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Abstract- The rapid growth of the Android ecosystem has 

been accompanied by an alarming increase in 

sophisticated malware, including banking Trojans, 

spyware, and ransomware. Traditional signature-based 

detection techniques are insufficient against obfuscation 

and zero-day attacks, highlighting the urgent need for 

adaptive detection mechanisms. This study aims to 

develop and evaluate an ensemble-based machine-

learning model to enhance the detection of Android 

malware using the Andmaldataset. Recursive Feature 

Elimination (RFE) with a Decision Tree Classifier was 

employed to select the 20 most relevant features from the 

dataset. Five supervised classifiers Random Forest, 

Support Vector Machine (SVM), K-Nearest Neighbors 

(KNN), Logistic Regression, and Decision Tree were 

trained and evaluated. Additionally, three ensemble-

learning techniques (Bagging, Boosting, and Stacking) 

were implemented to improve robustness and reduce false 

negatives. Among individual classifiers, SVM achieved 

the highest accuracy of 96.51%, while Random Forest 

recorded the strongest AUC score (0.9918). Ensemble 

methods outperformed individual classifiers, with 

Boosting yielding the highest accuracy (98.51%) and 

recall (96.32%), and Bagging achieving the best AUC 

(0.9930). Stacking also demonstrated stable and 

competitive performance across all metrics. The results 

confirm that ensemble learning significantly improves 

Android malware detection over single classifiers. 

Boosting and Bagging emerged as particularly effective 

strategies, offering strong accuracy and robustness 

against evolving malware threats. 
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I. INTRODUCTION 

 

Android has emerged as the most widely used mobile 

operating system, powering billions of smartphones, 

tablets, and IoT devices. This widespread adoption 

has made it an attractive target for cybercriminals 

who deploy increasingly sophisticated malware to 

exploit system vulnerabilities. Malware attacks on 

Android devices have escalated in recent years, 

ranging from spyware and adware to banking trojans 

and ransomware, threatening both user privacy and 

financial security (Doctor Web, 2025). Unlike earlier 

generations of malware, modern variants use 

obfuscation, polymorphism, and zero-day exploits to 

evade detection, creating a fast-evolving threat 

landscape. This reality underscores the importance of 

developing robust, intelligent malware detection 

systems capable of adapting to new attack strategies. 

Traditional malware detection approaches, including 

signature-based and heuristic methods, rely heavily 

on known malware patterns and rule sets. These 

approaches often fail against new, obfuscated, or 

zero-day malware strains. While machine learning 

(ML) classifiers have emerged as effective tools in 

malware detection, individual models are often 

limited by dataset bias, feature redundancy, and 

reduced generalization ability. Therefore, a 

significant challenge lies in designing models that not 

only achieve high accuracy but also demonstrate 

robustness against diverse and evolving malware 

families. 

 

A growing body of research demonstrates the 

potential of machine learning and ensemble methods 

in Android malware detection. Yerima et al. (2020) 

highlighted the effectiveness of ensemble classifiers 

in static analysis, reporting accuracies as high as 

99%. Bakır (2024) developed VoteDroid, an 

ensemble model that integrated deep learning 

classifiers using a majority voting scheme, achieving 

more than 97% accuracy. Similarly, Wang et al. 

(2022) introduced MFDroid, a stacking-based 

ensemble framework that delivered an F1-score of 

96.0%, showing improved performance over single 

classifiers. Isaac et al. (2025) further explored hybrid 

ML techniques, confirming that ensemble strategies 

consistently outperform standalone models. While 

these works highlight the advantages of ensemble 

learning, most focus on a single ensemble technique 

or specific experimental setups, leaving open the 

question of how different ensemble strategies 
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compare when evaluated under the same conditions 

and dataset. 

 

This study aims to bridge this gap by designing and 

evaluating an ensemble-based machine-learning 

framework for Android malware detection. 

Specifically, the research investigates three ensemble 

methods bagging, boosting, and stacking and 

compares their performance with five baseline 

classifiers: Random Forest, Support Vector Machine 

(SVM), K-Nearest Neighbors (KNN), Logistic 

Regression, and Decision Tree. The evaluation is 

conducted using the Andmaldataset, which contains 

a balanced distribution of benign and malware 

samples. 

 

The remaining part of this paper is organized as 

follows: Section 2 reviews related literature in more 

detail. Section 3 presents the methodology, including 

dataset description, preprocessing, feature selection, 

and modeling approaches. Section 4 reports the 

experimental results and evaluates model 

performance. Section 5 discusses the implications, 

limitations, and potential future work, while Section 

6 concludes the paper. 

 

II. RELATED WORKS 

 

Android malware detection has been widely studied, 

with researchers exploring traditional static and 

dynamic analysis techniques as well as advanced 

machine learning and ensemble approaches. This 

section reviews relevant contributions, focusing on 

how ensemble-based strategies have evolved to 

address the limitations of single classifiers. 

 

Earlier detection systems primarily relied on 

signature-based scanning and heuristic methods. 

While effective against known threats, these 

approaches are inadequate for detecting obfuscated 

or zero-day malware Ullah, F., & Raza, A. (2020). 

Dynamic analysis techniques, which monitor 

application behavior during execution, offered 

greater resilience but introduced high computational 

costs and scalability concerns. Taha, A., & Barukab, 

O. (2022).  

 

The integration of machine learning (ML) into 

malware detection has enabled automated pattern 

recognition in application features. Random Forest, 

Support Vector Machines (SVM), and Decision 

Trees have been widely used due to their 

interpretability and effectiveness. For example, Saja, 

A., & Omar, Y. (2019). applied multiple classifiers 

on API calls and achieved detection accuracies up to 

99%. However, the reliance on single models often 

leads to performance instability when tested on 

diverse or adversarial samples. 

 

Recent works highlight ensemble methods as more 

robust alternatives. Bagging and boosting techniques 

improve classification stability by aggregating weak 

learners, while stacking integrates multiple base 

classifiers with a meta-learner to boost predictive 

power. Bakır (2024) proposed VoteDroid, which 

combines deep learning classifiers through majority 

voting, achieving accuracy above 97%. Similarly, 

Wang et al. (2022) developed MFDroid, a stacking 

ensemble model, and reported an F1-score of 96.0% 

using static and dynamic features. Isaac et al. (2025) 

further confirmed that ensemble learning consistently 

outperforms individual classifiers when applied to 

Android malware detection, particularly in reducing 

false negatives. While ensemble learning is 

recognized as a superior strategy, most studies focus 

on evaluating a single ensemble approach or a limited 

range of classifiers. There is limited comparative 

analysis of bagging, boosting, and stacking methods 

on the same dataset, making it difficult to assess their 

relative strengths. Furthermore, many prior works 

rely on imbalanced datasets, which may inflate 

performance metrics and reduce generalization to 

real-world conditions. 

 

Table 1. A summary of some of the review papers 

Study 
Approach/Model Dataset 

Characteristics 
Key Findings Limitations 

Zhou& Jiang 

(2022) 

Signature-based, 

static analysis 

Malware Genome 

Project 

Identified malware 

families via 

signatures 

Failed on zero-day 

and obfuscated 

malware 

Arp et al. (2024) 
Dynamic analysis 

(DREBIN) 
123k apps 

Behavior-based 

detection 

High computational 

cost 
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Ullah, F., & 

Raza, A. (2020) 

ML classifiers (RF, 

SVM, DT) 
API calls dataset 

Accuracy up to 

99% 

Limited robustness 

to evolving threats 

Bakır (2024) 
Ensemble voting 

(VoteDroid) 

Mixed 

static/dynamic 

features 

Accuracy above 

97% 

Evaluated only 

voting ensembles 

Wang et al. 

(2022) 

Stacking ensemble 

(MFDroid) 

Android apps, 

balanced dataset 
F1-score of 96% 

Focused on 

stacking, not 

bagging/boosting 

Current Research 
Hybrid ML 

ensemble 

AndMal dataset 

variants 

Outperformed 

single models 

Dataset-specific 

validation only 

 

The reviewed literature demonstrates that ensemble 

methods deliver improved accuracy, precision, and 

robustness compared to individual classifiers. 

However, the lack of systematic comparisons across 

different ensemble techniques on a common dataset 

limits the ability to determine the most effective 

strategy. This study addresses that gap by evaluating 

bagging, boosting, and stacking ensembles alongside 

individual classifiers on the same dataset, providing 

a holistic assessment of their performance. 

 

III. METHODOLOGY 

 

This study employed an experimental design that 

systematically built and evaluated machine-learning 

models for Android malware detection. The 

methodology consisted of four main stages: dataset 

acquisition and characterization, preprocessing and 

setup, model development, and performance 

evaluation. 

 

3.1 Dataset and Materials 

The experiments were conducted using the 

Andmaldataset (sourced from Kaggle), which is 

widely used in Android malware detection research 

(Isaac et al., 2025). The dataset contains 3,292 

Android applications, of which 1,745 (53.0%) are 

benign and 1,547 (47.0%) are malware. Each 

application is described by 328 attributes, including 

327 integer-based static and behavioral features and 

one categorical label (benign or malware). 

 

The near-balanced class distribution minimizes the 

risk of bias during model training, making it suitable 

for machine learning experiments. 

 

Table 2. Dataset Composition 

Class Count Percentage 

Benign 1,745 53.0% 

Malware 1,547 47.0% 

 

 
Figure 1. Malware and Benign Distribution 
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3.2 Data Preprocessing and Setup 

To ensure reliable model training and evaluation, the 

following preprocessing steps were performed: 

1. Data Cleaning: Duplicate entries were removed, 

and missing values were handled using 

imputation techniques. 

2. Label Encoding: The categorical target label was 

converted into binary numeric values (0 = 

benign, 1 = malware). 

3. Feature Normalization: Feature values were 

scaled to reduce the influence of outliers and 

ensure consistency across classifiers 

4. Feature Selection: Recursive Feature 

Elimination (RFE) with Decision Tree was 

applied to reduce the 327 features to the 20 most 

relevant features. This step minimized 

dimensionality, reduced noise, and enhanced 

computational efficiency. 

 

 
Figure 2: A feature importance plot or RFE ranking visualization. 

 

3.3 Approach and Algorithm 

The methodology involved two phases: baseline 

classifier training and ensemble model integration. 

 

Step1: Baseline Classifiers 

Five supervised learning algorithms were trained on 

the dataset: 

• Random Forest (RF) 

• Support Vector Machine (SVM) 

• K-Nearest Neighbors (KNN) 

• Logistic Regression (LR) 

• Decision Tree (DT) 

 

These algorithms were selected due to their proven 

effectiveness in malware detection. The dataset will 

be split into 80% training and 20% testing sets using 

stratified sampling to maintain class balance. hyper 

parameter tuning was performed via 10-fold Cross-

Validation. 

 

Step2: Ensemble Learning Methods 

to improve robustness, three ensemble approaches 

were employed: 

• Bagging: Using Random Forest as the base 

learner to aggregate multiple decision trees and 

reduce variance. 

• Boosting: Implemented with XGBoost, where 

weak learners are sequentially improved by 

focusing on misclassified samples. 

• Stacking: Combining the five base classifiers 

(RF, SVM, KNN, LR, and DT) with Logistic 

Regression as a meta-learner. 
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Figure 3: A workflow diagram showing the proposed model. 

 

3.4 Evaluation Metrics 

To ensure comprehensive assessment, the models 

were evaluated using standard classification metrics, 

shown as follows. 

• Accuracy: Overall proportion of correct 

predictions. 

• Precision: Proportion of malware samples 

correctly classified among predicted malware. 

• Recall (Sensitivity): Proportion of actual 

malware samples correctly identified. 

• F1-score: Harmonic mean of precision and 

recall. 

• Area Under the ROC Curve (AUC): Ability of 

the model to discriminate between benign and 

malware applications. 

• Confusion Matrix: Provides detailed insight into 

false positives and false negatives. 

 

These metrics collectively ensure that the evaluation 

captures both detection power (recall) and reliability 

(precision, AUC). 

 

Tale 3.1 Description of evaluation metrics 

Metric Description Formula 

TP (True Positive) Correctly predicted positive instances (e.g., 

correctly identified malware). 

 

FP (False Positive) Incorrectly predicted positive instances (e.g., 

benign apps incorrectly classified as malware). 

 

FN (False Negative) Incorrectly predicted negative instances (e.g., 

malware apps misclassified as benign). 

 

TN (True Negative) Correctly predicted negative instances (e.g., 

correctly identified benign apps). 

 

Accuracy (α) Percentage of correctly predicted instances (both 

malware and benign) out of the total predictions. 

α = (TP + TN) / (TP + TN + 

FP + FN) 

Precision (ρ) Proportion of true positive predictions among all 

predicted positives. 

ρ = TP / (TP + FP) 

Recall (r) Proportion of true positive predictions among all 

actual positives. 

  

r = TP / (TP + FN) 

F1 Score (η) Harmonic mean of precision and recall, balancing 

false positives and false negatives. 

η = 2 * (ρ * r) / (ρ + r) 
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3.5 Methodological Summary 

Table 3.2 Methodology Overview 

Stage Task Tools/Techniques Used Output 

Dataset Acquisition 
Obtain Andmaldataset 

(3,292 samples) 
Kaggle Raw dataset 

Preprocessing 

Cleaning, encoding, 

normalization, feature 

selection 

Scikit-learn, RFE 20 selected features 

Baseline Models 
Train RF, SVM, KNN, 

LR, DT 
Scikit-learn,  

Classifier performance 

metrics 

Ensemble Models 
Bagging, Boosting 

(XGBoost), Stacking 
Scikit-learn, XGBoost 

Improved performance 

results 

 

IV. RESULTS 

 

This section presents the experimental results 

obtained from both individual classifiers and 

ensemble methods applied to the Andmaldataset. The 

outcomes are reported in terms of accuracy, 

precision, recall, F1-score, and area under the ROC 

curve (AUC), which are standard evaluation metrics 

in malware detection studies. 

 

4.1 Performance of Individual Classifiers 

The five baseline classifiers were trained and 

evaluated on the dataset using stratified 80/20 train-

test splitting and 10-fold cross-validation. Their 

performance metrics are summarized in Table 4. 

 

Table 4.2 Performance of Individual Classifiers 

Model Accuracy Precision Recall F1-score AUC 

Random Forest (RF) 95.75% 96.86% 94.48% 95.65% 0.9918 

Support Vector Machine (SVM) 96.51% 97.20% 95.71% 96.45% 0.9903 

K-Nearest Neighbors (KNN) 94.54% 95.89% 92.94% 94.39% 0.9821 

Logistic Regression (LR) 95.90% 96.28% 95.40% 95.84% 0.9902 

Decision Tree (DT) 94.69% 95.61% 93.56% 94.57% 0.9623 

 

 
Figure 4.1 Confusion matrices of individual classifiers. 
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Figure 4.2 ROC curves comparing RF, SVM, KNN, LR, and DT. 

 

Trends: 

• SVM achieved the highest accuracy (96.51%), 

showing consistent generalization across 

malware and benign classes. 

• Random Forest achieved the highest AUC 

(0.9918), indicating excellent discriminative 

power. 

• KNN and Decision Tree performed slightly 

lower, suggesting sensitivity to noisy features 

and dataset size. 

 

4.2 Performance of Ensemble Models 

The ensemble learning methods demonstrated 

improved performance compared to individual 

classifiers. Results are summarized in Table 4.3 

 

Table 4. Performance of Ensemble Models 

Ensemble 

Method 
Accuracy Precision Recall F1-score AUC 

Bagging 96.36% 97.19% 95.40% 96.28% 0.9930 

Boosting 98.51% 96.62% 96.32% 96.47% 0.9923 

Stacking 96.05% 96.58% 95.40% 95.98% 0.9922 

 

 
Figure 4.3 Confusion matrices of Bagging, Boosting, and Stacking. 



© OCT 2025 | IRE Journals | Volume 9 Issue 4 | ISSN: 2456-8880 

IRE 1711462      ICONIC RESEARCH AND ENGINEERING JOURNALS          1214 

 
Figure 4.4 ROC curves of ensemble models compared to the best individual classifiers. 

 

Trends: 

• Boosting achieved the highest overall accuracy 

(98.51%) and recall (96.32%), confirming its 

strength in reducing false negatives. 

• Bagging yielded the highest AUC (0.9930), 

indicating robust performance across different 

classification thresholds. 

• Stacking showed competitive results but did not 

significantly outperform the other ensembles. 

 

4.3 Comparative Insights 

To highlight improvements, Table 5 compares the 

best baseline classifier (SVM) with the best ensemble 

method (Boosting). 

 

Table 5. Best Baseline vs. Best Ensemble Performance 

Model Accuracy Precision Recall F1-score AUC 

SVM (Best 

Individual) 
96.51% 97.20% 95.71% 96.45% 0.9903 

Boosting (Best 

Ensemble) 
98.51% 96.62% 96.32% 96.47% 0.9923 

 

Observations: 

• Ensemble learning provided up to ~2% 

improvement in accuracy over the best single 

model. 

• Boosting reduced false negatives, which is 

particularly important in malware detection 

where undetected threats can cause severe 

damage. 

• The AUC improvement from 0.9903 (SVM) to 

0.9923 (Boosting) indicates marginal but 

meaningful gains in class discrimination. 

 

4.4 Benchmarking Against Prior Studies 

The findings of this study are compared with prior 

works to contextualize their contribution. Table 6 

summarizes key outcomes. 

 

Table 6. Comparative Results with Prior Studies 

Study Method/Model Dataset Accuracy/F1-score Remarks 

Ullah, F., & Raza, 

A. (2020) 
RF, SVM, DT API Calls 99% (Accuracy) 

Limited 

generalization on 

evolving threats 

Bakır (2024) 
VoteDroid 

(Voting DL) 
Mixed features 97% (Accuracy) 

Focused only on 

voting ensembles 
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Wang et al. (2022) 
MFDroid 

(Stacking) 
Balanced apps 96% (F1-score) 

Strong 

performance, but 

no 

bagging/boosting 

Current research 
Hybrid 

Ensemble 
AndMal variant 98% (Accuracy) 

Outperformed 

single models 

 

V. SUMMARY 

 

In summary, this study provides strong evidence that 

ensemble learning significantly improves Android 

malware detection, with Boosting and Bagging 

delivering the most promising results. These findings 

are consistent with the broader literature while 

providing new insights into the comparative 

performance of ensemble strategies under a common 

framework. The results reinforce the role of ensemble 

methods as a foundation for future malware detection 

research and practical deployment. 

 

5.1 Conclusion 

This study presented an ensemble-based machine-

learning framework for Android malware detection, 

addressing the growing challenge posed by evolving 

malware families in the Android ecosystem. Using 

the Andmaldataset, we evaluated five baseline 

classifiers Random Forest, Support Vector Machine 

(SVM), K-Nearest Neighbors, Logistic Regression, 

and Decision Treeand three ensemble methods: 

Bagging, Boosting, and Stacking. 

 

The results demonstrated that ensemble models 

consistently outperformed individual classifiers 

across all evaluation metrics. Among the baseline 

models, SVM achieved the highest accuracy 

(96.51%), while Random Forest recorded the 

strongest discriminative ability with an AUC of 

0.9918. However, Boosting surpassed all other 

approaches, achieving the best overall performance 

with 98.51% accuracy and 96.32% recall, while 

Bagging attained the highest AUC (0.9930). These 

findings confirm that ensemble learning is more 

effective and robust than single classifiers for 

Android malware detection. 

 

The main contributions of this research are threefold: 

1. Demonstration of feature selection using 

Recursive Feature Elimination (RFE) to reduce 

dimensionality and improve model efficiency. 

2. A systematic comparative analysis of three 

ensemble-learning methods Bagging, Boosting, 

and Stacking on the same dataset. 

3. Identification of Boosting and Bagging as the 

most promising ensemble approaches for 

Android malware detection. 

 

Despite these contributions, the study has limitations 

related to dataset specificity, static feature 

dependence, and computational complexity of 

advanced ensembles. Future work should focus on 

integrating static and dynamic features, validating 

models on larger and more diverse datasets, and 

optimizing computational efficiency for real-time 

deployment. Additionally, research into adversarial 

robustness and deep ensemble learning could further 

strengthen malware detection systems. 

 

In conclusion, this study reinforces the potential of 

ensemble machine learning methods as powerful 

tools for Android malware detection. By enhancing 

accuracy, recall, and generalization, ensemble 

approaches offer a practical pathway toward securing 

Android devices against the rapidly evolving threat 

landscape. 

 

5.2 Future Work 

Future research should address these limitations by: 

• Integrating dynamic features such as system 

calls, network traffic, and runtime behavior with 

static features to improve resilience against 

obfuscation. 

• Evaluating across multiple datasets, including 

real-world malware repositories, to validate the 

generalizability of ensemble approaches. 

• Exploring deep ensemble learning, combining 

convolutional neural networks or recurrent 

models with boosting or stacking for enhanced 

detection accuracy. 

• Optimizing computational efficiency through 

model compression, pruning, and federated 

learning frameworks, enabling deployment on 

mobile devices. 

• Investigating adversarial robustness by testing 

ensemble models against adversarial malware 

designed to evade detection. 
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