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I. INTRODUCTION  

 

Joseph Fourier (1768-1830) is considered to be the 

initiator of the theory of integral equations and a 

statement of the solution to a first-kind integral 

equation. A Swedish mathematician, Ivar Fredholm 

(1866-1927), who developed the Fredholm integral 

equation and founded modern integral equation 

theory. Published a paper that produced the essential 

parts of what in 1990. An Italian mathematician, 

Vito Volterra, pioneered the systematic 

investigation of integral equations in the late 19th 

and early 20th century. 

 

The variational iteration method (VIM) was 

developed by Chinese mathematician Ji-Huan He, 

Professor at Donghua University, in 1999. Initially 

proposed at the end of the most recent century and 

fully developed in 2006 and 2007. The variational 

iteration method was successfully applied to integral 

equations. The method provides rapidly convergent 

successive approximations of the exact solution if 

such a closed-form solution exists [2].  

 

In this paper, the variational iteration method, a 

newly developed method, is used for solving linear 

Fredholm integral equations and linear Volterra 

integral equations. 

 

The paper is organized as follows. In section 1, the 

descriptions of the variational iteration method are 

presented with Fredholm integral equations and 

Volterra integral equations. In section 2, linear 

Fredholm integral equations are illustrated by using 

the variational iteration method. In section 3, linear 

Volterra integral equations are also calculated by 

using the variational iteration method. Examples 

will be examined to show the analysis and to 

confirm the efficiency of the method [2]. 

 

II. SOME CONCEPTS OF VIM 

 

In section 1, definitions of integral equations are 

expressed by referring to Wazwaz, A. M, in 1996, 

2011, and 2015. And then, the variational iteration 

method VIM and its basic concepts are presented. 

 

Definition 1 

An integral equation is an equation in which the 

unknown function ( )v x appears inside an integral 

sign. The most standard type of integral equation in 

the unknown function is of the form: 

 ( ) ( ) ( ) ( )
( )

( )b x

a x

v x f x K x, t v t dt,= +   

where ( )a x  and ( )b x  are the limits of integration, 

( )K x, t  is a known function of two variables x and 

t, and   is a constant parameter, referred to as the 

kernel or nucleus of the integral equation [4]. 

 

In an integral equation, the unknown function may 

appear in one of two ways: (i) inside the integral 

sign, the function to be solved is only present within 

the integrand, and (ii) both inside and outside the 

integral sign, such as the unknown function appears 

both within the integral and as an external term. The 

functions ( )f x  and ( )K x, t  are given in advance. 

Integral equations appear in many forms.  

 

Two distinct ways that depend on the limits of 

integration are used to characterize integral 

equations, namely: 

(a) Fredholm integral equation, 
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(b) Volterra integral equation  

Moreover, two other kinds that depend on the 

appearance of the unknown function ( )v x  are 

defined as follows [2]: 

(i) first kind Fredholm or Volterra integral equation, 

(ii) second kind Fredholm or Volterra integral 

equation. 

 

Definition 2 

If the limits of integration are fixed, the integral 

equation is referred to as a Fredholm integral 

equation. If the unknown function ( )v x appears 

inside and outside the integral sign, this equation is 

called a Fredholm integral equation of the second 

kind. The form represents the second kind [2]: 

 ( ) ( ) ( ) ( )
b

a

v x f x K x, t v t dt.= +  

Definition 3 

If at least one limit is a variable, the equation is 

called a Volterra integral equation. However, the 

unknown function ( )v x appears inside and outside 

the integral sign. This is called the Volterra integral 

equation of the second kind. The form represents the 

second kind: 

( ) ( ) ( ) ( )
x

0

v x f x K x, t  v t dt.= +  

Definition 4 

If the exponent of the unknown function ( )v x  

inside the integral sign is one, the integral equation 

or the integro-differential equation is called linear. 

Examples of linear Volterra integral equations and 

linear Fredholm integral equations are: 

( ) ( ) ( )
x

2

0

v x 5 2x x t v t dt,  = + − −  

and 

( ) ( ) ( )
1

2 3 2 2

0

v x 1 9x 2x x 20xt 10x t v t dt,  = + + + − +  

respectively [4]. 

 

III.DESCRIPTIONS OF THE VARIATIONAL 

ITERATION METHOD 

 

We consider the differential equation: 

 ( )Ly Ny g t ,+ =            (1) 

where the operator L is linear, whereas the operator 

N is nonlinear and ( )g t  is the source 

inhomogeneous term. The variational iteration 

method presents a correction functional for equation 

(1) in the form [4]: 

( ) ( ) ( ) ( )(
x

n 1 n n

0

v x v x Lv+ = +     

              

 ( ) ( ))nNv g d+  −          (2) 

Where a general Lagrange multiplier    may be a 

constant or a function, and nv   is a restricted value 

that means it behaves as a constant, hence 
nv 0 = , 

where   is the variational derivative.  

For the variational iteration method, two steps are 

expressed as follows, namely: 

(i)  the determination of the Lagrange 

multiplier that will be identified optimally, and  

(ii)  with   determined, we substitute the result 

into (2),  where the restrictions should be omitted. 

 

 Taking the variation of (2) for the independent 

variable nv  gives [2] 

( ) ( )  ( ) ( )( )
x

n 1
nn

n n 0

v
1 Lv Nv g d

v v
+

  
 = +    +  −  
  
 
 .

   

For the determination of the Lagrange multiplier, 

integration by parts is usually used. In other words, 

we can apply 

( ) ( ) ( ) ( ) ( ) ( )
x x

n n n

0 0

v d v v d ,     =    −       

( ) ( ) ( ) ( ) ( ) ( )
x

n n n

0

v d v v      =    −  

       

 ( ) ( )
x

n

0

v d ,+    

( ) ( ) ( ) ( ) ( ) ( )
x

n n n

0

v d v v       =    −    

( ) ( ) ( ) ( )
x

n n

0

v v d , +   −      

and so on. These identities are collected by 

integrating by parts [4]. 

 

Having determined the Lagrange multiplier ( )  , 

the successive approximations n 1v + , n 0, of the 

solution ( )v x will be readily obtained upon using 

the selective function ( )0v x . However, for fast 
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convergence, the function ( )0v x  should be selected 

by using the initial conditions as follows: 

( ) ( )0v x v 0= , for the first order nv ,     

( ) ( ) ( )0v x v 0 x v 0 ,= + for the second order nv , 

( ) ( ) ( ) ( )2
0

1
v x v 0 x v 0 x v 0 ,

2!
 = + +  for the third 

order nv , 

and so on. Consequently, the exact solution is 

 ( ) ( )n
n

v x lim v x .
→

=  

In other words, the correction functional (2) will 

give several approximations, and therefore, the 

exact solution is acquired as the limit of the 

resulting successive approximations [4]. 

 

IV. APPLICATIONS TO LINEAR FREDHOLM 

INTEGRAL EQUATIONS  

 

In section 2, the solutions of linear Fredholm 

integral equations of the second kind are calculated 

by using the variational iteration method [3]. 

 

Illustrative Solution of Linear Fredholm Integral 

Equation with VIM 

We consider the linear Fredholm integral equation  

( ) ( )
1

x

0

v x e x x t v t dt= − +  .          (3)  

Differentiating both sides of this equation with 

respect to x yields 

 ( ) ( )
1

x

0

v x e 1 t v t dt = − +  .  

The correction functional for this equation is given 

by  

( ) ( ) ( ) ( )
x 1

n 1 n n n

0 0

v x v x v e 1 v d d ,
+

 
 = −  − + −    

 
 
 

where we used 1 =−  for this equation. This initial 

condition ( )v 0 1=  is obtained by substituting 

x 0=  into (3). 

We can use the initial condition to select 

( ) ( )0v x v 0 1.= =  Using this selection in the 

correction functional gives the following successive 

approximations: 

( )0v x 1,=  

( ) ( ) ( ) ( )
x 1

1 0 0 0

0 0

v x v x v e 1 v d d
 
 = −  − + −    

 
 
                           

 

x

0

1
1 e 1 d

2

 
= − − + −  

 
 , 

( ) x
1

1
v x e x,

2
= −  

( ) ( ) ( ) ( )
x 1

2 1 1 1

0 0

v x v x v e 1 v d d
 
 = −  − + −    

 
 
   

                    

           

x 1

1

0 0

1 1
v (x) 1 e d d

2 2


  
 = − − + −  −       
   

           
x 1

e x,
2 3

= −


 

( ) ( ) ( ) ( )
x 1

3 2 2 2

0 0

v x v x v e 1 v d d
 
 = −  − + −    

 
 
 

 

                 

           

x
x

2
0

x 1 1
e 1 1 d

2 3 2 3 2 3

 
= − − − + − +  

   
       

           
x

2

1
e x,

2 3
= −


 

( ) ( ) ( ) ( )
x 1

4 3 3 3 n

0 0

v x v x v e 1 v d d
 
 = −  − + −    

 
 
               

           
x

3

1
e x,

2 3
= −


 

and so on. This, in turn, gives 

( ) x
n 1 n

1
v x e x,n 0.

2 3
+ = − 


 

The variational iteration method admits the use of 

( ) ( )n
n

v x lim v x
→

=  that gives the exact solution by 

( ) xv x e .=  

Solving Linear Fredholm Integral Equation with 

VIM 

We consider the linear Fredholm integral equation  

( ) ( )
0

v x cos x 2x x t v t dt


= + +  .          (4) 

Differentiating both sides of this equation (4) with 

respect to x yields 

( ) ( )
0

v x sin x 2 t v t dt.


 = − + +                 (5) 
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The correction functional for this equation (5) is 

given by  

( ) ( ) ( )(
x

n 1 n n

0

v x v x v sin+ = −  +   

   ( )n

0

2  v d d ,
 

− −    



  

where we used 1 =−  for this equation. This initial 

condition ( )v 0 1=  is obtained by substituting x 0=  

into (4). 

Using this selection in the correction functional 

gives the following successive approximations [4]: 

( )0v x 1,=  

( ) ( ) ( ) ( )
x

1 0 0 0

0 0

v x v x v sin 2 v d d
 

 = −  + − −    
 
 
 

          ( )
x

0

0 0

v x sin 2  d d
 

 = − − −   
 
 
   

           

2

cos x 2x x ,
2

 
= + + 

 
 

 

( ) ( ) ( ) ( )
x

2 1 1 1

0 0

v x v x v sin 2  v d d
 

 = −  + − −    
 
 
                                                    

           ( )
x 2

1

0

v x sin 2 sin 2
2

 
= − − + + + −



  

           

 

2

0

cos 2 d d
2

  
−   +  +    

  
  

             

          

2

cos x 2x x
2

 
= + + 

 
 

  

        

  

 
2 5

32
2x x x x

2 3 6

  
+ − − +  + 
 
 

       

5
32

cos x x x ,
3 6

 
= +  + 

 
 

         

                      

( ) ( ) ( ) ( )
x

3 2 2 2

0 0

v x v x v sin 2  v d d
 

 = −  + − −    
 
 
          

             

   

( ) ( )
x 5 8

3 6
3 2

0

2 2
v x v x 2 2 d

3 6 9 18

  
= −  + − + −  −  

 
 
           

2 2x x
cos x 2x 2x

2 2

    
= + + + − −   

   
   

 

    

+
3 52 x x

3 6

 
+

5 8
3 62 2
x x x x ,

3 6 9 18

  
+ −  − +  + 
 
 

 

and so on. Canceling the noise terms, the exact 

solution is given by [4] 

( )v x cosx.=  

 

V. APPLICATION TO THE LINEAR 

VOLTERRA INTEGRAL EQUATION 

 

In section 3, the solution of the linear Volterra 

integral equation of the second kind is calculated by 

using the variational iteration method. Numerical 

results show that our proposed method has more 

accuracy and effect. 

 

Solving Linear Volterra Integral Equation with VIM 

We consider the linear Volterra integral equation [3] 

( ) ( )
x

0

v x 1 v t  dt= +  .                                 (6) 

Using the Leibniz rule to differentiate both sides of 

(6) with respect to x gives the equation 

( ) ( )v x v x = .            (7) 

Substituting x 0=  in (6) gives the initial condition 

( )v 0 1.= Using the variational iteration method, the 

correction functional for (7) is     

( ) ( ) ( ) ( ) ( )( )
x

n 1 n n n

0

v x v x v v d .+ = +    −        

(8) 

Substituting this value of the Lagrange multiplier 

1 =−  into the correction functional (8) gives the 

iteration formula [4] 

( ) ( ) ( ) ( )( )
x

n 1 n n n

0

v x v x v v d .+ = −  −    (9) 

We can use the initial condition to select 

( ) ( )0v x v 0 1.= =  

Using this selected function in (9) gives the 

following successive approximations: 

( )0v x 1,=  



© OCT 2025 | IRE Journals | Volume 9 Issue 4 | ISSN: 2456-8880 

IRE 1711309      ICONIC RESEARCH AND ENGINEERING JOURNALS            850 

( ) ( ) ( ) ( )( )
x

1 0 0 0

0

v x v x v v d= −  −    

 ( ) ( )
x

1

0

v x 1 0 1 d= − −  ( )1 x 0 1 x, = − − − = +   

( ) ( ) ( ) ( )( )
x

2 1 1 1

0

v x v x v v d= −  −                     

            ( )( )
x

0

1 x 1 1 d= + − − + 
21

1 x x ,
2!

= + +    

( ) ( ) ( ) ( )( )
x

3 2 2 2

0

v x v x v v d= −  −      

          
2 31 1

1 x x x ,
2! 3!

= + + +  

and so on,  

( ) 2 3 4
9

1 1 1
v x 1 x x x x

2! 3! 4!
= + + + +   

     

 5 6 7 8 91 1 1 1 1
x x + x x x ,

5! 6! 7! 8! 9!
+ + + +  

and so on. This, in turn, gives 

( ) 2 3 4 5
n

1 1 1 1
v x 1 x x x x x

2! 3! 4! 5!
= + + + + +  

                                        6 n1 1
x  ... + x .

6! n!
+ +  

The variational iteration method [4] admits the use 

of   

( )
2 3 4 n

n

x x x x
v x lim 1 x ... ,

2! 3! 4! n!→

 
= + + + + + + 

 
 

 

that gives the exact solution ( ) xv x e .=  

 

Table 1: Numerical results of integral equation 6, 

N=10 (tenth iteration) 

x  Exactv (x)  VIMv  

Error 

(v Exact 

 -v VIM) 

 

0.1 

1.105170918 1.105170918 -------- 

0.2 1.221402758 1.221402758 -------- 

0.3 1.349858808 1.349858808 -------- 

0.4 1.491824698 1.491824698 -------- 

0.5 1.648721271 1.648721270 1×10-9 

0.6 1.822118800 1.822118799 1×10-9 

0.7 2.013752707 2.013752699 8×10-9 

0.8 2.225540928 2.225540897 31×10-9 

0.9 2.459603111 2.459603007 104×10-9 

1.0 2.718281828 2.718281526 302×10-9 

 

 
Figure 1: The exact solutions of the Volterra integral 

equation 6 

 

 
Figure 2: The approximate solutions of the Volterra 

integral equation 6 

 

 
Figure 3: Comparison of the exact solutions and 

approximate solutions results of the Volterra 

integral equation 6 

 

The graphical representations of the analytical 

solution and VIM-derived solutions are presented in 
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Figures 1 and 2, respectively. Figure 3 provides a 

visual comparison between the exact solutions and 

the approximate solutions generated through the 

variational iteration method. To evaluate the 

performance of the proposed method, we calculated 

the absolute errors ( )10E v   for this test case. Table 1 

represents a systematic comparison between the 

numerical solutions obtained via VIM and the exact 

solutions for the specified Volterra integral equation 

6. 

 

The numerical results demonstrate strong 

convergence between the exact solution and the 

approximate solution generated by the proposed 

variational iteration method. The organized 

numerical data output includes the computed 

absolute errors, which serve to quantify the 

method’s precision. The variational iteration method 

exhibits better performance metrics than other 

numerical methods. 

 

CONCLUSION 

 

In this paper, we construct the variational iteration 

method and use it to solve the linear Fredholm and 

Volterra integral equations. The variational iteration 

method (VIM) has proven to be an effective 

analytical tool for solving both linear and nonlinear 

integral equations. This study has successfully 

applied its methods to Fredholm and Volterra 

integral equations through numerical examples. The 

numerical experiments confirm VIM’s reliability 

and effectiveness in handling integral equations, 

making it a valuable tool for both theoretical and 

applied mathematical analysis. Therefore, the 

proposed method is a very effective tool for 

calculating the exact solutions of integral equations. 
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