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Abstract- The rapid growth of the Android ecosystem has
been accompanied by an alarming increase in
sophisticated malware, including banking Trojans,
spyware, and ransomware. Traditional signature-based
detection techniques are insufficient against obfuscation
and zero-day attacks, highlighting the urgent need for
adaptive detection mechanisms. This study aims to
develop and evaluate an ensemble-based machine-
learning model to enhance the detection of Android
malware using the Andmaldataset. Recursive Feature
Elimination (RFE) with a Decision Tree Classifier was
employed to select the 20 most relevant features from the
dataset. Five supervised classifiers Random Forest,
Support Vector Machine (SVM), K-Nearest Neighbors
(KNN), Logistic Regression, and Decision Tree were
trained and evaluated. Additionally, three ensemble-
learning techniques (Bagging, Boosting, and Stacking)
were implemented to improve robustness and reduce false
negatives. Among individual classifiers, SVM achieved
the highest accuracy of 96.51%, while Random Forest
recorded the strongest AUC score (0.9918). Ensemble
methods outperformed individual classifiers, with
Boosting yielding the highest accuracy (98.51%) and
recall (96.32%), and Bagging achieving the best AUC
(0.9930). Stacking also demonstrated stable and
competitive performance across all metrics. The results
confirm that ensemble learning significantly improves
Android malware detection over single classifiers.
Boosting and Bagging emerged as particularly effective
strategies, offering strong accuracy and robustness
against evolving malware threats.
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L INTRODUCTION

Android has emerged as the most widely used mobile
operating system, powering billions of smartphones,
tablets, and IoT devices. This widespread adoption
has made it an attractive target for cybercriminals
who deploy increasingly sophisticated malware to
exploit system vulnerabilities. Malware attacks on
Android devices have escalated in recent years,
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ranging from spyware and adware to banking trojans
and ransomware, threatening both user privacy and
financial security (Doctor Web, 2025). Unlike earlier
generations of malware, modern variants use
obfuscation, polymorphism, and zero-day exploits to
evade detection, creating a fast-evolving threat
landscape. This reality underscores the importance of
developing robust, intelligent malware detection
systems capable of adapting to new attack strategies.
Traditional malware detection approaches, including
signature-based and heuristic methods, rely heavily
on known malware patterns and rule sets. These
approaches often fail against new, obfuscated, or
zero-day malware strains. While machine learning
(ML) classifiers have emerged as effective tools in
malware detection, individual models are often
limited by dataset bias, feature redundancy, and
reduced generalization ability. Therefore, a
significant challenge lies in designing models that not
only achieve high accuracy but also demonstrate
robustness against diverse and evolving malware
families.

A growing body of research demonstrates the
potential of machine learning and ensemble methods
in Android malware detection. Yerima et al. (2020)
highlighted the effectiveness of ensemble classifiers
in static analysis, reporting accuracies as high as
99%. Bakir (2024) developed VoteDroid, an
ensemble model that integrated deep learning
classifiers using a majority voting scheme, achieving
more than 97% accuracy. Similarly, Wang et al.
(2022) introduced MFDroid, a stacking-based
ensemble framework that delivered an Fl-score of
96.0%, showing improved performance over single
classifiers. Isaac et al. (2025) further explored hybrid
ML techniques, confirming that ensemble strategies
consistently outperform standalone models. While
these works highlight the advantages of ensemble
learning, most focus on a single ensemble technique
or specific experimental setups, leaving open the
question of how different ensemble strategies
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compare when evaluated under the same conditions
and dataset.

This study aims to bridge this gap by designing and
evaluating an ensemble-based machine-learning
framework for Android malware detection.
Specifically, the research investigates three ensemble
methods bagging, boosting, and stacking and
compares their performance with five baseline
classifiers: Random Forest, Support Vector Machine
(SVM), K-Nearest Neighbors (KNN), Logistic
Regression, and Decision Tree. The evaluation is
conducted using the Andmaldataset, which contains
a balanced distribution of benign and malware
samples.

The remaining part of this paper is organized as
follows: Section 2 reviews related literature in more
detail. Section 3 presents the methodology, including
dataset description, preprocessing, feature selection,
and modeling approaches. Section 4 reports the
experimental results and model
performance. Section 5 discusses the implications,

evaluates

limitations, and potential future work, while Section
6 concludes the paper.

IL. RELATED WORKS

Android malware detection has been widely studied,
with researchers exploring traditional static and
dynamic analysis techniques as well as advanced
machine learning and ensemble approaches. This
section reviews relevant contributions, focusing on
how ensemble-based strategies have evolved to
address the limitations of single classifiers.

Earlier detection systems primarily relied on
signature-based scanning and heuristic methods.
While effective against known threats, these
approaches are inadequate for detecting obfuscated
or zero-day malware Ullah, F., & Raza, A. (2020).
Dynamic analysis techniques, which monitor

application behavior during execution, offered
greater resilience but introduced high computational
costs and scalability concerns. Taha, A., & Barukab,
0. (2022).

The integration of machine learning (ML) into
malware detection has enabled automated pattern
recognition in application features. Random Forest,
Support Vector Machines (SVM), and Decision
Trees have been widely used due to their
interpretability and effectiveness. For example, Saja,
A., & Omar, Y. (2019). applied multiple classifiers
on API calls and achieved detection accuracies up to
99%. However, the reliance on single models often
leads to performance instability when tested on
diverse or adversarial samples.

Recent works highlight ensemble methods as more
robust alternatives. Bagging and boosting techniques
improve classification stability by aggregating weak
learners, while stacking integrates multiple base
classifiers with a meta-learner to boost predictive
power. Bakir (2024) proposed VoteDroid, which
combines deep learning classifiers through majority
voting, achieving accuracy above 97%. Similarly,
Wang et al. (2022) developed MFDroid, a stacking
ensemble model, and reported an F1-score of 96.0%
using static and dynamic features. Isaac et al. (2025)
further confirmed that ensemble learning consistently
outperforms individual classifiers when applied to
Android malware detection, particularly in reducing
false negatives. While ensemble learning is
recognized as a superior strategy, most studies focus
on evaluating a single ensemble approach or a limited
range of classifiers. There is limited comparative
analysis of bagging, boosting, and stacking methods
on the same dataset, making it difficult to assess their
relative strengths. Furthermore, many prior works
rely on imbalanced datasets, which may inflate
performance metrics and reduce generalization to
real-world conditions.

Table 1. A summary of some of the review papers

A h/Model Dataset
Study pproach/Mode atase . Key Findings Limitations
Characteristics
. . Identified mal Failed -d
Zhou& Jiang Signature-based, Malware Genome en. 1 ¢ ma War.e ariec of zero-aay
. . . families via | and obfuscated
(2022) static analysis Project .
signatures malware
Dynamic analysis Behavior-based High computational
Arp et al. (2024 123k
tp etal- ( ) (DREBIN) apps detection cost
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Ullah, F., & ML classifiers (RF, API calls dataset Accuracy up to | Limited robustness
Raza, A. (2020) | SVM, DT) 99% to evolving threats
Ensemble votin: Mixed Accurac above | Evaluated onl
Bakir (2024) VOUME | tatic/dynamic y ) Y
(VoteDroid) 97% voting ensembles
features
. . Focused on
Wang et al. Stacking ensemble | Android apps, Fl-score of 96% stackine. not
(2022) (MFDroid) balanced dataset ° 1ne, not
bagging/boosting
Hybrid ML AndMal fi D - ifi
Current Research ybrid n<.1 al dataset Qutper ormed at.ase‘F specific
ensemble variants single models validation only

The reviewed literature demonstrates that ensemble
methods deliver improved accuracy, precision, and
robustness compared to individual classifiers.
However, the lack of systematic comparisons across
different ensemble techniques on a common dataset
limits the ability to determine the most effective
strategy. This study addresses that gap by evaluating
bagging, boosting, and stacking ensembles alongside
individual classifiers on the same dataset, providing
a holistic assessment of their performance.

III. METHODOLOGY

This study employed an experimental design that
systematically built and evaluated machine-learning
models for Android malware detection. The
methodology consisted of four main stages: dataset
acquisition and characterization, preprocessing and

setup, model

evaluation.

development, and performance

3.1 Dataset and Materials

The experiments were conducted using the
Andmaldataset (sourced from Kaggle), which is
widely used in Android malware detection research
(Isaac et al.,, 2025). The dataset contains 3,292
Android applications, of which 1,745 (53.0%) are
benign and 1,547 (47.0%) are malware. Each
application is described by 328 attributes, including
327 integer-based static and behavioral features and
one categorical label (benign or malware).

The near-balanced class distribution minimizes the
risk of bias during model training, making it suitable
for machine learning experiments.

Table 2. Dataset Composition

Class Count Percentage
Benign 1,745 53.0%
Malware 1,547 47.0%
Malware vs. Benign Distribution
1750 4
1500 4
1250 A
= 1000 -
=
3
750
500 4
250 1
o

Benign

Malware
Class

Figure 1. Malware and Benign Distribution
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3.2 Data Preprocessing and Setup

To ensure reliable model training and evaluation, the

following preprocessing steps were performed:

1. Data Cleaning: Duplicate entries were removed,
and missing values were handled using
imputation techniques.

2. Label Encoding: The categorical target label was
converted into binary numeric values (0 =

benign, 1 = malware).

3. Feature Normalization: Feature values were
scaled to reduce the influence of outliers and
ensure consistency across classifiers

4. Feature Selection: Recursive Feature
Elimination (RFE) with Decision Tree was
applied to reduce the 327 features to the 20 most
relevant features. This step minimized
dimensionality, reduced noise, and enhanced
computational efficiency.

Selected Features: Index(['GET_TASKS', 'READ_PHONE_STATE', 'RECEIVE_BOOT_COMPLETED',

'Ljava/net/URL;->openConnection’,

'Landroid/location/LocationManager;->getLastKgoodwarewnLocation',

'android.permission.GET_ACCOUNTS',

'android.permission.READ_EXTERNAL_STORAGE',
'com.google.android.providers.gsf.permission.READ_GSERVICES',
'android.permission.WRITE_EXTERNAL_STORAGE',
'com.android.launcher.permission.INSTALL_SHORTCUT',

'android.permission.READ_PHONE_STATE',

'android.permission.ACCESS_WIFI_STATE',
'com.google.android.c2dm.permission.RECEIVE',
'android.permission.ACCESS_COARSE_LOCATION',

'com.android.vending.BILLING',

*android.permission.RECEIVE_BOOT_COMPLETED',

'android.permission.WAKE_LOCK',

'android.permission.ACCESS_FINE_LOCATION', 'android.permission.CAMERA',

‘android.permission.VIBRATE'],
dtype="object')

Figure 2: A feature importance plot or RFE ranking visualization.

3.3 Approach and Algorithm
The methodology involved two phases: baseline
classifier training and ensemble model integration.

Step1: Baseline Classifiers

Five supervised learning algorithms were trained on
the dataset:

e Random Forest (RF)

e  Support Vector Machine (SVM)

e  K-Nearest Neighbors (KNN)

e Logistic Regression (LR)

e Decision Tree (DT)

These algorithms were selected due to their proven

effectiveness in malware detection. The dataset will
be split into 80% training and 20% testing sets using
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stratified sampling to maintain class balance. hyper
parameter tuning was performed via 10-fold Cross-
Validation.

Step2: Ensemble Learning Methods

to improve robustness, three ensemble approaches

were employed:

e Bagging: Using Random Forest as the base
learner to aggregate multiple decision trees and
reduce variance.

e Boosting: Implemented with XGBoost, where
weak learners are sequentially improved by
focusing on misclassified samples.

e Stacking: Combining the five base classifiers
(RF, SVM, KNN, LR, and DT) with Logistic
Regression as a meta-learner.
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Figure 3: A workflow diagram showing the proposed model.

3.4 Evaluation Metrics

To ensure comprehensive assessment, the models

were evaluated using standard classification metrics,

shown as follows.

e Fl-score: Harmonic mean of precision and
recall.

e Area Under the ROC Curve (AUC): Ability of
the model to discriminate between benign and

e Accuracy: Overall

predictions.

proportion of correct malware applications.

e  Confusion Matrix: Provides detailed insight into
e Precision: Proportion of malware samples false positives and false negatives.
correctly classified among predicted malware.

e Recall (Sensitivity): Proportion of actual These metrics collectively ensure that the evaluation

malware samples correctly identified.

captures both detection power (recall) and reliability

(precision, AUC).

Tale 3.1 Description of evaluation metrics

Metric

Description

Formula

TP (True Positive)

Correctly predicted positive instances (e.g.,
correctly identified malware).

FP (False Positive) Incorrectly predicted positive instances (e.g.,
benign apps incorrectly classified as malware).

FN (False Negative) | Incorrectly predicted negative instances (e.g.,
malware apps misclassified as benign).

TN (True Negative) Correctly predicted negative instances (e.g.,

correctly identified benign apps).

Accuracy (o)

Percentage of correctly predicted instances (both
malware and benign) out of the total predictions.

a=(TP+TN) /(TP + TN +
FP + FN)

Precision (p)

Proportion of true positive predictions among all
predicted positives.

p=TP/(TP + FP)

Recall (1)

Proportion of true positive predictions among all
actual positives.

r=TP /(TP + FN)

F1 Score ()

Harmonic mean of precision and recall, balancing
false positives and false negatives.

n=2*@{E*r)/(p+r)
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3.5 Methodological Summary

Table 3.2 Methodology Overview

Stage Task

Tools/Techniques Used

Output

Obtain Andmaldataset

Dataset A isiti
ataset Acquisition (3,292 samples)

Kaggle

Raw dataset

Cleaning, encoding,

(XGBoost), Stacking

Preprocessing normalization, feature Scikit-learn, RFE 20 selected features
selection
. Train RF, SVM, KNN, o Classifi f
Baseline Models ram Scikit-learn, as§1 {et performance
LR, DT metrics
Bagging, Boosti o I d fi
Ensemble Models agelng, BOostng Scikit-learn, XGBoost fmproved. performance

results

Iv. RESULTS

This section presents the experimental results
obtained from both individual -classifiers and
ensemble methods applied to the Andmaldataset. The
outcomes are reported in terms of accuracy,
precision, recall, Fl1-score, and area under the ROC

curve (AUC), which are standard evaluation metrics
in malware detection studies.

4.1 Performance of Individual Classifiers

The five baseline classifiers were trained and
evaluated on the dataset using stratified 80/20 train-
test splitting and 10-fold cross-validation. Their
performance metrics are summarized in Table 4.

Table 4.2 Performance of Individual Classifiers

Model Accuracy Precision Recall Fl-score AUC

Random Forest (RF) 95.75% 96.86% 94.48% 95.65% 0.9918
Support Vector Machine (SVM) | 96.51% 97.20% 95.71% 96.45% 0.9903
K-Nearest Neighbors (KNN) 94.54% 95.89% 92.94% 94.39% 0.9821
Logistic Regression (LR) 95.90% 96.28% 95.40% 95.84% 0.9902
Decision Tree (DT) 94.69% 95.61% 93.56% 94.57% 0.9623

Random Forest

Tue label
Tue label

Predicted label

Decision Tree

Benign 350 Benign

Tue label
Tue label

Malware 150 Malware

Benign Malware
Predicted label

Benign

Predicted label

Logistic Regression

450

400

50

300

250

Tue label

200
Malware 150

100

Predicted label

Malware

Predicted label

Figure 4.1 Confusion matrices of individual classifiers.
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ROC Curves for Classification Models
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= KNN (AUC = 0.98)
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Figure 4.2 ROC curves comparing RF, SVM, KNN, LR, and DT.

e SVM achieved the highest accuracy (96.51%),

showing

consistent

malware and benign classes.
e Random Forest achieved the highest AUC
(0.9918), indicating excellent discriminative

generalization

across

08

10

e KNN and Decision Tree performed slightly

lower, suggesting sensitivity to noisy features

and dataset size.

4.2 Performance of Ensemble Models

The ensemble

learning methods

demonstrated
individual

power. improved performance compared to
classifiers. Results are summarized in Table 4.3
Table 4. Performance of Ensemble Models

E bl

l\/Ees‘[ 61::(1)1 d © Accuracy Precision Recall F1-score AUC

Bagging 96.36% 97.19% 95.40% 96.28% 0.9930
Boosting 98.51% 96.62% 96.32% 96.47% 0.9923
Stacking 96.05% 96.58% 95.40% 95.98% 0.9922

Confusion Matrices for Ensemble Methods
Bagging Boosting Stacking

Benign

Actual

Malware

Benign

IRE 1711462

- 300

- 250

- 200

-150

-100

Malware

Predicted

Benign

Actual

Malware

Benign

Malware
Predicted

Benign

Malware

Benign Malware
Predicted

Figure 4.3 Confusion matrices of Bagging, Boosting, and Stacking.
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ROC Curves for Ensemble Models
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Figure 4.4 ROC curves of ensemble models compared to the best individual classifiers.
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Boosting achieved the highest overall accuracy
(98.51%) and recall (96.32%), confirming its
strength in reducing false negatives.
Bagging yielded the highest AUC (0.9930),
indicating robust performance across different
classification thresholds.

e Stacking showed competitive results but did not

significantly outperform the other ensembles.

4.3 Comparative Insights

To highlight improvements, Table 5 compares the
best baseline classifier (SVM) with the best ensemble
method (Boosting).

Table 5. Best Baseline vs. Best Ensemble Performance

Model Accuracy | Precision | Recall F1-score AUC
SVM Best
Mo Best) g6sioe | 9700% | 95.71% | 96.45% 0.9903
Individual)
Boosting (Best
98.51% 96.62% 96.32% 96.47% 0.9923
Ensemble)
Observations: e The AUC improvement from 0.9903 (SVM) to
e Ensemble learning provided up to ~2% 0.9923 (Boosting) indicates
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improvement in accuracy over the best single

model.

Boosting reduced false negatives, which is

particularly important in malware detection
where undetected threats can cause severe

4.4 Benchmarking Against Prior Studies

marginal but
meaningful gains in class discrimination.

The findings of this study are compared with prior
works to contextualize their contribution. Table 6

damage. summarizes key outcomes.
Table 6. Comparative Results with Prior Studies
Study Method/Model | Dataset Accuracy/F1-score | Remarks
Limited
Ullah, F., & R o
a, = 8| RE , SVM, DT | API Calls 99% (Accuracy) generalization on
A. (2020) .
evolving threats
VoteDroid . Focused only on
Bakir (2024 M feat % (A
akir ( ) (Voting DL) ixed features | 97% (Accuracy) voting ensembles
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Strong
MFDroi f "
Wang et al. (2022) ( Staclz)rig) Balanced apps 96% (F1-score) Ezr ormance, bu
bagging/boosting
Current research Hybrid AndMal variant | 98% (Accuracy) Qutperformed
Ensemble single models

V. SUMMARY

In summary, this study provides strong evidence that
ensemble learning significantly improves Android
malware detection, with Boosting and Bagging
delivering the most promising results. These findings
are consistent with the broader literature while
providing new insights into the comparative
performance of ensemble strategies under a common
framework. The results reinforce the role of ensemble
methods as a foundation for future malware detection
research and practical deployment.

5.1 Conclusion

This study presented an ensemble-based machine-
learning framework for Android malware detection,
addressing the growing challenge posed by evolving
malware families in the Android ecosystem. Using
the Andmaldataset, we evaluated five baseline
classifiers Random Forest, Support Vector Machine
(SVM), K-Nearest Neighbors, Logistic Regression,
and Decision Treeand three ensemble methods:
Bagging, Boosting, and Stacking.

The results demonstrated that ensemble models
consistently outperformed individual classifiers
across all evaluation metrics. Among the baseline
models, SVM achieved the highest accuracy
(96.51%), while Random Forest recorded the
strongest discriminative ability with an AUC of
0.9918. However, Boosting surpassed all other
approaches, achieving the best overall performance
with 98.51% accuracy and 96.32% recall, while
Bagging attained the highest AUC (0.9930). These
findings confirm that ensemble learning is more
effective and robust than single classifiers for
Android malware detection.

The main contributions of this research are threefold:

1. Demonstration of feature selection using
Recursive Feature Elimination (RFE) to reduce
dimensionality and improve model efficiency.

2. A systematic comparative analysis of three
ensemble-learning methods Bagging, Boosting,
and Stacking on the same dataset.

IRE 1711462

3. Identification of Boosting and Bagging as the
most promising ensemble approaches for
Android malware detection.

Despite these contributions, the study has limitations
related to dataset specificity, static feature
dependence, and computational complexity of
advanced ensembles. Future work should focus on
integrating static and dynamic features, validating
models on larger and more diverse datasets, and
optimizing computational efficiency for real-time
deployment. Additionally, research into adversarial
robustness and deep ensemble learning could further
strengthen malware detection systems.

In conclusion, this study reinforces the potential of
ensemble machine learning methods as powerful
tools for Android malware detection. By enhancing
accuracy, recall, and generalization, ensemble
approaches offer a practical pathway toward securing
Android devices against the rapidly evolving threat
landscape.

5.2 Future Work

Future research should address these limitations by:

e Integrating dynamic features such as system
calls, network traffic, and runtime behavior with
static features to improve resilience against
obfuscation.

e Evaluating across multiple datasets, including
real-world malware repositories, to validate the
generalizability of ensemble approaches.

e Exploring deep ensemble learning, combining
convolutional neural networks or recurrent
models with boosting or stacking for enhanced
detection accuracy.

e Optimizing computational efficiency through
model compression, pruning, and federated
learning frameworks, enabling deployment on
mobile devices.

e Investigating adversarial robustness by testing
ensemble models against adversarial malware
designed to evade detection.
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