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Abstract: Internet of Things (IoT)- based remote health 

monitoring systems have an enormous potential to 

become an integral part of the future medical system. IoT 

based systems plays a life-saving role in treating or 

monitoring patients with critical health issues, and reduce 

pressure on the healthcare system. Any healthcare 

monitoring system must be free from erroneous data, 

which may arise because of instrument failure or 

communication errors. In this paper, Convolutional 

Neural, adeep-learning technique, was applied to detect 

the reliability and accuracy of data obtained by IoT-based 

remote health monitoring. This data is sent to the 

intermediate device and then to the cloud for erroneous 

data detection. In the first approach, an unsupervised 

classifier called Auto Encoder (AE) is used for labelling 

data by using the latent features. Then the labelled data 

from AE is used as ground truth for comparing the 

accuracy of deep learning models. In the second 

approach, the raw data is labelled based on the 

correlation between various features.  

 

Keywords: Deep Learning; Health system, Vital Signs; 

Real-TimeMonitoring, Internet of Things 

 

I. INTRODUCTION 

 

The healthcare sector is changing thanks to the 

Internet of Things. The entire industry is positioned 

to leverage smart sensors, integrate medical 

equipment, and provide remote monitoring. A few 

advantages of the Internet of Things (IoT) are 

increased physician care delivery, better patient 

engagement, and improved patient health and safety. 

The provision of healthcare facilities to ambient 

assisted living is mostly linked with smart healthcare 

in nations like as the United States, the United 

Kingdom, Germany, Canada, and Australia. People 

can use the healthcare services that are accessible to 

them to manage their crises with the assistance of 

smart healthcare. Smart healthcare has several 

drawbacks, including issues with technological 

adoption, security and privacy, and integration 

(Varun, 2019).   

 

To enhance anything is to make it better or more 

valuable, desirable, appealing, or desirable. is an 

action taken to increase something's strength, 

quantity, or quality; in this case, several other 

elements strengthen and augment the effect that 

patenting has on research. 

 

Deep Learning (DL) uses artificial networks to 

perform sophisticated computations on large 

amounts of data. It is a type of machine learning that 

works based on the structure and function of the 

human brain. Deep learning algorithms train 

machines by learning from examples. Industries such 

as health care, e-commerce, entertainment, and 

advertising commonly use deep learning. In recent 

days, DL has been used for various applications 

related to healthcare such as Disease Identification, 

Drug Discovery, Medical Image Diagnosis, Robotic 

Surgical Tools, etc.  However, "The Institute of 

Medicine at the National Academics of Science, 

Engineering and Medicine” reports that diagnostic 

errors contribute to around (10% -17%) of hospital 

complications and also account for approximately 

(10%) of patient deaths (Nicolas, 2019). 

 

II. METHODS AND SPECIFICATION 

 

This research work developed a prototype to collect 

healthcare-related data using IoT devices. The data 

was collected from devices that include different 

parameters, i.e., respiration rate, heart rate, and blood 

pressure (SYS and DIA). The data (Vital 

Signs)collected considered different body 

movements such as sleeping, walking, running, 

resting, and exercising. Then, the respiration rate data 

was obtained from one device, while blood pressure 

and heart rate data are collected using another device. 

These two devicessimultaneously collected the data 

and the data stored in a database. The data was 

extracted from the database for analysis. The data 

analysis was performed in line with the samples 

(1000) from a single user. Two different approaches 

were considered for identifying anomalies in the data. 

In the first approach, the raw data is sent as input to 

the Autoencoder (AE). The primary function of the 

AE in our thesis is to determine internal relations 
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among different parameters and classify them 

accordingly. The classification from AE results in 

labelled data as inliers and outliers. The inliers, in our 

case, are the values that are being considered as 

correct values while incorrect values are regarded as 

outliers. The labelling being obtained from the AE 

serves as a ground truth for training supervised 

learning models. The labelled data obtained from AE 

is further divided into a training set and a test set.  The 

models considered in this work will be the Restricted 

Boltzmann Machine. Therefore, in this approach, 

these models are compared based on accuracy being 

computed using the ground truth obtained from AE. 

 

III. DISCUSSION 

 

The designing involves a prototype for data 

collection using IoT devices and implementation 

involves various DL algorithms used in our thesis. 

The functional block diagram of the work 

implemented in our work is being displayed as shown 

in Figure 3.1. It begins with the user interface which 

is used for data collection. In our work, we are 

dealing with health-related data. This data is being 

collected using two devices. These two devices then 

transmit the data to the intermediate devices using 

Bluetooth as the transmission medium. This data is 

then stored in the intermediate device and further 

transmitted to the cloud via Wi-Fi as the transmission 

medium. This data from the cloud is further extracted 

to the remote server for analysis. In our work, 

analyzing data involves erroneous data detection. The 

analysis is performed using DL techniques and the 

processed data is stored in Excel Spreadsheet located 

on a remote server. 

 

 
Figure 1: System Functional Block Diagram 

 

 

3.1:   System Design 

This section describes the proposed methodology of 

the thesis. The block diagram shown in Figure 3.1: 

depicts the three main phases of the design prototype. 

These three central phases as shown in the figure 

have different functionalities. 

 

 
Figure2: Phases of the Design 

 

The first phase of the work is the sensing period in 

which the data is being collected. The task of data 

collection is performed in two steps. The first step in 

data collection involves a device to be used for data 

collection. In our work, we are making use of IOT 

devices, namely spire stone and iHealth Sense.  

 

The second phase includes the communication phase. 

This phase also contains three essential steps. The 

first step comprises establishing communication 

between the devices and the medium for controlling 

the device, i.e., the smartphone. In our system, we are 

using Bluetooth Low Energy (BLET) technology. 

The second step includes establishing a 

communication to transmit the data from the 

interface, i.e., mobile phone to the cloud, and in our 

work, we are using a Wi-Fi interface. The last step 

includes sending the data from the cloud to the server 

using either the concept of open APIs or using the file 

transfer protocol.  

 

The third phase includes the data processing phase, 

which deals with data analysis. The primary purpose 

of data analysis for our work is to detect anomalies in 

the collected data. Outlier detection depends on the 

type of information being collected. There are three 

main types of outliers, such as global outliers (point 

outlier), collective outliers, and contextual outliers. 

These outlier detection methodologies will be done 

by using DL. The last step of the proposed method 

includes the processed data storage in the Excel 

Spreadsheet. 

 

3.2: Sensing Phase 

The sensing phase deals with the physical interaction 

of the devices with the patient whose measurements 

are being taken. The main aim of this work is to 
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provide Remote Monitoring (RM) of the patient. This 

phase can be further divided into two parts. The first 

part deals with the appropriate selection of the 

medical device for measuring the patient. In the 

modern era, a lot of accessories are available in the 

market, which can be used for monitoring the health 

of a human being. These devices can measure heart 

rate, calorie count, step count, and oxygen saturation 

level (SPO2).  

 

Part A: Respiration System Setup                                  

 
Spire Stone                                             Mobile 

Phone 

Figure 3: Respiration System Setup 

 

Part B: Blood Pressure and Heart Rate System Setup  

 
Figure4: Blood Pressure and Heart Rate System 

 
Figure 5: Data Processing 

 

3.3:  Math’s Specification 

The Autoencoder (AE) is a type of neural network. It 

plays an important role in dimensionality reduction. 

In the case of anomaly detection, it tries to find an 

optimal subspace. We can assume the normal training 

set as {𝑥1,2,𝑥3,… … … … .𝑥𝑛} where each of them 

represents a 𝑑 dimensional vector. The training phase 

consists of constructing a model to project these data 

into low dimensional subspace and reproduce the 

data to obtain the output {𝑥1,2,𝑥3,… … … … . 𝑥𝑛}. 

The reconstruction error is defined by the formula 

given below: ε(xi,,xi
′) = ∑d

j=1(xi − xi
′)2(3.1)  

The basic architecture of AE consists of an encoder 

and a decoder. Figure 3.7 shows a simple AE having 

an encoder, decoder, and a hidden layer. In the 

encoder section, as depicted by Figure 3.6, the input 

vectors (𝑥𝑖∈𝑅𝑑) are compressed to develop a hidden 

layer. The activation of neurons is given by:  

hi = fθ(x) = s(∑n
j=1 Wij

inputxj+ binput
i )                       

(3.2) 

Thus, the input vector is encoded to a low-

dimensional vector. In the decoder section, the 

hidden representation ℎ𝑖 is decoded back to. The 

mapping function is given by:  

xi
′=gθ′(h)= s(∑n

j=1 Wij
hiddenhj+ bi

hidden)                       

(3.3) 

The AE is optimized to minimize the average 

reconstruction error concerning θ′ and θ given by:  

θ∗,θ′∗=argminθ,θ′n i
n
=1 ϵ(xi, xi

′)                  (3.4)   = 

argminθ,θ′ n n
i   

 

3.3:  Results/Interpretations 

 

Table 6.1: Showing the observed datafrom 

Autoencoder 

Respiration 

Rate  SYS DIA PULSE 

18.0 142.0 76.0 86.0 

15.0 125.0 76.0 83.0 

17.0 125.0 78.0 85.0 

17.0 124.0 80.0 85.0 

14.0 123.0 89.0 81.0 

19.0 120.0 92.0 87.0 

15.0 123.0 75.0 83.0 

15.0 132.0 99.0 83.0 

15.0 127.0 86.0 83.0 

14.0 127.0 94.0 81.0 

16.0 139.0 99.0 85.0 

15.0 128.0 94.0 82.0 

15.0 124.0 86.0 85.0 

14.0 122.0 81.0 80.0 

14.0 116.0 89.0 81.0 

12.0 116.0 86.0 81.0 

14.0 119.0 90.0 80.0 

16.0 117.0 84.0 82.0 

14.0 117.0 84.0 82.0 

13.0 117.0 84.0 82.0 

22.0 145.0 95.0 105.0 

20.0 145.0 95.0 105.0 
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Table6.2:  CNN Confusion Matrix 

N=

300  

Predi

cted: 

No  

Predi

cted: 

Yes  

 

Act

ual: 

No  

190  2  192  

Act

ual: 

Yes  

84  24  

68  

N=

300  

Predi

cted: 

No  

Predi

cted: 

Yes  

 

Act

ual: 

No  

200  6  2

0

6  

Act

ual: 

Yes 

38 56 9

4 

 
238  62  

 

 
274  26  

 

 

In this case, let us calculate the accuracy of the CNN 

classifier. The accuracy is being determined by using 

the formulae: A =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+ 𝐹𝑃+𝐹𝑁
∗ 100 

 =       = 87%  

 

As shown in the table6.2, we can identify that TP in 

this case is 55 while TN are 190. Also, FP and FN are 

given as 54 and 1 respectively. It is to be noted that 

this accuracy is performed on test set having around 

300 samples. This is done because the best possible 

results should be obtained on test sample.  

 

The algorithm used for dropping features i.e., the 

feature selection algorithm is given in the  

 

 
Figure 6: Feature Selection Algorithm 

 

 
Figure 7:  CNN Confusion Matrix 

 

In the case of CNN, the accuracy achieved is 94%. It 

can be observed from the previous method that 

efficiency in this method increases as we drop some 

features.   

 

4.1: Accuracy Comparison of Methods Used   

The aforementioned methods are further compared 

based on the accuracy achieved by them. The 

accuracy comparison of the methods is discussed 

further in the Table 4.1.                

Table 7.2: Approach 1 Comparison Table  

Correlation 

Table7.3: Correlation among features 

 
 

Table7.4: Approach-2 CNN Confusion Matrix 

 

   
a. Normal beat      b. Equilibrium 
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c. Abnormal      d.  Histogram plot of normal beat 

 

  
e.  Accuracy and loss graph from 15 epochs 

Figure 7 (a-e): Approaches CNN classification Report 

 

Table 8: Approach 2 Accuracy Comparison Table 

Algorithm Used  Method-1  Method-2  

CNN  88%  92%  

 

The aforementioned approaches are further compared 

based on the accuracy achieved by them. The 

accuracy comparison of the approaches is discussed 

further in Table 4.3.  

 

Table 8.1: Accuracy Comparison Table of two 

approaches 

Algorithm Used  Approach-1  Approach-2  

CNN  94%  92%  

 

 

7.1 SUMMARY/CONCLUSION 

 

The provision of medical amenities to patients is 

significantly aided by IoT-based remote healthcare 

monitoring systems. These systems can be crucial in 

averting potentially fatal situations in certain 

situations. Building the hardware prototype and 

identifying the false data arriving from the IoT 

devices on the server are the main goals of this thesis. 

These two different methods were compared, and 

accuracy was calculated. It was observed that the 

technique considering strongly correlated features 

was performing better. In the end, the comparison 

between the best methods from two different 

approaches was performed. It was observed from the 

comparison, that approach two was performing better 

for all of the deep learning methods taken into 

consideration.   
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