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Abstract: Internet of Things (loT)- based remote health
monitoring systems have an enormous potential to
become an integral part of the future medical system. loT
based systems plays a life-saving role in treating or
monitoring patients with critical health issues, and reduce
pressure on the healthcare system. Any healthcare
monitoring system must be firee from erroneous data,
which may arise because of instrument failure or
communication errors. In this paper, Convolutional
Neural, adeep-learning technique, was applied to detect
the reliability and accuracy of data obtained by IoT-based
remote health monitoring. This data is sent to the
intermediate device and then to the cloud for erroneous
data detection. In the first approach, an unsupervised
classifier called Auto Encoder (AE) is used for labelling
data by using the latent features. Then the labelled data
from AE is used as ground truth for comparing the
accuracy of deep learning models. In the second
approach, the raw data is labelled based on the
correlation between various features.
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L. INTRODUCTION

The healthcare sector is changing thanks to the
Internet of Things. The entire industry is positioned
to leverage smart sensors, integrate medical
equipment, and provide remote monitoring. A few
advantages of the Internet of Things (IoT) are
increased physician care delivery, better patient
engagement, and improved patient health and safety.
The provision of healthcare facilities to ambient
assisted living is mostly linked with smart healthcare
in nations like as the United States, the United
Kingdom, Germany, Canada, and Australia. People
can use the healthcare services that are accessible to
them to manage their crises with the assistance of
smart healthcare. Smart healthcare has several
drawbacks, including issues with technological
adoption, security and privacy, and integration
(Varun, 2019).

To enhance anything is to make it better or more
valuable, desirable, appealing, or desirable. is an
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action taken to increase something's strength,
quantity, or quality; in this case, several other
elements strengthen and augment the effect that
patenting has on research.

Deep Learning (DL) uses artificial networks to
perform sophisticated computations on large
amounts of data. It is a type of machine learning that
works based on the structure and function of the
human brain. Deep learning algorithms train
machines by learning from examples. Industries such
as health care, e-commerce, entertainment, and
advertising commonly use deep learning. In recent
days, DL has been used for various applications
related to healthcare such as Disease Identification,
Drug Discovery, Medical Image Diagnosis, Robotic
Surgical Tools, etc. However, "The Institute of
Medicine at the National Academics of Science,
Engineering and Medicine” reports that diagnostic
errors contribute to around (10% -17%) of hospital
complications and also account for approximately
(10%) of patient deaths (Nicolas, 2019).

II. METHODS AND SPECIFICATION

This research work developed a prototype to collect
healthcare-related data using IoT devices. The data
was collected from devices that include different
parameters, i.e., respiration rate, heart rate, and blood
pressure (SYS and DIA). The data (Vital
Signs)collected  considered  different  body
movements such as sleeping, walking, running,
resting, and exercising. Then, the respiration rate data
was obtained from one device, while blood pressure
and heart rate data are collected using another device.
These two devicessimultaneously collected the data
and the data stored in a database. The data was
extracted from the database for analysis. The data
analysis was performed in line with the samples
(1000) from a single user. Two different approaches
were considered for identifying anomalies in the data.
In the first approach, the raw data is sent as input to
the Autoencoder (AE). The primary function of the
AE in our thesis is to determine internal relations
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among different parameters and classify them
accordingly. The classification from AE results in
labelled data as inliers and outliers. The inliers, in our
case, are the values that are being considered as
correct values while incorrect values are regarded as
outliers. The labelling being obtained from the AE
serves as a ground truth for training supervised
learning models. The labelled data obtained from AE
is further divided into a training set and a test set. The
models considered in this work will be the Restricted
Boltzmann Machine. Therefore, in this approach,
these models are compared based on accuracy being
computed using the ground truth obtained from AE.

II. DISCUSSION

The designing involves a prototype for data
collection using [oT devices and implementation
involves various DL algorithms used in our thesis.
The functional block diagram of the work
implemented in our work is being displayed as shown
in Figure 3.1. It begins with the user interface which
is used for data collection. In our work, we are
dealing with health-related data. This data is being
collected using two devices. These two devices then
transmit the data to the intermediate devices using
Bluetooth as the transmission medium. This data is
then stored in the intermediate device and further
transmitted to the cloud via Wi-Fi as the transmission
medium. This data from the cloud is further extracted
to the remote server for analysis. In our work,
analyzing data involves erroneous data detection. The
analysis is performed using DL techniques and the
processed data is stored in Excel Spreadsheet located
on a remote server.
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Figure 1: System Functional Block Diagram
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3.1: System Design

This section describes the proposed methodology of
the thesis. The block diagram shown in Figure 3.1:
depicts the three main phases of the design prototype.
These three central phases as shown in the figure
have different functionalities.

Dat
Sensi Commu
Phase ‘ Procesq
Pha Pha

\___J —___/

Figure2: Phases of the Design

The first phase of the work is the sensing period in
which the data is being collected. The task of data
collection is performed in two steps. The first step in
data collection involves a device to be used for data
collection. In our work, we are making use of 10T
devices, namely spire stone and iHealth Sense.

The second phase includes the communication phase.
This phase also contains three essential steps. The
first step comprises establishing communication
between the devices and the medium for controlling
the device, i.e., the smartphone. In our system, we are
using Bluetooth Low Energy (BLET) technology.
The second step includes establishing a
communication to transmit the data from the
interface, i.e., mobile phone to the cloud, and in our
work, we are using a Wi-Fi interface. The last step
includes sending the data from the cloud to the server
using either the concept of open APIs or using the file
transfer protocol.

The third phase includes the data processing phase,
which deals with data analysis. The primary purpose
of data analysis for our work is to detect anomalies in
the collected data. Outlier detection depends on the
type of information being collected. There are three
main types of outliers, such as global outliers (point
outlier), collective outliers, and contextual outliers.
These outlier detection methodologies will be done
by using DL. The last step of the proposed method
includes the processed data storage in the Excel
Spreadsheet.

3.2: Sensing Phase

The sensing phase deals with the physical interaction
of the devices with the patient whose measurements
are being taken. The main aim of this work is to
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provide Remote Monitoring (RM) of the patient. This
phase can be further divided into two parts. The first
part deals with the appropriate selection of the
medical device for measuring the patient. In the
modern era, a lot of accessories are available in the
market, which can be used for monitoring the health
of a human being. These devices can measure heart
rate, calorie count, step count, and oxygen saturation
level (SPO»).

Part A: Respiration System Setup

Respirat Interme
Devi Devi

BT

Spire Stone Mobile
Phone
Figure 3: Respiration System Setup

Part B: Blood Pressure and Heart Rate System Setup
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Figure4: Blood Pressure and Heart Rate System
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Figure 5: Data Processing

3.3: Math’s Specification

The Autoencoder (AE) is a type of neural network. It
plays an important role in dimensionality reduction.
In the case of anomaly detection, it tries to find an
optimal subspace. We can assume the normal training
set as {X1,2,X3,.0 cer vun nn
represents a d dimensional vector. The training phase

.xn} where each of them

consists of constructing a model to project these data
into low dimensional subspace and reproduce the
data to obtain the output {Xi,2,X3,... ... ... ... . Xn}.
The reconstruction error is defined by the formula
given below: &(xi,xi) = Y 4=1(xi— xi)*(3.1)
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The basic architecture of AE consists of an encoder
and a decoder. Figure 3.7 shows a simple AE having
an encoder, decoder, and a hidden layer. In the
encoder section, as depicted by Figure 3.6, the input
vectors (xi€R?) are compressed to develop a hidden
layer. The activation of neurons is given by:
hi = fe(X) — S(an: 1 Wijinputxj+ binputi )
3.2)
Thus, the input vector is encoded to a low-
dimensional vector. In the decoder section, the
hidden representation A: is decoded back to. The
mapping function is given by:
Xi':ge'(h): S(an=1 Wijhidde"hj+ bihidden)
(3.3)
The AE is optimized to minimize the average
reconstruction error concerning 0’ and 0 given by:

’ 1 2
0,0 =argming,y’n— %" €(xi, X;) (3.4) =

argmingy’ e Y=t € (Xi: go(fo (Xi)))

3.3: Results/Interpretations

Table 6.1: Showing the observed datafrom
Autoencoder

Respiration
Rate SYS DIA PULSE
18.0 142.0 76.0 86.0
15.0 125.0 76.0 83.0
17.0 125.0 78.0 85.0
17.0 124.0 80.0 85.0
14.0 123.0 89.0 81.0
19.0 120.0 92.0 87.0
15.0 123.0 75.0 83.0
15.0 132.0 99.0 83.0
15.0 127.0 86.0 83.0
14.0 127.0 94.0 81.0
16.0 139.0 99.0 85.0
15.0 128.0 94.0 82.0
15.0 124.0 86.0 85.0
14.0 122.0 81.0 80.0
14.0 1160 89.0 81.0
12.0 116.0 86.0 81.0
14.0 119.0 90.0 80.0
16.0 117.0 84.0 82.0
14.0 117.0 84.0 82.0
13.0 117.0 84.0 82.0
22.0 1450 95.0 105.0
20.0 145.0 95.0 105.0
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Table6.2: CNN Confusion Matrix

N= | Predi | Predi
300 | cted: | cted:
No Yes
Act | 190 2 192
ual:
No
Act | 84 24 N= | Predi | Predi
ual: 300 | cted: | cted:
Yes No Yes
Act | 200 6 2
ual: 0
No 6
Act | 38 56 9
ual: 4
Yes
238 62
68
274 26

In this case, let us calculate the accuracy of the CNN

classifier. The accuracy is being determined by using

TP+TN
the formulae: A = ———— % 100
TP+TN+ FP+FN
24+190

= 84+2+190+24 =87%

As shown in the table6.2, we can identify that TP in
this case is 55 while TN are 190. Also, FP and FN are
given as 54 and 1 respectively. It is to be noted that
this accuracy is performed on test set having around
300 samples. This is done because the best possible
results should be obtained on test sample.

The algorithm used for dropping features i.e., the
feature selection algorithm is given in the

10
0s{ |
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i |
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a. Normal beat
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1.1 Tune/train the model on the training set using all predictors
12 Calculate model performance

1.3 Calculate variable importance or rankings

14 for Each subset size S;,1=1...5 do

15 | Keep the S; most important variables

16 | [Optional] Pre-process the data

17 | Tune/train the model on the training set using $; predictors
18 | Calculate model performance

19 | [Optional) Recalculate the rankings for each predictor
110 end
111 Caleulate the performance profile over the S;
112 Determine the appropriate number of predictors

118 Use the model corresponding to the optimal S;

Figure 6: Feature Selection Algorithm

N=300 | Predicted: Predicted:

No Yes
Actual: | 190 7 197
No
Actual: | 12 91 103
Yes

202 98

Figure 7: CNN Confusion Matrix

In the case of CNN, the accuracy achieved is 94%. It
can be observed from the previous method that
efficiency in this method increases as we drop some
features.

4.1: Accuracy Comparison of Methods Used
The aforementioned methods are further compared
based on the accuracy achieved by them. The
accuracy comparison of the methods is discussed
further in the Table 4.1.
Table 7.2: Approach 1 Comparison Table
Correlation

Table7.3: Correlation among features

Algorithm | Method-1 Method-2
Used
CNN 87% 94%

Table7.4: Approach-2 CNN Confusion Matrix

RR 1 -0.11 -0.06 | 0.16
SYS -0.11 1 0.62 | -0.048
DIA -0.06 0.62 1 -0.048
HR 0.16 -0.048 -0.16 |1

RR SYS DIA HR

b. Equilibrium
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C. Abnormal

d. Histogram plot of normal beat

e. Accuracy and loss graph from 15 epochs
Figure 7 (a-e): Approaches CNN classification Report

Table 8: Approach 2 Accuracy Comparison Table
Algorithm Used ‘ Method-1 ‘ Method-2
CNN | 88% | 92%

The aforementioned approaches are further compared
based on the accuracy achieved by them. The
accuracy comparison of the approaches is discussed
further in Table 4.3.

Table 8.1: Accuracy Comparison Table of two

approaches
Algorithm Used ‘ Approach-1 ‘ Approach-2
CNN | 94% | 92%

7.1 SUMMARY/CONCLUSION

The provision of medical amenities to patients is
significantly aided by IoT-based remote healthcare
monitoring systems. These systems can be crucial in
averting potentially fatal situations in certain
situations. Building the hardware prototype and
identifying the false data arriving from the IoT
devices on the server are the main goals of this thesis.
These two different methods were compared, and
accuracy was calculated. It was observed that the
technique considering strongly correlated features
was performing better. In the end, the comparison
between the best methods from two different

IRE 1711432

approaches was performed. It was observed from the
comparison, that approach two was performing better
for all of the deep learning methods taken into
consideration.
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