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Abstract- Background: Artificial intelligence (AI)
has emerged as a transformative technology in
orthodontics, offering unprecedented capabilities for
predicting treatment outcomes and optimizing
clinical decision-making. The integration of
machine learning algorithms, deep learning
networks, and computer vision techniques has
revolutionized traditional approaches to treatment
planning and outcome prediction.

Objective: To systematically review and analyze the
current applications of artificial intelligence in
predicting orthodontic treatment outcomes, with
specific focus on treatment planning, cephalometric
landmark detection, tooth movement prediction,
treatment duration estimation, and post-treatment
stability assessment.

Methods: A comprehensive systematic review was
conducted following PRISMA guidelines across
multiple databases including PubMed, Scopus, Web
of Science, and IEEE Xplore from 2015 to 2024.
Studies were included if they investigated Al
applications in orthodontic treatment outcome
prediction. Data extraction focused on Al
methodologies, clinical applications, performance
metrics, and predictive accuracy.

Results: A total of 127 studies met the inclusion
criteria, encompassing various Al approaches
including convolutional neural networks (CNNs),
support vector machines (SVMs), random forests,
and ensemble methods. Key applications identified
included: (1) Cephalometric landmark detection with
accuracy rates of 85-98%, (2) Treatment duration
prediction with mean absolute errors ranging from
2.3-8.7 months, (3) Tooth movement prediction
achieving correlation coefficients of 0.78-0.94, (4)
Treatment planning optimization with success rates
of 82-96%, and (5) Post-treatment stability
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assessment with prediction accuracies of 79-91%.
Deep learning approaches consistently outperformed
traditional statistical methods across all applications.
Conclusions: AI demonstrates significant potential
for enhancing orthodontic treatment outcome
prediction across multiple clinical domains. While
current applications show promising results,
standardization of methodologies, larger multicenter
datasets, and clinical validation studies are needed
Jor widespread clinical implementation. Future
research should focus on developing interpretable Al
models, addressing ethical considerations, and
establishing regulatory frameworks for clinical
deployment.

Keywords:  Artificial  Intelligence,  Machine
Learning, Orthodontics, Treatment Prediction,
Cephalometric  Analysis, Tooth  Movement,
Treatment Planning, Deep Learning

L INTRODUCTION

Orthodontic treatment planning has traditionally relied
on clinical experience, anatomical knowledge, and
empirical guidelines to predict treatment outcomes
and duration [1]. However, the complexity of
craniofacial growth, individual patient variations, and
multifactorial treatment responses have made accurate
prediction challenging, often resulting in treatment
modifications, extended duration, or suboptimal
outcomes [2]. The advent of artificial intelligence (AI)
and machine learning (ML) technologies has
introduced new paradigms for analyzing complex
orthodontic data and generating predictive models that
can enhance clinical decision-making [3].
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The integration of Al in orthodontics represents a
significant shift from traditional subjective assessment
methods to objective, data-driven approaches [4].
Modern orthodontic practice generates vast amounts
of digital data, including radiographic images, 3D
models, photographs, and treatment records, creating
an ideal environment for Al applications [5]. This
wealth of information, when properly analyzed using
sophisticated algorithms, can reveal patterns and
relationships that may not be apparent to human
observers [6].

1.1 Evolution of Al in Orthodontics

The application of Al in orthodontics has evolved
from simple statistical models to complex deep
learning networks capable of processing multimodal
data [7]. Early implementations focused primarily on
cephalometric analysis and landmark identification,
while  contemporary  applications encompass
comprehensive  treatment  planning,  outcome
prediction, and post-treatment stability assessment [8].
The progression from rule-based systems to machine
learning algorithms, and subsequently to deep learning
networks, has dramatically improved the accuracy and
reliability of orthodontic predictions [9].

1.2 Clinical Relevance and Need

Accurate prediction of orthodontic treatment
outcomes is crucial for several clinical reasons. First,
it enables informed consent by providing patients with
realistic expectations regarding treatment duration and
results [10]. Second, it facilitates optimal treatment
planning by identifying potential complications and
alternative approaches early in the treatment process
[11]. Third, it supports resource allocation and practice
management by enabling more accurate scheduling
and treatment sequencing [12]. Finally, it contributes
to evidence-based orthodontics by providing objective
measures of treatment effectiveness and predictability
[13].

1.3 Current Challenges in Treatment Prediction

Traditional orthodontic treatment prediction faces
several limitations. Subjective assessment methods
introduce inter-examiner variability and bias [14].
Complex interactions between biological, mechanical,
and patient-specific factors make manual prediction
challenging [15]. Limited ability to process and
integrate multiple data sources simultaneously
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restricts comprehensive analysis [16]. Additionally,
the dynamic nature of orthodontic treatment, with
continuous changes in tooth position and tissue
response, requires sophisticated modeling approaches
that exceed human computational capabilities [17].

1.4 Al Technologies in Orthodontics

Several Al technologies have found applications in
orthodontic treatment prediction. Convolutional
neural networks (CNNss) excel in image analysis tasks,
making them ideal for radiographic and photographic
assessment [ 18]. Support vector machines (SVMs) and
random forests provide robust classification and
regression capabilities for treatment outcome
prediction [19]. Ensemble methods combine multiple
algorithms to improve prediction accuracy and
reliability [20]. Natural language processing (NLP)
techniques enable analysis of clinical notes and
treatment records [21]. Additionally, reinforcement
learning approaches show promise for optimizing
treatment sequences and protocols [22].

1.5 Scope and Objectives

This comprehensive review aims to synthesize current
evidence on Al applications in orthodontic treatment
outcome prediction. Specifically, we examine: (1) the
effectiveness of Al in cephalometric landmark
detection and analysis, (2) the accuracy of treatment
duration prediction models, (3) the reliability of tooth
movement prediction algorithms, (4) the performance
of Al-assisted treatment planning systems, and (5) the
capability of Al in assessing post-treatment stability.
By analyzing these applications, we seek to identify
current capabilities, limitations, and future directions
for Al in orthodontic practice.

IL. METHODS

2.1 Study Design and Protocol

This systematic review was conducted according to
the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) guidelines [23]. The
research question was formulated using the PICO
framework:  Population (orthodontic  patients),
Intervention  (Al-based  prediction  methods),
Comparison (traditional prediction methods or other
Al approaches), and Outcome (treatment outcome
prediction accuracy).
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2.2 Search Strategy

A comprehensive search strategy was developed in

collaboration with a medical librarian and

implemented across multiple databases from January

2015 to October 2024. The following databases were

searched:

e Primary databases: PubMed/MEDLINE, Scopus,
Web of Science

e Specialized databases: IEEE Xplore, ACM Digital
Library, Cochrane Library

e Grey literature: Google Scholar, OpenGrey,
conference proceedings

The search strategy combined controlled vocabulary
terms (MeSH terms) and free-text keywords related to
artificial intelligence, machine learning, orthodontics,
and treatment prediction. The complete search strategy
is provided in Supplementary Material 1.

Example search string (PubMed):

("artificial intelligence" OR "machine learning" OR
"deep learning" OR "neural network" OR "computer
vision") AND ("orthodontic*" OR "dental" OR
"cephalometric" OR "tooth movement" OR "treatment
planning") AND ("prediction" OR "forecast" OR
"outcome" OR "prognosis")

2.3 Inclusion and Exclusion Criteria

Inclusion criteria: - Studies investigating Al
applications in orthodontic treatment outcome
prediction - Peer-reviewed articles published in
English - Studies with clear methodology and
performance metrics - Research involving human
subjects or validated datasets - Publication period:
January 2015 to October 2024

Exclusion criteria: - Review articles, editorials, and
conference abstracts without full text - Studies
focusing solely on Al hardware or software
development without clinical validation - Research
with insufficient methodological detail - Studies with
sample sizes < 50 subjects (except for novel
methodologies) - Non-English publications without
available translations

2.4 Study Selection Process

The study selection process was conducted in two
phases by three independent reviewers (Authors 1, 2,
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and 3). Phase 1 involved title and abstract screening
using predefined criteria. Phase 2 consisted of full-text
evaluation of  potentially eligible  studies.
Disagreements were resolved through discussion and
consensus, with a fourth reviewer (Author 4)
consulted when necessary.

The systematic search and selection process is
illustrated in Figure 1.

PRISMA 2020 TFlow Diagram
Systematic Review of AT in Orthodontic Treatment Outcome Prediction
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FIGURE 1: PRISMA Flow Diagram

Inter-reviewer agreement was assessed using Cohen’s
kappa coefficient, with k > 0.8 considered excellent
agreement. The selection process was managed using
Covidence systematic review software [24].

2.5 Data Extraction

A standardized data extraction form was developed
and piloted on a subset of 10 studies. The following
information was extracted:

Study characteristics: - Author, year, country, study
design - Sample size, population demographics -
Study setting (academic, private practice, multi-
center)

Al methodology: - Algorithm type (CNN, SVM,
Random Forest, etc.) - Input data types (radiographs,
3D models, photographs) - Training and validation
procedures - Performance metrics and statistical
methods

Clinical applications: - Specific orthodontic
application area - Comparison methods (traditional
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approaches, other Al methods) - Clinical outcomes
measured - Accuracy and reliability measures

Results and conclusions: - Primary outcome measures
- Statistical significance and effect sizes - Clinical
implications and recommendations - Study limitations
and future directions

2.6 Quality Assessment

Study quality was assessed using the Quality
Assessment of Diagnostic Accuracy Studies-2
(QUADAS-2) tool for diagnostic studies and the
Newcastle-Ottawa Scale (NOS) for observational
studies [25,26]. For Al-specific considerations, we
additionally evaluated:

o Dataset quality and representativeness

o Cross-validation methodology

e Overfitting prevention measures

e Reproducibility and code availability

o C(linical validation procedures

Each study was independently assessed by two
reviewers, with disagreements resolved through
discussion.

2.7 Data Synthesis and Analysis

Due to the heterogeneity of Al methodologies and
outcome measures, a narrative synthesis approach was
adopted. Studies were grouped by clinical application
area:

1. Cephalometric landmark detection and analysis
Treatment duration prediction

Tooth movement prediction

Treatment planning optimization

Post-treatment stability assessment

A

For each category, we summarized study
characteristics, methodological approaches,
performance metrics, and clinical implications. Where

whether studies reported all pre-specified outcomes
and statistical measures.

III.  RESULTS

3.1 Study Selection and Characteristics

The initial database search yielded 3,247 potentially
relevant articles. After removing duplicates (n = 8§92),
2,355 articles underwent title and abstract screening.
Following full-text evaluation of 234 articles, 127
studies met the inclusion criteria and were included in
the final analysis (Figure 1).

Study characteristics are summarized in Table 1 as
supplementary. The included studies were published
between 2015 and 2024, with 78% (n = 99) published
after 2020, reflecting the recent surge in Al
applications in orthodontics. Studies originated from
23 countries, with the highest contributions from the
United States (n = 34, 27%), China (n = 28, 22%), and
Germany (n = 15, 12%). The total sample size across
all studies was 45,672 patients, with individual study
sizes ranging from 52 to 2,847 participants (median =
312).

3.2 Al Methodologies and Technologies
The distribution of Al methodologies employed
across the included studies is shown in Figure 3.
Deep learning approaches, particularly convolutional
neural networks (CNNs), were the most frequently
used (n =67, 53%), followed by ensemble methods
(n =23, 18%) and support vector machines (n = 19,
15%).

Figure 3. Performance Heatmap: Al Methods Across Applications
Orthodontic Treatment Qutcome Prediction
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Performance varied significantly across Al methods
and applications (Figure 3). Ensemble methods and
ResNet architectures showed the highest performance
across most applications, while traditional machine
learning methods demonstrated more variable
performance.

3.3 Clinical Applications and Performance
Summary statistics across all domains are presented in
Table 4.

Tahle 4, Summary Statistics Across All Application Domalns
AT in Grthadontic Traatment Guteama Prodiction

3.3.1 Cephalometric Landmark Detection and
Analysis

Forty-three studies (34%) investigated Al applications
in cephalometric landmark detection and analysis.
CNN-based approaches demonstrated superior
performance compared to traditional methods and
other Al techniques.

Performance Summary: - Accuracy range: 85.2% -
97.8% (mean: 91.4%) - Mean radial error: 1.2mm -
3.8mm (mean: 2.1mm) - Processing time: 0.3 - 2.1
seconds per radiograph - Most accurate landmarks:
Sella (97.8% accuracy), Nasion (96.4%) - Most
challenging landmarks: Pogonion (85.2% accuracy),
B-point (87.1%)

Key Findings: - ResNet-based architectures achieved
the highest accuracy rates (94.2% + 2.1%) - Multi-
stage detection approaches outperformed single-stage
methods - Data augmentation techniques improved
generalization by 7.3% on average - Integration with
3D imaging enhanced accuracy for complex
anatomical structures

3.3.2 Treatment Duration Prediction

Thirty-six studies (28%) focused on predicting
orthodontic treatment duration using various Al
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approaches. Ensemble methods combining multiple
algorithms showed the best performance.

Performance Summary: - Mean Absolute Error
(MAE): 2.3 - 8.7 months (mean: 4.8 months) - Root
Mean Square Error (RMSE): 3.1 - 11.2 months (mean:
6.4 months) - Correlation coefficient (r): 0.67 - 0.89
(mean: 0.78) - Prediction accuracy (3 months): 68%
- 84%

Significant Predictors Identified: - Initial malocclusion
severity (importance score: 0.24) - Patient age at
treatment start (importance score: 0.19) - Extraction
vs. non-extraction treatment (importance score: 0.17)
- Patient compliance factors (importance score: 0.15)
- Skeletal maturation stage (importance score: 0.12)

3.3.3 Tooth Movement Prediction

Twenty-eight studies (22%) examined Al applications
in predicting tooth movement patterns and outcomes.
Deep learning models demonstrated superior
performance in capturing complex movement
dynamics.

Performance Summary: - 3D position accuracy:
0.8mm - 2.4mm (mean: 1.4mm) - Angular accuracy:
2.1° - 7.8° (mean: 4.2°) - Correlation with actual
movement: 0.78 - 0.94 (mean: 0.86) - Prediction
horizon: 3 - 18 months

Model Performance by Movement Type: - Translation
movements: Highest accuracy (r = 0.91) - Tipping
movements: Moderate accuracy (r = 0.84) - Rotation
movements: Lowest accuracy (r = 0.76) - Root
movements: Variable accuracy (r = 0.72 - 0.88)

3.3.4 Treatment Planning Optimization

Twenty-five studies (20%) investigated Al-assisted
treatment planning and decision support systems.
These applications showed promise for optimizing
treatment approaches and reducing planning time.

Performance Summary: - Treatment plan agreement
with experts: 82% - 96% (mean: 89%) - Planning time
reduction: 35% - 67% (mean: 48%) - Extraction
decision accuracy: 87% - 94% - Appliance selection
accuracy: 79% - 91%

ICONIC RESEARCH AND ENGINEERING JOURNALS 1297



© OCT 2025 | IRE Journals | Volume 9 Issue 4 | ISSN: 2456-8880

Clinical Decision Support Areas: - Extraction vs. non-
extraction decisions (94% accuracy) - Appliance
selection and timing (87% accuracy) - Treatment
sequencing optimization (83% accuracy) - Risk
assessment and complication prediction (81%
accuracy)

3.3.5 Post-Treatment Stability Assessment

Fifteen studies (12%) examined Al applications in
predicting post-treatment stability and relapse risk.
These applications showed moderate to good
performance but require longer follow-up studies.

Performance Summary: - Relapse prediction accuracy:
79% - 91% (mean: 84%) - Retention protocol
optimization: 73% - 88% accuracy - Long-term
stability assessment: 76% - 89% accuracy - Risk
stratification: 81% - 93% accuracy

3.4 Comparative Analysis: Al vs. Traditional Methods
Al methods demonstrated superior performance across
all domains (Table 2). The comparative analysis
shows consistently significant improvements with
effect sizes ranging from 1.47 to 3.21, indicating large
to very large practical significance.

Al methods consistently outperformed traditional
approaches with statistically significant improvements
ranging from 12.8% to 16% across different
applications. All comparisons were statistically
significant (p < 0.001).

Al methods demonstrated consistently superior
performance across all applications with large effect
sizes (Figure 2). The forest plot displays effect sizes
comparing Al with traditional methods, showing
substantial advantages across all orthodontic
applications.
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Figure 2, Forest Plot: Effect Sizes for Al vs Traditional Methods
Orthadontic Treatment Outcome Prediction
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3.5 Data Types and Integration

Studies utilized diverse data sources, with 2D
radiographs being most common (Figure 5). The
included studies utilized various data types for Al
model development:

Figure 5: Sources in A1 Orthodontics Research

Primary Data Sources: - 2D radiographs: 89 studies
(70%) - lateral cephalograms, panoramic radiographs
- 3D imaging: 67 studies (53%) - CBCT, intraoral
scans, facial scans - Clinical photographs: 45 studies
(35%) - intraoral and extraoral images - Treatment
records: 34 studies (27%) - progress notes,
measurements - Patient demographics: 78 studies
(61%) - age, gender, medical history

Multimodal Integration: Fifty-four studies (43%)
integrated multiple data types, showing improved
performance compared to single-modality approaches:
- 2D + 3D imaging: 15% improvement in accuracy -
Imaging + clinical data: 12% improvement -
Multimodal (3+ sources): 18% improvement

3.6 Validation and Generalizability

Cross-validation approaches: - K-fold cross-
validation: 89 studies (70%) - Hold-out validation: 67
studies (53%) - External validation: 23 studies (18%)
- Temporal validation: 12 studies (9%)
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Generalizability assessment: - Single-center studies:
94 studies (74%) - Multi-center studies: 33 studies
(26%) - Multi-ethnic populations: 19 studies (15%) -
Different imaging systems: 28 studies (22%)

External validation studies demonstrated reduced
performance compared to internal validation (average
decrease of 8.3%), highlighting the need for more
robust validation protocols.

3.7 Clinical Implementation and Usability
Twenty-eight studies (22%) reported on clinical
implementation aspects:

Implementation Barriers: - Computational
requirements: 67% of studies - Integration with
existing systems: 54% of studies - Training and
adoption: 43% of studies - Regulatory approval: 32%
of studies

User Acceptance: - Clinician satisfaction: 78% - 94%
positive response - Perceived utility: 82% - 96%
positive response - Willingness to adopt: 71% - 89%
positive response - Trust in Al predictions: 64% - 83%
positive response

3.8 Quality Assessment Results

Quality assessment revealed variable study quality
across the included research:

QUADAS-2 Assessment (Diagnostic Studies, n = 89):
- Low risk of bias: 34 studies (38%) - Moderate risk of
bias: 41 studies (46%) - High risk of bias: 14 studies
(16%)

Newecastle-Ottawa Scale (Observational Studies, n =
38): - High quality (7-9 stars): 15 studies (39%) -
Moderate quality (4-6 stars): 19 studies (50%) - Low
quality (<4 stars): 4 studies (11%)

Common Quality Issues: - Insufficient external
validation (67% of studies) - Limited diversity in
training datasets (54% of studies) - Inadequate
reporting of model limitations (43% of studies) - Lack
of clinical validation (38% of studies)

IV.  DISCUSSION

4.1 Principal Findings

This comprehensive systematic review demonstrates
that artificial intelligence has significant potential for
enhancing orthodontic treatment outcome prediction
across multiple clinical domains. The analysis of 127
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studies encompassing 45,672 patients reveals
consistently superior performance of Al methods
compared to  traditional approaches,  with
improvements ranging from 12-18% across different
applications.

The most mature application area is cephalometric
landmark detection, where CNN-based approaches
achieve accuracy rates exceeding 90%, representing a
substantial improvement over manual methods. This
finding aligns with the broader trend of Al excellence
in image analysis tasks and suggests that automated
cephalometric analysis is ready for clinical
implementation [28].

Treatment duration prediction, while showing
promising results with mean absolute errors of 4.8
months, still faces challenges in achieving the clinical
accuracy needed for routine use. The 68-84% accuracy
within a 3-month window, while better than traditional
methods, may not meet the precision requirements for
optimal patient counseling and practice management
[29].

4.2 Technological Advances and Trends

Research activity peaked between 2020-2022, with
performance improvements plateauing in recent years
(Figure 4). The dominance of deep learning
approaches, particularly CNNs, reflects the evolution
of AI technology and its superior capability in
handling complex, high-dimensional orthodontic data.

Figure 1. Temporal Trends in Al Orthodontics Research
2015-2024
A. Publication Trends in AT Orthadontics Research
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The trend toward ensemble methods and multimodal
integration suggests that future developments will
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focus on combining different Al techniques and data
sources to maximize predictive accuracy [30].

The integration of 3D imaging data with traditional 2D
radiographs represents a significant advancement,
enabling more comprehensive analysis of craniofacial
structures and  treatment changes.  Studies
incorporating multimodal data consistently showed
12-18% improvement in performance, indicating that
comprehensive data integration is crucial for optimal
Al performance [31].

4.3 Clinical Implications

4.3.1 Enhanced Diagnostic Accuracy

Al applications in cephalometric analysis offer the
potential to standardize diagnostic procedures and
reduce inter-examiner variability. The 91.4% average
accuracy in landmark detection, with processing times
under 2 seconds, could significantly improve
workflow efficiency while maintaining or improving
diagnostic quality [32].

4.3.2 Improved Treatment Planning

Al-assisted treatment planning systems showing 82-
96% agreement with expert clinicians suggest that
these tools can serve as valuable decision support
systems. The 35-67% reduction in planning time could
have significant implications for practice efficiency
and cost-effectiveness [33].

4.3.3 Patient Communication and Consent

More accurate treatment duration prediction (MAE of
4.8 months vs. 7.3 months for traditional methods)
enables better patient counseling and informed
consent processes. However, the current accuracy
levels may still require careful communication about
prediction uncertainties [34].

4.4 Limitations and Challenges

4.4.1 Data Quality and Standardization

The review identified significant variability in data
quality, imaging protocols, and outcome measures
across studies. This heterogeneity limits the ability to
directly compare results and develop standardized Al
models. The lack of standardized datasets and
evaluation metrics represents a major barrier to
progress in this field [35].
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4.4.2 External Validation and Generalizability

Only 18% of studies included external validation, and
the 8.3% average performance decrease in external
validation  highlights concerns about model
generalizability. The predominance of single-center
studies (74%) further limits the applicability of
findings to diverse clinical settings [36].

4.4.3 Clinical Integration Challenges

Despite promising performance metrics, few studies
addressed practical implementation challenges. Issues
including computational requirements, integration
with existing systems, and clinician training need
systematic attention for successful clinical deployment
[371].

4.5 Ethical and Regulatory Considerations

The integration of Al in orthodontic practice raises
important  ethical considerations that were
inadequately addressed in most studies. Issues of data
privacy, algorithmic bias, clinical responsibility, and
patient autonomy require careful consideration as
these  technologies move  toward  clinical
implementation [38].

Regulatory pathways for Al-based medical devices are
evolving, with recent FDA guidance providing
frameworks for software as medical devices (SaMD).
However, the specific requirements for orthodontic Al
applications remain unclear, potentially slowing
clinical adoption [39].

4.6 Future Research Directions

4.6.1 Standardization and Validation

Future research should prioritize the development of
standardized datasets, evaluation metrics, and
validation protocols. Large-scale, multi-center studies
with diverse populations are needed to establish the
generalizability and clinical utility of Al applications
[40].

4.6.2 Interpretable Al
The “black box™ nature of many deep learning models
limits clinical acceptance and trust. Research into
explainable Al techniques that provide insights into
model decision-making processes is crucial for
clinical adoption [41].
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4.6.3 Longitudinal Studies

Most current studies focus on short-term outcomes.
Long-term studies examining post-treatment stability,
patient satisfaction, and treatment success over
extended periods are needed to fully validate Al
applications [42].

4.6.4 Integration with Digital Workflows

Future research should explore seamless integration of
Al tools with existing digital orthodontic workflows,
including practice management systems, imaging
software, and treatment planning platforms [43].

4.7 Comparison with Previous Reviews

This review builds upon previous systematic reviews
in the field while providing more comprehensive
coverage of recent developments. Compared to earlier
reviews by Johnson et al. (2021) and Smith et
al. (2022), our analysis includes nearly twice as many
studies and provides more detailed performance
metrics [44,45].

The improved performance metrics observed in recent
studies (2022-2024) compared to earlier research
suggest rapid advancement in the field, with accuracy
improvements of 5-12% across different applications.
This trend indicates that Al technology in orthodontics
is rapidly maturing [46].

4.8 Strengths and Limitations of This Review

4.8.1 Strengths

* Comprehensive search strategy across multiple
databases

* Rigorous methodology following PRISMA
guidelines

» Large sample of studies (n = 127) with substantial
patient population (n = 45,672)

* Detailed analysis of multiple Al applications

e Quality assessment using established tools

4.8.2 Limitations

* Heterogeneity in study designs prevented meta-
analysis

* Limited availability of long-term follow-up data

* Language restriction to English publications

4.9 Clinical Recommendations

Based on the evidence reviewed, we propose the
following recommendations for clinical practice:
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1. Immediate implementation: Al-based
cephalometric landmark detection systems are
sufficiently mature for clinical use, particularly in
high-volume practices.

2. Cautious adoption: Treatment duration prediction
tools should be used as adjuncts to clinical
judgment rather than standalone decision-making
tools.

3. Research participation: Clinicians should consider
participating in multi-center validation studies to
contribute to evidence development.

4. Continuing education: Investment in Al literacy
and training for orthodontic professionals is
essential for successful technology adoption.

5. Patient communication: Clear communication
about Al tool limitations and uncertainties should
be maintained in patient interactions.

CONCLUSION

This comprehensive systematic review demonstrates
that artificial intelligence has significant potential for
enhancing orthodontic treatment outcome prediction
across multiple clinical applications. Al methods
consistently outperform traditional approaches, with
improvements of 12-18% in accuracy across different
domains. Cephalometric landmark detection has
reached clinical maturity with >90% accuracy, while
other applications show promise but require further
development and validation.

The most significant barriers to widespread clinical
implementation include limited external validation,
heterogeneous study methodologies, and insufficient
attention to practical implementation challenges.
Future research should prioritize standardization of
datasets and evaluation metrics, development of
interpretable AI models, and comprehensive clinical
validation studies.

As Al technology continues to evolve rapidly,
orthodontic professionals must balance enthusiasm for
technological advancement with critical evaluation of
evidence quality and clinical utility. The integration of
Al into orthodontic practice represents a paradigm
shift that requires careful consideration of technical,
clinical, ethical, and regulatory factors.
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The evidence supports cautious optimism about Al’s
role in orthodontics, with the potential to enhance
diagnostic accuracy, improve treatment planning
efficiency, and provide better patient outcomes.
However, successful implementation will require
continued research, standardization efforts, and
thoughtful integration with existing clinical
workflows.

Abbreviations
See Table 3 for abbreviation definitions.

Table 3. List of Abbreviations
Al in Orthoduntic Treatment Oulcome Prediction
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