
© OCT 2025 | IRE Journals | Volume 9 Issue 4 | ISSN: 2456-8880

IRE 1711462 ICONIC RESEARCH AND ENGINEERING JOURNALS 1207

An Ensemble Based Machine Learning Model for

Android Malware Detection

BAFFA SANI MAHMOUD1, PROF. RASHID HUSAIN2, ASSOC. PROF. MUHAMMAD

HASSAN3
1,2 Department of Computer Science, Sule Lamido University, Kafin Hausa

3 Department of Software Engineering, Bayero University, Kano

Abstract- The rapid growth of the Android ecosystem has

been accompanied by an alarming increase in

sophisticated malware, including banking Trojans,

spyware, and ransomware. Traditional signature-based

detection techniques are insufficient against obfuscation

and zero-day attacks, highlighting the urgent need for

adaptive detection mechanisms. This study aims to

develop and evaluate an ensemble-based machine-

learning model to enhance the detection of Android

malware using the Andmaldataset. Recursive Feature

Elimination (RFE) with a Decision Tree Classifier was

employed to select the 20 most relevant features from the

dataset. Five supervised classifiers Random Forest,

Support Vector Machine (SVM), K-Nearest Neighbors

(KNN), Logistic Regression, and Decision Tree were

trained and evaluated. Additionally, three ensemble-

learning techniques (Bagging, Boosting, and Stacking)

were implemented to improve robustness and reduce false

negatives. Among individual classifiers, SVM achieved

the highest accuracy of 96.51%, while Random Forest

recorded the strongest AUC score (0.9918). Ensemble

methods outperformed individual classifiers, with

Boosting yielding the highest accuracy (98.51%) and

recall (96.32%), and Bagging achieving the best AUC

(0.9930). Stacking also demonstrated stable and

competitive performance across all metrics. The results

confirm that ensemble learning significantly improves

Android malware detection over single classifiers.

Boosting and Bagging emerged as particularly effective

strategies, offering strong accuracy and robustness

against evolving malware threats.

Keywords: Android Malware, Machine Learning,

Ensemble Learning, Bagging, Boosting, Stacking,

Malware Detection

I. INTRODUCTION

Android has emerged as the most widely used mobile

operating system, powering billions of smartphones,

tablets, and IoT devices. This widespread adoption

has made it an attractive target for cybercriminals

who deploy increasingly sophisticated malware to

exploit system vulnerabilities. Malware attacks on

Android devices have escalated in recent years,

ranging from spyware and adware to banking trojans

and ransomware, threatening both user privacy and

financial security (Doctor Web, 2025). Unlike earlier

generations of malware, modern variants use

obfuscation, polymorphism, and zero-day exploits to

evade detection, creating a fast-evolving threat

landscape. This reality underscores the importance of

developing robust, intelligent malware detection

systems capable of adapting to new attack strategies.

Traditional malware detection approaches, including

signature-based and heuristic methods, rely heavily

on known malware patterns and rule sets. These

approaches often fail against new, obfuscated, or

zero-day malware strains. While machine learning

(ML) classifiers have emerged as effective tools in

malware detection, individual models are often

limited by dataset bias, feature redundancy, and

reduced generalization ability. Therefore, a

significant challenge lies in designing models that not

only achieve high accuracy but also demonstrate

robustness against diverse and evolving malware

families.

A growing body of research demonstrates the

potential of machine learning and ensemble methods

in Android malware detection. Yerima et al. (2020)

highlighted the effectiveness of ensemble classifiers

in static analysis, reporting accuracies as high as

99%. Bakır (2024) developed VoteDroid, an

ensemble model that integrated deep learning

classifiers using a majority voting scheme, achieving

more than 97% accuracy. Similarly, Wang et al.

(2022) introduced MFDroid, a stacking-based

ensemble framework that delivered an F1-score of

96.0%, showing improved performance over single

classifiers. Isaac et al. (2025) further explored hybrid

ML techniques, confirming that ensemble strategies

consistently outperform standalone models. While

these works highlight the advantages of ensemble

learning, most focus on a single ensemble technique

or specific experimental setups, leaving open the

question of how different ensemble strategies

© OCT 2025 | IRE Journals | Volume 9 Issue 4 | ISSN: 2456-8880

IRE 1711462 ICONIC RESEARCH AND ENGINEERING JOURNALS 1208

compare when evaluated under the same conditions

and dataset.

This study aims to bridge this gap by designing and

evaluating an ensemble-based machine-learning

framework for Android malware detection.

Specifically, the research investigates three ensemble

methods bagging, boosting, and stacking and

compares their performance with five baseline

classifiers: Random Forest, Support Vector Machine

(SVM), K-Nearest Neighbors (KNN), Logistic

Regression, and Decision Tree. The evaluation is

conducted using the Andmaldataset, which contains

a balanced distribution of benign and malware

samples.

The remaining part of this paper is organized as

follows: Section 2 reviews related literature in more

detail. Section 3 presents the methodology, including

dataset description, preprocessing, feature selection,

and modeling approaches. Section 4 reports the

experimental results and evaluates model

performance. Section 5 discusses the implications,

limitations, and potential future work, while Section

6 concludes the paper.

II. RELATED WORKS

Android malware detection has been widely studied,

with researchers exploring traditional static and

dynamic analysis techniques as well as advanced

machine learning and ensemble approaches. This

section reviews relevant contributions, focusing on

how ensemble-based strategies have evolved to

address the limitations of single classifiers.

Earlier detection systems primarily relied on

signature-based scanning and heuristic methods.

While effective against known threats, these

approaches are inadequate for detecting obfuscated

or zero-day malware Ullah, F., & Raza, A. (2020).

Dynamic analysis techniques, which monitor

application behavior during execution, offered

greater resilience but introduced high computational

costs and scalability concerns. Taha, A., & Barukab,

O. (2022).

The integration of machine learning (ML) into

malware detection has enabled automated pattern

recognition in application features. Random Forest,

Support Vector Machines (SVM), and Decision

Trees have been widely used due to their

interpretability and effectiveness. For example, Saja,

A., & Omar, Y. (2019). applied multiple classifiers

on API calls and achieved detection accuracies up to

99%. However, the reliance on single models often

leads to performance instability when tested on

diverse or adversarial samples.

Recent works highlight ensemble methods as more

robust alternatives. Bagging and boosting techniques

improve classification stability by aggregating weak

learners, while stacking integrates multiple base

classifiers with a meta-learner to boost predictive

power. Bakır (2024) proposed VoteDroid, which

combines deep learning classifiers through majority

voting, achieving accuracy above 97%. Similarly,

Wang et al. (2022) developed MFDroid, a stacking

ensemble model, and reported an F1-score of 96.0%

using static and dynamic features. Isaac et al. (2025)

further confirmed that ensemble learning consistently

outperforms individual classifiers when applied to

Android malware detection, particularly in reducing

false negatives. While ensemble learning is

recognized as a superior strategy, most studies focus

on evaluating a single ensemble approach or a limited

range of classifiers. There is limited comparative

analysis of bagging, boosting, and stacking methods

on the same dataset, making it difficult to assess their

relative strengths. Furthermore, many prior works

rely on imbalanced datasets, which may inflate

performance metrics and reduce generalization to

real-world conditions.

Table 1. A summary of some of the review papers

Study
Approach/Model Dataset

Characteristics
Key Findings Limitations

Zhou& Jiang

(2022)

Signature-based,

static analysis

Malware Genome

Project

Identified malware

families via

signatures

Failed on zero-day

and obfuscated

malware

Arp et al. (2024)
Dynamic analysis

(DREBIN)
123k apps

Behavior-based

detection

High computational

cost

© OCT 2025 | IRE Journals | Volume 9 Issue 4 | ISSN: 2456-8880

IRE 1711462 ICONIC RESEARCH AND ENGINEERING JOURNALS 1209

Ullah, F., &

Raza, A. (2020)

ML classifiers (RF,

SVM, DT)
API calls dataset

Accuracy up to

99%

Limited robustness

to evolving threats

Bakır (2024)
Ensemble voting

(VoteDroid)

Mixed

static/dynamic

features

Accuracy above

97%

Evaluated only

voting ensembles

Wang et al.

(2022)

Stacking ensemble

(MFDroid)

Android apps,

balanced dataset
F1-score of 96%

Focused on

stacking, not

bagging/boosting

Current Research
Hybrid ML

ensemble

AndMal dataset

variants

Outperformed

single models

Dataset-specific

validation only

The reviewed literature demonstrates that ensemble

methods deliver improved accuracy, precision, and

robustness compared to individual classifiers.

However, the lack of systematic comparisons across

different ensemble techniques on a common dataset

limits the ability to determine the most effective

strategy. This study addresses that gap by evaluating

bagging, boosting, and stacking ensembles alongside

individual classifiers on the same dataset, providing

a holistic assessment of their performance.

III. METHODOLOGY

This study employed an experimental design that

systematically built and evaluated machine-learning

models for Android malware detection. The

methodology consisted of four main stages: dataset

acquisition and characterization, preprocessing and

setup, model development, and performance

evaluation.

3.1 Dataset and Materials

The experiments were conducted using the

Andmaldataset (sourced from Kaggle), which is

widely used in Android malware detection research

(Isaac et al., 2025). The dataset contains 3,292

Android applications, of which 1,745 (53.0%) are

benign and 1,547 (47.0%) are malware. Each

application is described by 328 attributes, including

327 integer-based static and behavioral features and

one categorical label (benign or malware).

The near-balanced class distribution minimizes the

risk of bias during model training, making it suitable

for machine learning experiments.

Table 2. Dataset Composition

Class Count Percentage

Benign 1,745 53.0%

Malware 1,547 47.0%

Figure 1. Malware and Benign Distribution

© OCT 2025 | IRE Journals | Volume 9 Issue 4 | ISSN: 2456-8880

IRE 1711462 ICONIC RESEARCH AND ENGINEERING JOURNALS 1210

3.2 Data Preprocessing and Setup

To ensure reliable model training and evaluation, the

following preprocessing steps were performed:

1. Data Cleaning: Duplicate entries were removed,

and missing values were handled using

imputation techniques.

2. Label Encoding: The categorical target label was

converted into binary numeric values (0 =

benign, 1 = malware).

3. Feature Normalization: Feature values were

scaled to reduce the influence of outliers and

ensure consistency across classifiers

4. Feature Selection: Recursive Feature

Elimination (RFE) with Decision Tree was

applied to reduce the 327 features to the 20 most

relevant features. This step minimized

dimensionality, reduced noise, and enhanced

computational efficiency.

Figure 2: A feature importance plot or RFE ranking visualization.

3.3 Approach and Algorithm

The methodology involved two phases: baseline

classifier training and ensemble model integration.

Step1: Baseline Classifiers

Five supervised learning algorithms were trained on

the dataset:

• Random Forest (RF)

• Support Vector Machine (SVM)

• K-Nearest Neighbors (KNN)

• Logistic Regression (LR)

• Decision Tree (DT)

These algorithms were selected due to their proven

effectiveness in malware detection. The dataset will

be split into 80% training and 20% testing sets using

stratified sampling to maintain class balance. hyper

parameter tuning was performed via 10-fold Cross-

Validation.

Step2: Ensemble Learning Methods

to improve robustness, three ensemble approaches

were employed:

• Bagging: Using Random Forest as the base

learner to aggregate multiple decision trees and

reduce variance.

• Boosting: Implemented with XGBoost, where

weak learners are sequentially improved by

focusing on misclassified samples.

• Stacking: Combining the five base classifiers

(RF, SVM, KNN, LR, and DT) with Logistic

Regression as a meta-learner.

© OCT 2025 | IRE Journals | Volume 9 Issue 4 | ISSN: 2456-8880

IRE 1711462 ICONIC RESEARCH AND ENGINEERING JOURNALS 1211

Figure 3: A workflow diagram showing the proposed model.

3.4 Evaluation Metrics

To ensure comprehensive assessment, the models

were evaluated using standard classification metrics,

shown as follows.

• Accuracy: Overall proportion of correct

predictions.

• Precision: Proportion of malware samples

correctly classified among predicted malware.

• Recall (Sensitivity): Proportion of actual

malware samples correctly identified.

• F1-score: Harmonic mean of precision and

recall.

• Area Under the ROC Curve (AUC): Ability of

the model to discriminate between benign and

malware applications.

• Confusion Matrix: Provides detailed insight into

false positives and false negatives.

These metrics collectively ensure that the evaluation

captures both detection power (recall) and reliability

(precision, AUC).

Tale 3.1 Description of evaluation metrics

Metric Description Formula

TP (True Positive) Correctly predicted positive instances (e.g.,

correctly identified malware).

FP (False Positive) Incorrectly predicted positive instances (e.g.,

benign apps incorrectly classified as malware).

FN (False Negative) Incorrectly predicted negative instances (e.g.,

malware apps misclassified as benign).

TN (True Negative) Correctly predicted negative instances (e.g.,

correctly identified benign apps).

Accuracy (α) Percentage of correctly predicted instances (both

malware and benign) out of the total predictions.

α = (TP + TN) / (TP + TN +

FP + FN)

Precision (ρ) Proportion of true positive predictions among all

predicted positives.

ρ = TP / (TP + FP)

Recall (r) Proportion of true positive predictions among all

actual positives.

r = TP / (TP + FN)

F1 Score (η) Harmonic mean of precision and recall, balancing

false positives and false negatives.

η = 2 * (ρ * r) / (ρ + r)

© OCT 2025 | IRE Journals | Volume 9 Issue 4 | ISSN: 2456-8880

IRE 1711462 ICONIC RESEARCH AND ENGINEERING JOURNALS 1212

3.5 Methodological Summary

Table 3.2 Methodology Overview

Stage Task Tools/Techniques Used Output

Dataset Acquisition
Obtain Andmaldataset

(3,292 samples)
Kaggle Raw dataset

Preprocessing

Cleaning, encoding,

normalization, feature

selection

Scikit-learn, RFE 20 selected features

Baseline Models
Train RF, SVM, KNN,

LR, DT
Scikit-learn,

Classifier performance

metrics

Ensemble Models
Bagging, Boosting

(XGBoost), Stacking
Scikit-learn, XGBoost

Improved performance

results

IV. RESULTS

This section presents the experimental results

obtained from both individual classifiers and

ensemble methods applied to the Andmaldataset. The

outcomes are reported in terms of accuracy,

precision, recall, F1-score, and area under the ROC

curve (AUC), which are standard evaluation metrics

in malware detection studies.

4.1 Performance of Individual Classifiers

The five baseline classifiers were trained and

evaluated on the dataset using stratified 80/20 train-

test splitting and 10-fold cross-validation. Their

performance metrics are summarized in Table 4.

Table 4.2 Performance of Individual Classifiers

Model Accuracy Precision Recall F1-score AUC

Random Forest (RF) 95.75% 96.86% 94.48% 95.65% 0.9918

Support Vector Machine (SVM) 96.51% 97.20% 95.71% 96.45% 0.9903

K-Nearest Neighbors (KNN) 94.54% 95.89% 92.94% 94.39% 0.9821

Logistic Regression (LR) 95.90% 96.28% 95.40% 95.84% 0.9902

Decision Tree (DT) 94.69% 95.61% 93.56% 94.57% 0.9623

Figure 4.1 Confusion matrices of individual classifiers.

© OCT 2025 | IRE Journals | Volume 9 Issue 4 | ISSN: 2456-8880

IRE 1711462 ICONIC RESEARCH AND ENGINEERING JOURNALS 1213

Figure 4.2 ROC curves comparing RF, SVM, KNN, LR, and DT.

Trends:

• SVM achieved the highest accuracy (96.51%),

showing consistent generalization across

malware and benign classes.

• Random Forest achieved the highest AUC

(0.9918), indicating excellent discriminative

power.

• KNN and Decision Tree performed slightly

lower, suggesting sensitivity to noisy features

and dataset size.

4.2 Performance of Ensemble Models

The ensemble learning methods demonstrated

improved performance compared to individual

classifiers. Results are summarized in Table 4.3

Table 4. Performance of Ensemble Models

Ensemble

Method
Accuracy Precision Recall F1-score AUC

Bagging 96.36% 97.19% 95.40% 96.28% 0.9930

Boosting 98.51% 96.62% 96.32% 96.47% 0.9923

Stacking 96.05% 96.58% 95.40% 95.98% 0.9922

Figure 4.3 Confusion matrices of Bagging, Boosting, and Stacking.

© OCT 2025 | IRE Journals | Volume 9 Issue 4 | ISSN: 2456-8880

IRE 1711462 ICONIC RESEARCH AND ENGINEERING JOURNALS 1214

Figure 4.4 ROC curves of ensemble models compared to the best individual classifiers.

Trends:

• Boosting achieved the highest overall accuracy

(98.51%) and recall (96.32%), confirming its

strength in reducing false negatives.

• Bagging yielded the highest AUC (0.9930),

indicating robust performance across different

classification thresholds.

• Stacking showed competitive results but did not

significantly outperform the other ensembles.

4.3 Comparative Insights

To highlight improvements, Table 5 compares the

best baseline classifier (SVM) with the best ensemble

method (Boosting).

Table 5. Best Baseline vs. Best Ensemble Performance

Model Accuracy Precision Recall F1-score AUC

SVM (Best

Individual)
96.51% 97.20% 95.71% 96.45% 0.9903

Boosting (Best

Ensemble)
98.51% 96.62% 96.32% 96.47% 0.9923

Observations:

• Ensemble learning provided up to ~2%

improvement in accuracy over the best single

model.

• Boosting reduced false negatives, which is

particularly important in malware detection

where undetected threats can cause severe

damage.

• The AUC improvement from 0.9903 (SVM) to

0.9923 (Boosting) indicates marginal but

meaningful gains in class discrimination.

4.4 Benchmarking Against Prior Studies

The findings of this study are compared with prior

works to contextualize their contribution. Table 6

summarizes key outcomes.

Table 6. Comparative Results with Prior Studies

Study Method/Model Dataset Accuracy/F1-score Remarks

Ullah, F., & Raza,

A. (2020)
RF, SVM, DT API Calls 99% (Accuracy)

Limited

generalization on

evolving threats

Bakır (2024)
VoteDroid

(Voting DL)
Mixed features 97% (Accuracy)

Focused only on

voting ensembles

© OCT 2025 | IRE Journals | Volume 9 Issue 4 | ISSN: 2456-8880

IRE 1711462 ICONIC RESEARCH AND ENGINEERING JOURNALS 1215

Wang et al. (2022)
MFDroid

(Stacking)
Balanced apps 96% (F1-score)

Strong

performance, but

no

bagging/boosting

Current research
Hybrid

Ensemble
AndMal variant 98% (Accuracy)

Outperformed

single models

V. SUMMARY

In summary, this study provides strong evidence that

ensemble learning significantly improves Android

malware detection, with Boosting and Bagging

delivering the most promising results. These findings

are consistent with the broader literature while

providing new insights into the comparative

performance of ensemble strategies under a common

framework. The results reinforce the role of ensemble

methods as a foundation for future malware detection

research and practical deployment.

5.1 Conclusion

This study presented an ensemble-based machine-

learning framework for Android malware detection,

addressing the growing challenge posed by evolving

malware families in the Android ecosystem. Using

the Andmaldataset, we evaluated five baseline

classifiers Random Forest, Support Vector Machine

(SVM), K-Nearest Neighbors, Logistic Regression,

and Decision Treeand three ensemble methods:

Bagging, Boosting, and Stacking.

The results demonstrated that ensemble models

consistently outperformed individual classifiers

across all evaluation metrics. Among the baseline

models, SVM achieved the highest accuracy

(96.51%), while Random Forest recorded the

strongest discriminative ability with an AUC of

0.9918. However, Boosting surpassed all other

approaches, achieving the best overall performance

with 98.51% accuracy and 96.32% recall, while

Bagging attained the highest AUC (0.9930). These

findings confirm that ensemble learning is more

effective and robust than single classifiers for

Android malware detection.

The main contributions of this research are threefold:

1. Demonstration of feature selection using

Recursive Feature Elimination (RFE) to reduce

dimensionality and improve model efficiency.

2. A systematic comparative analysis of three

ensemble-learning methods Bagging, Boosting,

and Stacking on the same dataset.

3. Identification of Boosting and Bagging as the

most promising ensemble approaches for

Android malware detection.

Despite these contributions, the study has limitations

related to dataset specificity, static feature

dependence, and computational complexity of

advanced ensembles. Future work should focus on

integrating static and dynamic features, validating

models on larger and more diverse datasets, and

optimizing computational efficiency for real-time

deployment. Additionally, research into adversarial

robustness and deep ensemble learning could further

strengthen malware detection systems.

In conclusion, this study reinforces the potential of

ensemble machine learning methods as powerful

tools for Android malware detection. By enhancing

accuracy, recall, and generalization, ensemble

approaches offer a practical pathway toward securing

Android devices against the rapidly evolving threat

landscape.

5.2 Future Work

Future research should address these limitations by:

• Integrating dynamic features such as system

calls, network traffic, and runtime behavior with

static features to improve resilience against

obfuscation.

• Evaluating across multiple datasets, including

real-world malware repositories, to validate the

generalizability of ensemble approaches.

• Exploring deep ensemble learning, combining

convolutional neural networks or recurrent

models with boosting or stacking for enhanced

detection accuracy.

• Optimizing computational efficiency through

model compression, pruning, and federated

learning frameworks, enabling deployment on

mobile devices.

• Investigating adversarial robustness by testing

ensemble models against adversarial malware

designed to evade detection.

© OCT 2025 | IRE Journals | Volume 9 Issue 4 | ISSN: 2456-8880

IRE 1711462 ICONIC RESEARCH AND ENGINEERING JOURNALS 1216

REFERENCE

[1] Zhao, J., Mo, X., & Zheng, Q. (2018). A novel

method of Android malware detection based on

ensemble learning algorithm. In Proceedings of

the 8th International Workshop on Computer

Science and Engineering (WCSE 2018) (pp.

531–538).

[2] Wang, Y., & Wang, H. (2018). A hybrid model

for Android malware detection. Journal of

Information Security and Applications, 42, 1–

10.

[3] Alzahrani, A., & Alshahrani, M. (2019). Android

malware detection using machine learning

techniques. International Journal of Computer

Applications, 178(1), 1–7.

[4] Rana, M. S., & Sung, A. H. (2020). Evaluation

of advanced ensemble learning techniques for

Android malware detection. Vietnam Journal of

Computer Science, 7(2), 145–159.

[5] Ullah, F., & Raza, A. (2020). A novel Android

malware detection framework based on

ensemble learning. Computers & Security, 95,

101866.

[6] Taha, A., & Barukab, O. (2022). Android

malware classification using optimized

ensemble learning based on genetic algorithms.

Sustainability, 14, 14406.

[7] Wang, X., Zhang, L., Zhao, K., Ding, X., & Yu,

M. (2022). MFDroid: A stacking ensemble

learning framework for Android malware

detection. Sensors, 22(7), 2597.

[https://doi.org/10.3390/s22072597]

(https://doi.org/10.3390/s22072597)

[8] Dhanya, L., Chitra, R., & Anusha Bamini, A. M.

(2022). Performance evaluation of various

ensemble classifiers for malware detection.

Materials Today: Proceedings, 62, 4973–4979.

[9] Liu, Y., Tantithamthavorn, C., Li, L., & Liu, Y.

(2022). Deep learning for Android malware

defenses: A systematic literature review. ACM

Computing Surveys, 55(8), 1–36.

[https://doi.org/10.1145/3544968]

(https://doi.org/10.1145/3544968)

[10] AbuAlghanam, O., Alazzam, H., Qatawneh, M.,

Aladwan, O., Alsharaiah, M. A., & Almaiah, M.

A. (2023). Android malware detection system

based on ensemble learning. Preprint.

[11] Alamro, H., Mtouaa, W., Aljameel, S., Salama,

A. S., Hamza, M. A., & Othman, A. Y. (2023).

Automated Android malware detection using

optimal ensemble learning approach for

cybersecurity. IEEE Access, 11, 72509–72517.

[https://doi.org/10.1109/ACCESS.2023.329426

3]

(https://doi.org/10.1109/ACCESS.2023.329426

3)

[12] Sumalatha, P., & Mahalakshmi, G. S. (2023).

Machine learning based ensemble classifier for

Android malware detection. International

Journal of Computer Networks &

Communications, 15(4), 111–122.

[https://doi.org/10.5121/ijcnc.2023.15407]

(https://doi.org/10.5121/ijcnc.2023.15407)

[13] Bakır, H. (2024). VoteDroid: A new ensemble

voting classifier for malware detection based on

fine-tuned deep learning models. Multimedia

Tools and Applications.

[https://doi.org/10.1007/s11042-024-19390-7]

(https://doi.org/10.1007/s11042-024-19390-7)

[14] Bakır, H. (2024). Vote-Droid: A new ensemble

voting classifier for malware detection based on

fine-tuned deep learning models. Multimedia

Tools and Applications.

https://doi.org/10.1007/s11042-024-19390-

7SpringerLink

[15] Amer, E. (2021, June 9). Permission-based

approach for Android malware analysis through

ensemble-based voting model. In A.

Bahaa‑Eldin, A. AbdelRaouf, N. A. M. Shorim,

R. O. M. Rashad, & S. E. Elbohy (Eds.), 2021

International Mobile, Intelligent, and Ubiquitous

Computing Conference (MIUCC 2021) (pp.

135–139). IEEE.

https://doi.org/10.1109/MIUCC52538.2021.944

7675

[16] Android Open-Source Project. (2024).

Architecture overview. Retrieved from

https://source.android.com

[17] Google Developers. (2024). Android runtime

(ART). Retrieved from

https://developer.android.com

[18] Mishra, A., & Saha, P. (2023). "Security

Enhancements in Android Kernel and HAL for

IoT Devices." International Journal of Mobile

Computing and Networking, 11(1), 22–35.

[19] Sharma, R., Singh, V., & Bhatia, M. (2025). "A

Review of Android OS Architecture and

Security Challenges." Journal of Mobile Systems

and Applications, 19(2), 77–89.

[20] Comparitech. (2025, April 18). 20+ Android

malware stats for 2025.

https://www.comparitech.com/blog/vpn-

privacy/20-current-android-malware-stats/

https://doi.org/10.1007/s11042-024-19390-7
https://doi.org/10.1007/s11042-024-19390-7
https://link.springer.com/article/10.1007/s11042-024-19390-7?utm_source=chatgpt.com
https://source.android.com/
https://developer.android.com/

© OCT 2025 | IRE Journals | Volume 9 Issue 4 | ISSN: 2456-8880

IRE 1711462 ICONIC RESEARCH AND ENGINEERING JOURNALS 1217

[21] Doctor Web. (2025, March 27). Q1 2025 review

of virus activity on mobile devices.

https://news.drweb.com/show/?i=14991&lng=e

n

[22] Spacelift. (2025, May 8). 50+ malware statistics

for 2025. https://spacelift.io/blog/malware-

statistics

[23] Deepstrike. (2025, April 28). 50+ malware

statistics 2025: Attacks, trends and infections.

https://deepstrike.io/blog/Malware-Attacks-and-

Infections-2025

[24] Enck, W., Ongtang, M., & McDaniel, P. (2009).

Understanding Android security. IEEE Security

& Privacy, 7(1), 50–57.

https://doi.org/10.1109/MSP.2009.26

