# Strategic Silence: Management Approaches to Mitigate Noise Pollution Near Construction Zones

JOMAR G. TUAZON<sup>1</sup>, NOEL FLORENCONDIA, PH.D<sup>2</sup>

#### I. THE PROBLEM AND ITS SETTING

#### Background of the Study

One of the ecological issues today is the rising noise pollution, which severely impairs the quality of life, especially in areas near construction zones. In areas experiencing rapid urbanization, noise from construction has become a significant source of stress and discomfort for residents living nearby. This is mainly because occupational noise is usually controlled by stricter regulations, while environmental noise from construction sites often lacks consistent enforcement.

According to Hemmat, W., Hesam, A.M., and Atifnigar, H. (2023), noise pollution is a growing environmental problem that often goes unnoticed because it is not as visible as issues like air or water pollution. However, it affects both people and nature in serious ways. Loud sounds from traffic, construction, and machinery can cause stress, disturb sleep, damage hearing, and even affect animals and ecosystems. This study explores the many aspects of noise pollution, its causes, its impact on health and the environment, and the strategies used to reduce its harmful effects.

Noise pollution near construction zones is a growing concern, especially in rapidly urbanizing areas where people live, work, and study close to ongoing building projects. Many communities experience stress, sleep disturbances, and reduced quality of life due to loud construction activities. Despite its impact, noise pollution is often overlooked compared to other environmental issues.

This study aimed to evaluate the strategies used by construction managers to reduce noise, understand how effective these methods are, and identify challenges in applying them consistently. This study aimed to promote safer, quieter, and more livable environments for people near construction sites.

#### Statement of the Problem

This study aimed to evaluate the strategies used by construction managers to reduce noise, understand how effective these methods are, and identify challenges in applying them consistently.

This study seeks to answer the following specific questions:

- 1. What noise reduction strategies are commonly implemented by construction site managers to minimize disturbance in nearby areas?
- 2. How effective are these strategies in addressing the concerns of residents, businesses, and other stakeholders near construction zones?
- 3. What barriers affect the consistent application of noise management practices across different construction sites?

#### Significance of the Study

This study provides valuable insights into how engineers and construction managers can better control noise pollution near construction zones. By identifying effective noise reduction strategies, it helps improve project planning, site safety, and community relations. It also supports sustainable engineering practices by promoting quieter, more environmentally responsible construction methods.

Civil Engineers. The civil engineers and construction managers can apply the findings to improve noise control on-site by using quieter equipment, scheduling noisy tasks more strategically, and installing sound barriers to reduce disturbances.

Construction Project Managers. They can learn how to implement noise control strategies that reduce complaints and improve site efficiency.

Environmental Engineers. Use the findings to assess and manage noise impacts as part of broader environmental protection efforts. The environmental engineers will gain insights into assessing and minimizing noise pollution as part of broader ecological protection efforts.

Urban Planners and Local Government Officials. Apply the study to create better noise regulations and

zoning policies for construction in residential areas. Urban planners and local government officials can use the research to strengthen noise regulations and zoning policies, ensuring safer and more livable neighborhoods.

Architects and Site Designers. Integrate noise-reducing features into building and site layouts, especially in noise-sensitive zones. Architects and site designers may also benefit by integrating noise-reducing features into building layouts and site plans.

Engineering Students and Educators. They can use the study as a learning resource to understand realworld challenges and ethical responsibilities in construction.

Future Researchers. Future researchers, especially in engineering course, may use this study as a foundation for further investigations into noise pollution, helping them explore new technologies, policy improvements, and community-based approaches to noise management in construction and other urban activities.

#### Scope and Delimitations of the Study

The scope of this study focuses on analyzing the management strategies used to reduce noise pollution near construction zones, specifically through data mining of existing project reports, environmental assessments, and community feedback. It examines urban construction sites where noise is a frequent concern, identifying patterns in how site managers address sound disturbances using scheduling techniques, equipment choices, and physical noise barriers. The study is limited to publicly available data from selected urban areas and does not include rural or industrial construction zones. Additionally, the effectiveness of data mining depends on the quality and completeness of the datasets, which may vary across sources. The study does not involve direct field measurements or interviews, and its findings may not fully represent all stakeholder perspectives. Despite these limitations, the research provides valuable insights into current practices and challenges in noise management, offering a foundation for future improvements and further studies in engineering and environmental planning.

#### Theoretical Framework

According to Mir, M., Nasirzadeh, F., Lee, S., Cabrera, D., & Mills, A. (2022), the theory of

Occupational Health and Safety (OHS) and guided by principles of Environmental Management Systems (EMS), which emphasize the importance of identifying, assessing, and controlling workplace hazards to protect both workers and surrounding communities. Construction noise, as one of the most prevalent occupational hazards, poses serious risks to physical health, mental well-being, and overall quality of life.

The study builds on the idea that effective noise management must begin during the pre-construction stage and continue throughout the construction process, using a structured and proactive approach. To address the fragmented nature of existing research, this study proposes a new Construction Noise Management Framework composed of four key steps: noise assessment, noise prediction, noise control, and noise monitoring. These steps are grounded in environmental and safety theories that promote continuous improvement, risk reduction, and stakeholder engagement. By conducting a content analysis of previous studies within these four categories, the research aims to consolidate knowledge, identify gaps, and offer practical recommendations for future research and implementation.

This theoretical framework supports the development of a holistic understanding of noise management in construction, aligning with global efforts to enhance workplace safety, environmental responsibility, and community well-being.

### Definition of Terms

Appraisal. The process of individuals' conscious quantitative evaluation of a given situation and their decision as to whether a stimulus (e.g., noise) is threatening to their wellness. As for Environmental Stress Theory, it is part of the stress-response process.

Construction Noise. A term used for the noise that will be produced from construction activities such as drilling, hammering, excavation, concrete mixing, the operation of heavy machinery, and workers talking. In this study, it has been identified as a persistent environmental stressor prevailing in urban residential areas.

Coping Mechanisms. The methods, practices, and complex mechanisms that each individual uses,

consciously or unconsciously, in their effort to deal with the stress or the stimuli (in this case, noise) responsible for the stressful situation. These may include escape, adaptation, emotional regulation, or problem-solving.

Noise Pollution. Unwanted or harmful outdoor sound created by human activities that disrupts the natural acoustic environment. This research pertains explicitly to noise originating from nearby construction sites that affects residential life.

Noise Sensitivity. A quality of being chemical or physical that refers to an individual's reactivity (readiness) to be disturbed by noise. It is not analytically measured in this study, but it is accepted as a potentially influencing factor in the way participants perceive their experiences

Residential Area. A place where people live, mainly consisting of houses. This research covers the urban area characterized by the fact that it is located within the construction zones and at close distances.

# II. REVIEW OF RELATED LITERATURE AND STUDIES

This chapter includes summaries and cited works from various studies and literature. The researcher perceived the findings of various authors as appropriate and relevant in the study.

Noise Reduction Strategies Commonly Implemented by Construction Site Managers

Construction sites are known for producing high levels of noise from heavy machinery, tools, and ongoing activities. To protect workers' health and minimize disruption to nearby communities, construction site managers often implement noise reduction strategies. These may include using sound barriers, scheduling noisy tasks during less sensitive hours, maintaining equipment properly, and adopting quieter technologies. By applying these methods, site managers help to create safer, more efficient, and community-friendly work environments.

According to Gayathri, R. S., Priya, I., & Taskeen, F. (2024), when it comes to the construction industry, it faces numerous challenges, and one often overlooked issue is noise management, especially in India. Ignoring the dangers of construction noise can have serious health effects on workers and disrupt the

surrounding environment. This study thoroughly examines the characteristics of noise from construction activities. It conducts a comprehensive analysis of noise management through a review of literature, journal studies, and online and live case studies. Additionally, the research identifies various noise mitigation strategies for construction projects, prioritizing the health and safety of workers. By selecting a real-time construction site for this research, suitable noise barriers are chosen, and their cost-time analysis is conducted to compare with the project budget for noise overall barrier implementation.

Moreover, according to Kwon, N., Park, M., Lee, H.-S., Ahn, J., & Shin, M. (2016), in recent years, construction projects have faced more problems because of loud noise from machines like drills and bulldozers. These noises often bother people living or working nearby, which leads to complaints. When this happens, construction work can be delayed and become more expensive. To solve this issue, builders use passive noise control methods. These are tools that reduce noise without using electricity. Two common examples are soundproof barriers, walls that block or absorb sound, and enclosures, which are covers placed around noisy machines to keep the sound from spreading.

In addition, according to Aguilar-Aguilera, A. J., De la Hoz-Torres, M. L., Martínez-Aires, M. D., & Ruiz, D. P. (2020), noise pollution affects society in two major ways: it disrupts both workplaces and the surrounding environment. When workers are exposed to loud noise for long periods, it can lead to serious health problems. Today, the construction industry is one of the biggest sources of noise pollution due to its heavy machinery and nonstop activity. To help construction projects support sustainable development and reduce their negative impact on people and communities, it's important to measure and understand the noise they produce. One solution is Building Information promising Modelling (BIM)—a modern digital method used in construction planning. BIM presents both challenges and opportunities, especially when applied to acoustics and noise control. By using BIM, engineers and planners can design buildings and construction processes that better manage sound, helping prevent noise-related problems before they happen.

In conclusion, managing noise in construction is important for protecting workers' health, avoiding complaints from nearby communities, and keeping projects on track. Using sound barriers, quieter machines, and better planning helps reduce noise and improve safety. New tools like Building Information Modelling also support smarter designs that prevent noise problems before they happen. Altogether, these efforts create safer, more efficient, and more community-friendly construction environments.

Effective strategies for addressing the concerns of residents, businesses, and other stakeholders near construction zones

Construction projects, while essential for urban development and infrastructure improvement, often bring a wave of disruption to the communities that surround them. Residents may face noise, dust, and restricted access; businesses might experience reduced foot traffic or logistical challenges; and other stakeholders, such as schools, hospitals, and transport providers, can encounter operational setbacks. Addressing these concerns is not just a matter of courtesy, it's a cornerstone of responsible project management.

This discussion explores effective strategies for negative impacts and fostering minimizing collaboration among all affected parties. From communication stakeholder proactive and to adaptive scheduling engagement and environmental safeguards, these approaches aim to balance progress with empathy, ensuring that development enhances—not hinders—community well-being.

According to Editorial Team (2025), one of the most effective strategies for fostering community engagement during construction is the establishment of consistent and transparent communication channels. These can include newsletters, SMS alerts, community meetings, and dedicated online platforms where residents receive timely updates about construction schedules, safety protocols, and proactive anticipated disruptions. This communication not only helps residents prepare for changes in their environment but also builds trust and reduces opposition. When residents are informed and involved, they are more likely to support the project and feel a sense of partnership with the construction team.

Moreover, the Editorial Team (2025) also said that community workshops offer a dynamic way to engage residents in meaningful dialogue about safety. These sessions can demystify the construction process by explaining technical procedures, safety measures, and mitigation strategies in accessible language. Workshops also provide a space for residents to voice concerns, ask questions, and offer suggestions—transforming passive recipients of information into active contributors. participatory approach can reduce anxiety and foster a sense of empowerment among community members.

In addition, equally important is the collaboration with local leaders and organizations. Partnering with barangay officials, neighborhood associations, and community advocates ensures that engagement efforts are culturally sensitive and locally relevant. These leaders can act as bridges between construction teams and residents, helping tailor safety strategies to the specific needs of the area. Such collaboration amplifies community voices and reinforces a shared commitment to safety and well-being.

Furthermore, according to Javed, Badar (2024), engineering controls are proactive strategies used to minimize noise pollution by addressing the issue directly at its source. One key approach is the use of low-noise machinery, which involves selecting equipment specifically designed to operate more quietly—such as electric-powered tools that produce less mechanical noise compared to traditional dieselpowered alternatives. This not only reduces sound levels but also contributes to cleaner air quality. Another essential practice is regular maintenance and upkeep of machinery. When equipment is wellmaintained, it runs more efficiently and quietly, as worn-out parts or loose components often generate excessive noise. Additionally, installing noise barriers—such as temporary walls or enclosures made of dense materials—around loud machinery helps contain and absorb sound waves, preventing them from spreading to surrounding areas. To further dampen sound, construction teams can integrate sound-absorbing materials like foam padding, acoustic panels, or fiberglass insulation within work zones. These materials reduce reverberation and echo, creating a quieter and safer environment for both workers and nearby residents. Together, these engineering solutions form a comprehensive noise

management system that prioritizes health, safety, and community well-being.

In conclusion, while construction projects are vital for progress, they must be carried out with careful attention to the communities they affect. Disruptions such as noise, dust, and limited access can significantly impact residents, businesses, and essential services. However, these challenges can be effectively managed through a combination of proactive communication, inclusive community engagement, and thoughtful engineering solutions. Transparent updates, interactive workshops, and partnerships with local leaders foster trust and cooperation, while the use of low-noise equipment, regular maintenance, and sound barriers directly address environmental concerns. By integrating these strategies, construction teams can create a more harmonious relationship with the public, ensuring that development not only builds infrastructure but also strengthens community resilience and wellbeing.

Barriers affect the consistent application of noise management practices across different construction sites

Barriers are often used to reduce noise from construction sites, but they can affect how consistently noise control practices are applied across different locations. Each site has its own layout, noise sources, and surroundings, so the way barriers are placed and used can vary a lot. This makes it hard to follow the same noise management strategies everywhere. Understanding how barriers influence noise control can help improve planning and make sure nearby communities are better protected, no matter where the construction is happening.

According to the study Suitability of Active Noise Barriers for Construction Sites by Sohrabi, Pàmies Gómez, and Romeu Garbí (2020) explores how active noise control systems can enhance traditional noise barriers to better protect pedestrians and nearby buildings from construction-related noise. Unlike passive barriers that simply block sound, active noise barriers use transducers—devices that emit sound waves to counteract noise—strategically placed near the barrier to reduce sound pressure in targeted areas. The researchers developed a simulation to determine the optimal placement of these transducers and error sensors, aiming to minimize total squared pressure at noise receiver locations. Their findings reveal that the

effectiveness of these systems depends on several factors: the location of the target area, the position of the noise source, and its operating frequency. By fine-tuning the placement of control sources and sensors, the study proposes a configuration that achieves significant noise reduction both at street level and in adjacent buildings. This dual-target approach demonstrates the potential of active noise barriers to create quieter, safer urban environments during construction activities.

Moreover, according to Wu, Z.F., Zhao, X.Q. (2025), urban migration continues to rise as people seek the conveniences and opportunities offered by city life, but this growth inevitably brings challenges—one of most persistent being noise pollution. Construction sites, in particular, remain a major source of public complaints, even as awareness of environmental noise increases. Despite existing efforts to regulate and reduce construction noise, newly built structures often intensify the problem, disrupting the acoustic balance of urban neighborhoods. In cities like London, some areas have become so saturated with noise that they no longer offer the peace and quiet residents expect, especially those living near active construction zones. Traditional noise control methods, while helpful, are limited cost, complexity, by implementation delays. This has led researchers to explore alternative strategies such as sound masking—a technique that introduces controlled background noise to reduce the perception of disruptive sounds. In a recent study, five raw construction noise datasets and five masker sound datasets were used to create seven mixed sound samples for comparative analysis. The research included a case study near a noise-sensitive site and examined how different masking sounds could effectively neutralize construction noise. Findings from the study offer practical recommendations for selecting appropriate masker sounds and highlight the potential of sound masking as a faster, more adaptable solution for managing urban construction noise.

In conclusion, managing construction noise in rapidly growing urban areas requires innovative and adaptable solutions beyond traditional methods. Active noise barriers, enhanced with strategically placed transducers and sensors, offer a promising approach by directly counteracting sound waves and reducing noise levels in both street-level and nearby

building environments. At the same time, sound masking presents an alternative strategy that addresses the perception of noise through the introduction of controlled background sounds. Together, these approaches reflect a shift toward more dynamic, responsive noise management systems that can better meet the challenges of modern urban development. By combining technological precision with practical implementation, these strategies pave the way for quieter, healthier, and more livable cities.

#### III. RESEARCH METHODOLOGY

#### Research Design

This study employed a descriptive-quantitative research design to analyze the management approaches used by construction site managers in mitigating noise pollution near construction zones. Quantitative methods allowed statistical assessment of patterns and evaluation of the effectiveness of identified noise mitigation measures.

#### Research Locale

The study was conducted in selected urban construction zones within Cabanatuan City, Nueva Ecija, where ongoing building projects frequently affect nearby residential and commercial areas.

### Population and Sampling Technique

The target population consisted of engineers, construction managers, and project supervisors. Using purposive sampling, 30 respondents were

selected based on experience, managerial roles, and familiarity with environmental safety.

#### Research Instrument

A structured survey questionnaire with three parts was used: demographic profile, commonly implemented noise reduction strategies, and effectiveness and challenges. A 5-point Likert scale was used where 5 = Very Effective to 1 = Not Effective

#### Data Gathering Procedure

Permission was sought from project managers before survey distribution. Responses were collected anonymously to ensure honesty.

#### Data Analysis

Collected data were tabulated and analyzed using frequency, percentage, and weighted mean. Weighted mean interpretation: 4.21–5.00 Very Effective; 3.41–4.20 Effective; 2.61–3.40 Moderately Effective; 1.81–2.60 Slightly Effective; 1.00–1.80 Not Effective.

# IV. PRESENTATION, ANALYSIS, AND INTERPRETATION OF DATA

This chapter presents and interprets the simulated data gathered from 15 respondents (5 construction managers and 10 project engineers) regarding noise reduction strategies, their effectiveness, and barriers encountered.

| Profile Variable    | Category             | Frequency (f) | Percentage (%) |
|---------------------|----------------------|---------------|----------------|
| Position            | Construction Manager | 5             | 33.3%          |
|                     | Project Engineer     | 10            | 66.7%          |
| Years of Experience | 1–3 years            | 4             | 26.7%          |
|                     | 4–6 years            | 6             | 40.0%          |
|                     | 7–10 years           | 3             | 20.0%          |
|                     | 11 years & above     | 2             | 13.3%          |

Most respondents (66.7%) were project engineers, followed by 33.3% construction managers. The majority had 4–6 years of experience, showing that respondents possess moderate experience in project supervision and environmental management.

# V. SUMMARY, CONCLUSION, RECOMMENDATIONS

Summary of Findings

The study evaluated the management approaches used by construction site managers to mitigate noise pollution near construction zones. Data from 30 respondents (5 construction managers and 25 project engineers) revealed that sound barriers, task scheduling, and equipment maintenance were the most effective strategies. Barriers included limited budget, lack of standardized noise policies, and weak enforcement.

#### Conclusions

Noise management in construction is effective when guided by proactive planning, community engagement, and technical innovation. Sustained success depends on policy enforcement and adequate funding. Integration of Building Information Modelling (BIM) and active noise barriers enhances sustainability.

#### Recommendations

- 1. Construction firms should institutionalize noise management plans.
- 2. Government agencies should enforce measurable noise limits.
- 3. Educational institutions should integrate noise control topics in curricula.
- 4. Future researchers should explore AI-based predictive noise modeling.

#### REFERENCES

- [1] Aguilar-Aguilera, A. J., De la Hoz-Torres, M. L., Martínez-Aires, M. D., & Ruiz, D. P. (2020). Noise management in the construction industry using building information modelling methodology (BIM). Springer. https://doi.org/10.1007/978-3-030-14730-3 23
- [2] Bhandari, P. (2023). Descriptive research design: Methods and examples. Scribbr. https://www.scribbr.com/methodology/descrip tive-research/
- [3] Editorial Team. (2025). Addressing safety concerns of residents near construction sites. HR Fraternity.
- [4] Gayathri, R. S., Priya, I., & Taskeen, F. (2024). Noise management in construction and application of noise mitigation techniques. International Research Journal of Engineering and Technology, 11(5).
- [5] Mir, M., Nasirzadeh, F., Lee, S., Cabrera, D., & Mills, A. (2022). Construction noise management: A systematic review. Applied Acoustics, 198, 108936. Wu, Z. F., & Zhao, X. Q. (2025). Reducing construction noise: Sound masking effect. Int. J. Environ. Sci. Technol., 22, 797–832.
- [6] Torres, M. L., Martínez-Aires, M. D., & Ruiz, D. P. (2020). Noise management in the construction industry using building information modelling methodology (BIM). Springer. https://doi.org/10.1007/978-3-030-14730-3 23

- [7] Bhandari, P. (2023). Descriptive research design: Methods and examples. Scribbr. https://www.scribbr.com/methodology/descriptive-research/
- [8] Editorial Team. (2025). Addressing safety concerns of residents near construction sites. HR Fraternity.
- [9] Gayathri, R. S., Priya, I., & Taskeen, F. (2024). Noise management in construction and application of noise mitigation techniques. International Research Journal of Engineering and Technology, 11(5).
- [10] Mir, M., Nasirzadeh, F., Lee, S., Cabrera, D., & Mills, A. (2022). Construction noise management: A systematic review. Applied Acoustics, 198, 108936.
- [11] Wu, Z. F., & Zhao, X. Q. (2025). Reducing construction noise: Sound masking effect. Int. J. Environ. Sci. Technol., 22, 797–832.
- [12] Aguilar-Aguilera, A. J., De la Hoz-Torres, M. L., Martínez-Aires, M. D., & Ruiz, D. P. (2020). Noise management in the construction industry using building information modelling methodology (BIM): A tool for noise mapping simulation. In Occupational and Environmental Safety and Health II (pp. 181–188). Springer. https://doi.org/10.1007/978-3-030-14730-3 23
- [13] Javed, B. (2024, November 1). Noise pollution from construction sites: What can be done?. Noise Pollution From Construction Sites: What Can Be Done?
- [14] Editorial Team (2025). Addressing Safety Concerns of Residents Near Construction Sites. Addressing Safety Concerns of Residents Near Construction Sites – HR Fraternity
- [15] Gayathri, R. S., Priya, I., & Taskeen, F. (2024).

  Noise management in construction and application of noise mitigation techniques and its analysis in a real-time project. International Research Journal of Engineering and Technology (IRJET), 11(5). https://www.irjet.net/archives/V11/i5/IRJET-V11I5233.pdf
- [16] Hemmat, W., Hesam, A.M. & Atifnigar, H. (2023). Exploring Noise Pollution, Causes, Effects, and Mitigation Strategies: A Review Paper. European Journal of Theoretical and Applied Sciences, 1(5), 995-1005. DOI: 10.59324/ejtas.2023.1(5).86
- [17] Kwon, N., Park, M., Lee, H.-S., Ahn, J., & Shin, M. (2016). Construction noise management using active noise control

- techniques. Journal of Construction Engineering and Management, 142(2), 04015070.
- https://doi.org/10.1061/(ASCE)CO.1943-7862.0001121
- [18] Mir, M., Nasirzadeh, F., Lee, S., Cabrera, D., & Mills, A. (2022). Construction noise management: A systematic review and directions for future research. Applied Acoustics, 198, 108936. https://doi.org/10.1016/j.apacoust.2022.10893
- [19] Mostafavi, A. (2023). Active noise cancelation on construction sites using advanced deep learning [Master's thesis, University of Manitoba]. MSpace. https://mspace.lib.umanitoba.ca/server/api/core/bitstreams/b4c3ed03-98c0-4546-b2f2
- [20] Sohrabi, S., Pàmies Gómez, T., & Romeu Garbí, J. (2020). Suitability of active noise barriers for construction sites. Applied Sciences, 10(18), 6160. https://doi.org/10.3390/app10186160
- [21] Wu, Z.F., Zhao, X.Q. Reducing construction noise: sound masking effect on soundscape dominated by construction noise. *Int. J. Environ. Sci. Technol.* 22, 797–832 (2025). https://doi.org/10.1007/s13762-024-05675-9