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Design And Development of an Artificial Neural
Network-Based Fire Detection System
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Abstract- Fire outbreaks are often catastrophic,
destroying lives and property. It is essential to
develop an accurate and reliable fire detection
system to safeguard lives and protect assets.
Traditional fire detection approaches, such as using
common sensors, are inaccurate and usually trigger
false alarms. To address this issue and significantly
improve the precision, accuracy, response time, and
dependability of fire detection systems, we designed
and developed an Artificial Neural Network (ANN)-
based system. Our ANN-based fire detection system
integrates six (6) sensors, including temperature,
humidity, smoke, gas, flame, and light sensors, with
an ESP32s microcontroller into a sensing node to
maximize the properties of each sensor and reduce
false alarms. Four sensing nodes were developed to
capture environmental dimensions during data
acquisition. A Central data Station (mainly
comprising Raspberry Pi 3 B+ microcomputer, real-
time clock, display screen, buzzer, and indicators)
was also developed to serve as the processing device
and the central hub for decision making. The
ground truth was established using a manual switch
attached to the Central data station (i.e., 'ON' or a
‘1’ for fire scenarios and 'OFF' or a '0' for no fire
situations), and data were collected on a Google
sheet. The collected data was processed and used to
train ANN models of different architectures and
hyperparameters on the Central Data Station. The
best model was selected using the FI-score
evaluation metric. The trained model was deployed
to make predictions in real-time. Compared to many
conventional systems, the system demonstrated
exceptional accuracy of 95% with a false alert rate
of less than 3%. Additionally, the system's relative
response time is good; on average, fires were
detected within 10 seconds of their start. By
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providing enhanced security and ensuring a prompt
response in the event of a fire, this state-of-the-art
fire detection system offers a competitive alternative
to traditional methods.

Index Terms- Fire Detection, Artificial Neural
Networks, Sensors, Microcontroller, Accuracy,
Response Time.

I. INTRODUCTION

Artificial Neural Networks (ANN), inspired by the
Human brain, are known for their ability to learn
their own useful features (from input features) for
effective prediction [1]. This property of ANNs
enables ANNs to fit complex data better in
classification problems (as compared to other
classification supervised learning algorithms like
Logistic regression), such as Fire or no-fire binary
classification. An ANN network basically consists of
an Input Layer, Hidden layer(s), and an Output Layer
[1], which all comprise units also called neurons.
Each layer is interconnected in such a way that each
unit in the next layer is connected to all units in the
previous layer [2], as shown in Figure 1.1. The
number of units in the input layer is usually fixed to
the number of features x; hidden layers can be one or
more with multiple units; output layer units are
usually fixed to the number of classes, with one unit
used in binary classification [3] and more units in
multi-class classification. [4]

ICONIC RESEARCH AND ENGINEERING JOURNALS 2160



© NOV 2025 | IRE Journals | Volume 9 Issue 5 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV915-1712252

It Faddan Lagas Dt

Figure 1.1 A simple Artificial Neural Network
Architecture [2]

Each connection between neurons is associated with
a weight [5], which is adjusted during the training
process [5], [6]. The weighted sum of an input to a
unit is calculated using a dot product operation [7].
Given an input vector X and a weight vector w, the
weighted sum z of a unit can be calculated as:

z=x"w+b (1.1)
Where:
z is the weighted sum, also called the logit
x is the input vector of the unit
w is the weight vector of the unit
b is the bias term of the unit.

The logits (z) are inputted to an activation function to
determine the output of a neuron. Common activation
functions [8] include Linear, sigmoid, ReLU
(Rectified Linear Unit), and hyperbolic tangent,
represented mathematically by:

Linear activation (a) = g(z) =z (1.2)
Sigmoid activation (a) =g(z) = 1/ 1 + exp(-z) (1.3)
ReLu activation (a) = g(z) = Max (0, z) (1.4)
Hyperbolic tangent activation (a) = tanh (z) (1.5)
To determine the final output of a Neural network,
each layers up to the output layer are activated

vectorially [9] using Matrix operations given by:

Layer (L)=g (WX"+b) (1.6)
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Where:

g is the activation function used.

X is an m by n input feature matrix ( m is the number
of training examples and n is the number of input
features)

W is a weight matrix of layer L with dimension j by n
(j is the number of units in the layer)

b is the bias vector of the layer L.

The outputs of Layer (L-1) serve as the input X to
Layer (L).

The process of computing prediction (activating the
layers) from input to output is called Forward
propagation [10]. In training an artificial neural
network, a loss function (also called the cost
function) measures the error between the predicted
output and the true target values [11]. The Binary
Cross-Entropy loss function [11], [12] was used. It is
expressed as:

Binary Cross-Entropy Loss = -1/m }. "i=1yilog

pit(Iv)log(1-p)  (1.7)
Where:
y is the true target (0 or 1)
p is the predicted probability value
m is the number of data samples.
The closer the loss value is to zero, the closer the
predictions of the model are to the targets [12].

Back propagation algorithm [10], [13] is used in
computing the gradient of the loss function with
respect to the network’s weights and biases, which is
required in training an ANN model.

II. METHODOLOGY

This work was actualized in two phases, which are
the development phase and the deployment phase.

2.1 The development phase
This phase includes:
I. System Design and Implementation
II. Data Collection and Processing
II1. Model training and Performance evaluation
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I. System Design and Implementation:
Four sensing nodes and a Central data Station were

designed and implemented. Figure 2.1 shows a block
diagram depicting the entire designed system.

SENSING
NODE 2

‘Vl

SENSING SENSING
NODE 1 CENTRAL DATA STATION NODE 3

T/l

SENSING
NODE 4

Figure 2.1 Block diagram of the entire system

Each sensing node comprises sensors (smoke
detecting sensors, flame sensors, temperature sensors,
gas sensors, light sensors), indicators, and an ESP32s
microcontroller integrated to serve as an input device
for data acquisition in the data collection phase and a
real-time data input in the system deployment phase.
Figures 2.2, 2.3, and 2.4 show the block diagram of a
sensing node, the circuit diagram, and the constructed
sensing node, respectively

Temperature
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Microcontroller
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Light Sensor |
BH1750
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Ma7r
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KY026

Figure 2.2 Block diagram of a sensing node Figure 2.4 Constructed sensing node

The Central data station, comprising the Raspberry Pi
3 B+ microcomputer, a ground truth switch,
indicators, a buzzer, a display screen, and a real-time
clock, serves as the processing hub. Figures 2.5, 2.6,
and 2.7 show the block diagram, circuit diagram, and
constructed Central data station.
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Figure 2.5 Block diagram of the central data station
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Figuré 2.6 Circuit diagrarn of the central data station

Figure 2.7 Constructed central data station
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II. Data Collection and Processing:

The designed sensing nodes were placed around a
fire source strategically (all at a distance between 1m
and 5m at different times to form different patterns)
in both open and confined spaces and data using three
different fire scenarios (gas fire, fire from burning
soft solids like papers, and wild fire created from
burning woods) and a no fire scenario were gathered
across seasons in 6 months. The sensing nodes were
programmed to stack data from each calibrated
sensor of a sensing node into one row and each row
from all four sensing nodes into a single tracked list.
The data list was then sent to the central data station
every 2 seconds through the MQTT communication
protocol [14]. The central data station reads the real
time clock and the class label digital signal (1 or On
indicating fire scenario and 0 or Off indicating no fire
scenario) from the manual class label switch and
automatically append the date, time and the class
label or ground truth to the data list after which it
then logs the data list in a Google sheet row after row
in every time instance of 5 seconds. Figures 2.8, 2.9,
and 2.10 show a snippet of the logged data sheet, a
fire scenario, and a no-fire scenario.
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Figure 2.9 fire scenario

Figure 2.10 A no-fire scenario

The data collected was visualized to better
understand the data, randomized to avoid any
potential biases in the dataset, cleaned and processed
to remove outliers, duplicates, and handle missing
values. Data from the light sensors were observed to
have a random pattern across different fire and no fire
scenarios. These values were removed from each
row. Figures 2.11 and 2.12 show a snippet of the
processed data and a heatmap of the data after
processing.

Temperaturel Humidity! Smoke! Gas! Flamel Temperatwre? Humidiy? Smoke2 Gas2 Flame2 .. Humidity) Smoked Gasl Flamed Temper

0 Aan na 00 00 (1] BH 64 00 oo 00 6709 00 580 o
1 048 047 0 00 L1} 414 am [} 00 uar 0w n 0
H 8% mmo w0 00 m B 64 W w0 6% 00 50 00
3 206 859 00 160 L1} [l g2 00 2650 00 Bmn 00 0 [}
4 ERL) 5116 00 170 (1) B0 Lt 00 oo 00 5740 00 330 o
439 BN ER 0 00 (1] 4060 a9 [ ] 00 400 00 120 0
4660 04 817 [ [} 5% 6854 [} 00 6653 00 530 [}
4661 04 B3 00 80 (1] 00N 6391 [ ] 0 6643 00 %0 0
4662 3050 6836 00 100 L1} o0 6% o 00 6645 00 880 o
4663 0% 6760 0 90 (1] R 6649 [ ] 00 6656 00 550 0

Figure 2.12 Heat map of the data set. Feature
Correlation: A Heat Map shows correlation between
features. Very light indicates high positive correlation
and while dark indicates high negative correlation

III. Model Training and Performance Evaluation:

An ANN-model of different architectures were
trained on different train/test split dataset (60-40, 70-
30, and 80-20) the input layer was fixed to the
number of features and the output layer have a single
unit for binary classification (fire event or no fire
event), the sigmoid activation function (equation 1.3)
was used in all units. The dataset features were scaled
using the scikit-learn standard scalar library. (This
was done to ensure that the features have comparable
ranges, thus making the model training faster and
more effective.) TensorFlow and other relevant
Python libraries on a Jupyter notebook were used in
training the models on a personal computer. The F1-
score metric was used to evaluate the performance of
each model on the test sets.

F1-Score =2 x Precision * Recall / (Precision +

Recall) ------------ 2.1
Where:
Precision = True Positives / (True Positives + False
Positives) ------------ (2.2)
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Recall (Sensitivity) = True Positives / (True Positives
+ False Negatives) --------- (2.3)

In this formula:

True Positives (TP) are the number of correct
positive predictions.

False Positives (FP) are the number of incorrect
positive predictions.

False Negatives (FN) are the number of actual
positive instances that were incorrectly predicted as
negative.

Table 2.1 shows the performance of each architecture
on each train/test split dataset.

Data set Hidde | Train/te | Accurac F1-

n st split y (%) score
layer (%) (decima
units 1)

60/40 99.7 0.997

10 70/30 98.6 0.986

Unprocess 80/20 100 1.0
ed 15 60/40 100 1.0
60/40 87.90 0.935
1 70/30 87.88 0.935
80/20 100 1.0
Processed 60/40 100 1.0
3 80/20 100 1.0
5 60/40 100 1.0

Table 2.1 Performance of the models

Figure 2.13 is a flowchart showing the development
phase.
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Figure 2.13 The development phase flowchart

2.2 The deployment and testing phase

On the processed data, different model architectures
achieved a perfect Fl-score, as shown in Table 2.1.
The trained artificial neural network model with 5
hidden layers was saved and exported in PKL format
using the joblib library in Python and Jupyter
Notebook. This model was deployed on the Central
data station. The deployed model was tested on real-
time data from the sensing nodes in both fire and
non-fire scenarios. To avoid false alerts, the central
data station was programmed to give a prediction
every 3 seconds by first processing the in-stream data
from the sensing nodes to the model standard and
combining them with the deployed model to give a
prediction. prediction samples within every 3 seconds
are compared, after which the system gives a final
prediction based on the majority output. If the final
prediction is a 1 (i.e, fire detected), it automatically
activates the buzzer, displays fire on the screen, and
blinks the red indicator to alert the user. The system
was tested 1012 times in an open and confined space
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environment with 717 fire scenarios and 295 no-fire
scenarios. The system gave a correct prediction 972
times with 683 correct fire predictions and 289
correct no-fire predictions, indicating an accuracy of
95% and a false alert rate of 2.03%. Figures 2.14 and
2.15 show a flowchart of the system in operation
during testing and the system in operation. The
system was able to detect fire in an average of 10
seconds from start time.

1~ -

Figure 2.15 System in Operation

III.  RESULTS, DISCUSSION, AND FUTURE
DIRECTIONS

The following results were obtained from the testing
phase:
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I. Accuracy: The deployed artificial neural
network model achieved an accuracy of 95%
in detecting fires, indicating a high success
rate.

II. False Positives: There were a small number of
false positives (6 times), resulting in a false
alert rate of 2.03%, mainly caused by factors
such as dust or temperature fluctuations.

II1. Response Time: The system can detect fire in
an average time of 10 seconds from the start
time.

Table 3.1 summarizes the results from the testing

phase.
Number of
Events
Testing 1012
Fire Scenario 717
No-Fire Scenario 295
Total Correct Prediction 972
Correct Fire Prediction 683
Correct No-Fire Prediction 289
Detection Accuracy (%) 95.2
System Average Response Time 10
(s)
False Alert rate (%) 2.03

Table 3.1 System Testing Result

The sensors were found to have an average sensing
range of approximately 1 m, which limits the ability
of the sensing nodes to capture environmental
dimensions effectively. This limitation can be
addressed by either deploying more sensing nodes
throughout the controlled environment or by using
sensors with better sensing ranges. Gathering data
across seasons, in different environments, and with
different fire sources ensures robustness of the
system to seasonal changes, environmental changes,
and different types of fire. The data gathering process
is tedious and time-consuming, and there was
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insufficient data to encompass various environmental
seasons, conditions, and changes. This hindered the
model's ability to generalize effectively. This issue
can be addressed by allocating more time to data
collection and ensuring data is captured across
different seasons, which will, in turn, increase the
accuracy of the system. In the future, the system can
be trained with a combination of data from classes A,
B, C, D, and K fires [15] to ensure more robustness.
The model's response time is not swift, averaging up
to 10 seconds for predictions. This delay can
potentially be reduced by incorporating components
with faster response times and by increasing the
number of sensors to capture additional features,
thereby improving the system's response time.

IV. CONCLUSION

In the effort to improve fire detection systems for
swiftness in safeguarding lives and property in the
event of fire, this work, which utilized an Artificial
Neural Network algorithm in fire detection, achieved
a good response time, accuracy, and false alert rate.
Integrating an Artificial neural network algorithm in
traditional systems redefined the effectiveness and
efficiency of fire detection systems, increasing the
reliability of these systems. This developed system
has the potential to achieve better results with more
training data gathered across different seasons, fire
sources, and environmental conditions.

REFERENCES

[1] R. Dastres and M. Soori, “Artificial neural
network systems,” International Journal of
Imaging and Robotics (IJIR), vol. 21, no. 2, pp.
13-25, 2021.

[2] T. Tyagi, H. Sharma, K. Jain, and C. Mittal,
“Handwritten Digit Recognition System using
Machine Learning,” International Journal for
Research in Applied Science & Engineering
Technology (IJRASET), vol. 12, no. 5, pp.
3150-3154, May 2024. doi:
10.22214/ijraset.2024.62254

[3] S. A. Abdullah and A. Al-Ashoor, “An artificial
deep neural network for the binary classification
of network traffic,” International Journal of

IRE 1712252

Advanced Computer Science and Applications,
vol. 11, no. 1, pp. 402-408, 2020.

[4] C. Joshi, R. K. Ranjan, and V. Bharti, “ANN
based multi-Class classification of P2P Botnet,”
pp- 1319-1325, 2021.

[5] W.F. Schmidt, M. A. Kraaijveld, and R. P. W.
Duin, “Feed forward neural networks with
random weights,” in Proc. Int. Conf. on Pattern
Recognition, IEEE Computer Society Press,
1992, pp. 1-1.

[6] F. Giinther and S. Fritsch, “neuralnet: Training
of neural networks,” 2010.

[7] A. Krenker, J. Bester, and A. Kos, “Introduction
to the artificial neural networks,” in Artificial
Neural Networks: Methodological Advances
and Biomedical Applications, InTech, 2011, pp.
1-18.

[8] J. Lederer, “Activation functions in artificial
neural networks: A systematic overview,” arXiv
preprint arXiv:2101.09957, 2021.

[91 A. Lichtner-Bajjaoui, “A  mathematical
introduction to neural networks,” 2021.

[10] M. Cilimkovic, “Neural networks and back
propagation algorithm,” Institute of Technology
Blanchardstown, no. 1, pp. 18, 2015.

[11] N. Zhang, S.-L. Shen, A. Zhou, and Y.-S. Xu,
“Investigation on performance of neural
networks using quadratic relative error cost
function,” IEEE Access, vol. 7, pp. 106642—
106652, 2019.

[12] A. Buja, W. Stuetzle, and Y. Shen, “Loss
functions for binary class probability estimation
and classification: Structure and applications,”
Working Draft, Nov. 2005, pp. 13.

[13] M. H. Sazh, “A brief review of feed-forward
neural networks,” Communications Faculty of
Sciences University of Ankara Series A2-A3
Physical Sciences and Engineering, vol. 50, no.
1, 2006.

[14] D. Soni and A. Makwana, “A survey on MQTT:
a protocol of Internet of Things (IoT),” in Proc.
Int. Conf. on Telecommunication, Power
Analysis and Computing Techniques
(ICTPACT-2017), vol. 20, Apr. 2017.

[15] R. Ponomarenko et al., “Review of the
environmental characteristics of fire

ICONIC RESEARCH AND ENGINEERING JOURNALS 2167



© NOV 2025 | IRE Journals | Volume 9 Issue 5 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV915-1712252

extinguishing substances of  different
composition used for fires extinguishing of
various classes,” 2019.

IRE 1712252 ICONIC RESEARCH AND ENGINEERING JOURNALS 2168



