integral equation is called nonlinear if 

the equation contains nonlinear functions of u(x),

such as ,
u

e  cosu, sinh u, ln(1 u),+ or if the 

unknown function u(x) has exponent other than one, 

the integral equation is defined nonlinear. The 

following examples are linear and nonlinear Volterra 

integral equations respectively. 

x

0
u(x) 1 (x t)u(t)dt,= − − and 

x
4

0
u(x) 1 (1 x t)u (t)dt.= + + −  
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II. ALGORITHM REPRESENTATION OF 

ADOMIAN DECOMPOSITION METHOD 

In the 1980s, George Adomian found out Adomian 

decomposition method (ADM) which comprises 

decomposing the unknown function u(x)  of any 

equation into a sum of an infinite number of 

components defined by decomposition series 

n

n 0

u(x) u (x),


=

=                                     (3) 

or equivalently, 

 0 1 2u(x) u (x) u (x) u (x) ,= + + +                 (4) 

where the components nu (x),n 0  will be decided 

recursively. It deals with finding each component 

0 1 2u ,u ,u , .
 
The resolution of each component can 

be evaluated through a recurrence relation which 

contains simple integral. We will tickle the Volterra 

integral equation and demonstrate how it can be 

handled by using ADM. The Volterra integral 

equation (2) is  

 
x

0
u(x) f (x) λ κ(x,t)u(t)dt,= +     

where a constant parameter is λ, the function f (x)

and the kernel κ(x,t) are real-valued functions. The 

zero is the lower limit and the variable x  is the upper 

limit. The series solution for the unknown function 

u(x)  of the Volterra integral equation (2) is obtained 

by using in series assumption (3). By the 

decomposition method, (3) is substituted into the 

Volterra integral equation (2) to obtain  

x

n n
0

n 0 n 0

u (x) f (x) λ κ(x, t) u (t) dt,
 

= =

 
= +  

 
               (5) 

 or equivalently, 

x

0 1 2 0
0

u (x) u (x) u (x) f (x) λ κ(x, t)[u (t)+ + + = + +  

1u (t) ]dt.+               (6) 

All terms that are not contained under the integral 

sign are assigned the zeroth component 0u (x). The 

rest components ju (x)  for j 1  are calculated by 

using a recurrence relation: 

0u (x) f (x),=  

x

n 1 n
0

u (x) λ κ(x, t)u (t)dt,+ =   n 0,  

or equivalently, 

0

x

1 0
0

x

2 1
0

x

3 2
0

x

4 3
0

u (x) f (x),

u (x) λ κ(x, t)u (t)dt,

u (x) λ κ(x, t)u (t)dt,

u (x) λ κ(x, t)u (t)dt,

u (x) λ κ(x, t)u (t)dt,

.

= 


= 

= 

=

=













                    (7) 

Hence, the solution of each component 

0 1 2 3u (x),u (x),u (x),u (x),  are simply find by 

applying (7). 

2.1 Types of solution 

A solution of Volterra integral equation of second 

kind arise in any of the following two types. 

a)  Exact solution 

The closed form solution such as polynomial, 

exponential, trigonometric functions or the 

combination of two elementary functions, converges 

to the exact is called the exact solution of the integral 

equation. For example: 

2 xu(x) x e ,= + 3xu(x) sin x e , = +

xu(x) 8 sin5x cos5x 2e−= + + −   and many others. 

b) Series solution 

Sometimes exact solutions can’t be obtained for 

concrete problems. In this case, we have solution in 

the series form that may converge to exact solution if 

such a solution exists. In other words, series may not 

give exact solution and in this case, we have 

approximate solution for numerical purpose. The 

more terms in the series give the higher accuracy in 

the solution. 

2.2 Nonlinear Volterra integral equations of 

 the second kind 

The second kind of the nonlinear Volterra integral 

equation is defined by  
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x

0
u(x) f (x) λ κ(x,t)N(u(t))dt,= +               (8) 

where a nonlinear function of u(x)  is N(u(t)).  The 

nonlinear Volterra integral equation (8) contains the 

linear term u(x) and the nonlinear function N(u(t)).

The linear term u(x)  of (8) can be represented 

normally by the decomposition series  

n

n 0

u(x) u (x),


=

=  

where the components nu (x),n 0  can be computed 

in a recursive manner. The nonlinear function 

N(u(t))  of (8) is presented by the Adomian 

polynomial series  

n

n

n 0

N(u(t)) u (t) A (t),


=

= =                        (9) 

by using the algorithm 

n n
i

n in
i 0 λ 0

1 d
A N λ u ,n 0,1,2, .

n! dλ = =

  
= =  

  
    

Substituting (3) and (9) into (8) gives  

x

n n
0

n 0 n 0

u (x) f(x) λ κ(x,t) A (t) dt.
 

= =

 
= +  

 
   

The recurrence relation is used to determine the 

components  

0

x

1 0
0

x

2 1
0

x

n 1 n
0

u (x) f(x),

u (x) λ κ(x,t)A (t)dt,

u (x) λ κ(x,t)A (t)dt,

u (x) λ κ(x,t)A (t)dt,k 0.+

= 


= 



= 




=  










              (10) 

In the view of (10), the solution of each component 

0 1 2u (x),u (x),u (x),  are absolutely find. As a 

result, the solution u(x)  of (8) in a series form is 

obtained by using the decomposition (3). 

 

 

 

III. SOLVING LINEAR AND NONLINEAR 

VOLTERRA INTEGRAL EQUATIONS 

WITH ADOMIAN DECOMPOSITION 

METHOD 

 

In this section, some applications are shown in order 

to display the effectiveness of Adomian 

decomposition method to obtain the solution of the 

second kind of linear and nonlinear Volterra integral 

equations. 

3.1 Example 

We consider the second kind of Volterra integral 

equation  

x2 4 5

0

1 1
u(x) x x x x u(t)dt.

2 5
= + + + −          (11) 

It is clear that  

2 4 51 1
f (x) x x x x ,    λ 1.

2 5
= + + + = −  

Substituting the decomposition series (3) into (11) 

gives 

x
2 4 5

n n
0

n 0 n 0

1 1
u (x) x x x x u (t)dt,

2 5

 

= =

= + + + − 
2 5

x
4

0 1 2 0
0

x x
u (x) u (x) u (x) x x [u (t)

2 5
+ + + = + + + − +                                              

1 2u (t) u (t) ]dt.+ +  

The zeroth component 0u (x)  is assumed by all terms 

which are not contained under the integral sign. 

Therefore, the following recurrence relations are 

obtained. 

2 4 5

0

1 1
u (x) x x x x ,

2 5
= + + + and

x

n 1 n
0

u (x) u (t)dt,n 0,+ = −   

that gives 

2 4 5

0

1 1
u (x) x x x x ,

2 5
= + + +  

x
2 3 5 6

1 0
0

1 1 1 1
u (x) u (t)dt x x x x ,

2 6 5 30
= − = − − − −  

x
3 4 6 7

2 1
0

1 1 1 1
u (x) u (t)dt x x x x ,

6 24 30 210
= − = + + +  

x
4 5 7 8

3 2
0

1 1 1 1
u (x) u (t)dt x x x x ,

24 120 210 1680
= − = − − − −

and so on. 

Using the Adomian decomposition method gives the 

series solutions 

2 4 5 2 3 51 1 1 1 1
u(x) x x x x x x x

2 5 2 6 5

  
= + + + + − − − −  
  

 

             61
x

30




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3 4 6 7 4 51 1 1 1 1 1
x x x x x x

6 24 30 210 24 120

  
+ + + + + − −  
  

7 81 1
x x .

210 1680


− − +


  

By canceling the noise terms, the series solutions 

converge to the exact solution 4u(x) x x .= +  

 

 
Figure 1. Graph of each component solutions 

 

 
Figure 2. Graph of the exact solution 

 

3.2 Example 

The linear Volterra integral equation  
x

0
u(x) 1 2 tu(t)dt.= +                               (12) 

is considered. 

It is known that f (x) 1,=  λ 2,=  and κ(x, t) t.=  

Substituting the decomposition series (3) into (12) 

gives 

x

n n
0

n 0 n 0

u (x) 1 2 t u (t)dt,
 

= =

= + 
x

0 1 2 0 1
0

u (x) u (x) u (x) 1 2 t[u (t) u (t)+ + + = + + +     

                                              2u (t) ]dt.+  

Applying the recurrence relation, the components 

0u (x) 1,=  and 
x

n 1
0

u (x) 2 tu(t) dt,k 0+ =   are 

generally observed. 

This carries out the solution of each component: 

0u (x) 1,=  

x
2

1 0
0

u (x) 2 t u (t)dt x ,= =  

x x
2 4

2 1
0 0

1
u (x) 2 tu (t)dt 2 t t dt x ,

2
= = =   

6
x

3 2
0

x
u (x) 2 t u (t)dt ,

6
= =  

8
x

4 3
0

x
u (x) 2 t u (t) dt ,

24
= =  

.  

Hence, the series solution  
4 6 8

2 x x x
u(x) 1 x

2! 3! 4!
= + + + + +   

is obtained. 

This converges to the exact solution 
2xu(x) e .=  

 

 
Figure 3. Graph of each component solutions 

 

 
Figure 4. Graph of the exact solution 

 

3.3 Example 

The nonlinear Volterra integral equation 
x

x x x 2t 2

0
u(x) e xe e u (t)dt−= − +   (13)  

is considered. (13) 

Substituting the decomposition series (3) and (9) into 

the left side and right side of (13) respectively, it 

gives  
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x
x x x 2t

n n
0

n 0

u (x) e xe e e A (t)dt,


−

=

= − +   

where nA  are the Adomian polynomials.  

The first three Adomian polynomials for 
2u (x)  are 

computed to be:  

0 0A N(u ),=  

1 1 0A u N (u ),=  

2

2 2 0 1 0

1
A u N (u ) u N (u ),

2!
 = +  

3

3 3 0 1 2 0 1 0

1
A u N (u ) u u N (u ) u N (u ),

3!
  = + +  

and so on.  

The Adomian decomposition method allows the 

recurrence relation  
x x

0u (x) e xe ,= −   

x
x 2t

n 1 n
0

u (x) e e A (t)dt,    n 0.−

+ =   

This gives  
x x

0u (x) e xe ,= −  

2 x x 2

0 0 0A N(u ) u (e xe )= = = −  

2x 2x 2x 2 2xe xe xe x e= − − +  

x 2 3

1

1
u (x) e (x x x ),

3
= − +  

1 1 0 0 1A u N (u ) 2u u= =

x x x 2 31
2(e xe )e (x x x )

3
= − − +  

2x 2 3 2 3 41 1
2e (x x x x x x )

3 3
= − + − + −  

2x 2 3 44 1
2e (x 2x x x ).

3 3
= − + −  

x
x 2t

2 1
0

u (x) e e A (t)dt−=   

x
x 2t 2t 2 3 4

2
0

4 1
u (x) e e 2e (t 2t t t )dt

3 3

−= − + −  

x
x 2 3 4

0

4 1
2e (t 2t t t )dt

3 3
= − + −  

x
4 5

x 2 3

0

1 2 4 t 1 t
2e t t

2 3 3 4 3 5

 
= − + − 

 
 

x 2 3 4 51 2 1 1
2e x x x x

2 3 3 15

 
= − + − 

 
 

x 2 3 4 5

2

4 2 2
u (x) e x x x x ,

3 3 15

 
= − + − 

 
 

 
2 2

2 2 0 1 0 0 2 1

1
A u N (u ) u N (u ) 2u u u

2!
 = + = +  

( )x x x 2 3 4 5

2

x 2 3

4 2 2
2 e xe e (x x x x )

3 3 15

1
 e (x x x

3

 
= − − + − 

 

 
+ − + 
 

 

2x 2 3 4 5 6

2x 2 3 4 5 6

7 12 2
2e x x 2x x x

3 15 15

5 2 1
   e x 2x x x x

3 3 9

 
= − + − + + 

 

 
− + − + 

 

 

2x 2 3 4 5 620 17 34 17
e 3x x x x x ,

3 3 15 45

 
= − + − + 

 
 

x
x 2t

3 2
0

u (x) e e A (t)dt−=   

x
x 2t 2t 2 3 4 5 6

0

20 17 34 17
e e e (3t t t t t )dt

3 3 15 45

−= − + − +  

x

x 3 4 5 6 7

0

5 17 17 17
e t t t t t

3 15 45 315

 
= − + − + 

 
 

x 3 4 5 6 7

3

5 17 17 17
u (x) e (x x x x x ),

3 15 45 315
= − + − +  

3

3 3 0 1 2 0 1 0

1
A u N (u ) u u N (u ) u N (u )

3!
  = + +  

      0 3 1 2 3 0u u 2u u u u= + +  

2x 3 4 5 6 7 8

3

154 248 496 62
A e (4x 10x x x x x )

15 45 315 315
= − + − + −

x
x 2t

4 3
0

u (x) e e A (t)dt−=   

x
x 3 4 5 6 7 8

0

154 248 496 62
e (4t 10t t t t t )dt

15 45 315 315
= − + − + −

x

x 4 5 6 7 8 9

0

77 248 62 62
e t 2t t t t t

45 315 315 2835

 
= − + − + − 

 

x 4 5 6 7 8 9

4

77 248 62 62
u (x) e (x 2x x x x x ),

45 315 315 2835
= − + − + −

In the same way the other components can be found. 

Hence, The series solutions 

x 5 6 7 8 94 11 62 62
u(x) e (1 x x x x x )

3 15 315 2835
= − + − + − +

is obtained. This converges to the exact solution  
xu(x) e .=  
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Figure 5. Graph of each component solutions 

 
Figure 6. Graph of the exact solution 

 

3.4 Example 

The nonlinear Volterra integral equation 
x

2

0
u(x) x u (t)dt= +                    (14) 

is considered. 

Substituting the decomposition series (3) and (9) into 

(14), we find 

 
x

n n
0

n 0

u (x) x A (t)dt,


=

= +   

where nA ,n 0  represents the Adomian 

polynomials for nonlinear function, 
2u (x).The first 

three polynomials for 
2u (x)  are computed to be: 

2

0 0 0A N(u ) u ,= =  

1 1 0 0 1A u N (u ) 2u u ,= =  

2 2

2 2 0 1 0 0 2 1

1
A u N (u ) u N (u ) 2u u u ,

2!
 = + = +  

3

3 3 0 1 2 0 1 0

1
A u N (u ) u u N (u ) u N (u )

3!
  = + +  

0 3 1 2 3 0u u 2u u u u ,= + +  

and so on. 

The Adomian decomposition method allows the 

recurrence relation  

0u (x) x,=  and 
x

n 1 n
0

u (x) A (t)dt,    n 0.+ =   

This carries out the solution of each component: 

0u (x) x,=  

x x
2 2 3

1 0
0 0

1
u (x) u (t)dt t dt x ,

3
= = =   

x x
4 5

2 0 1
0 0

2 2
u (x) (2u (t)u (t)dt t dt x ,

3 15
= = =   

x x
2 6 7

3 0 2 1
0 0

51 17
u (x) (2u (t)u (t) u (t))dt t dt x ,

135 315
= + = = 

x x
8 9

4 0 3 1 2
0 0

62 62
u (x) (2u (t)u (t) 2u (t)u (t))dt t dt x ,

135 2835
= + = = 

and so on.  

 

Hence, the series solution 

3 5 71 2 17
u(x) x x x x ,

3 15 315
= + + + +  

that converges to the exact solution 

u(x) tan x=  is obtained. 

 

 
Figure 7. Graph of each component solutions 

 

 
Figure 8. Graph of the exact solution 

CONCLUSION 

In this research paper, Adomian decomposition 

method is applied widely in Applied Mathematics 

and in the field of series solutions. This method is a 

useful method for solving linear and nonlinear 
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Volterra integral equations. Volterra integral 

equations are essential for modeling time-dependent 

processes with past events. This method can be 

applied to solve the problems in a straightforward and 

simple manner without changing the physical 

behavior of the model. The role of the kernel function 

is clearly seen for solving these equations. MATLAB 

is used to distinguish the solution of each component 

and the exact solutions. This method can reduce the 

size of the computational work and spending time. 

Series solutions from each component converge to 

the exact solution by using Adomian decomposition 

method. Hence, using this method it can help us to 

solve the linear and nonlinear Volterra integral 

equation easily and simply. 
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