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Abstract- Fire outbreaks are often catastrophic, 

destroying lives and property. It is essential to 

develop an accurate and reliable fire detection 

system to safeguard lives and protect assets. 

Traditional fire detection approaches, such as using 

common sensors, are inaccurate and usually trigger 

false alarms. To address this issue and significantly 

improve the precision, accuracy, response time, and 

dependability of fire detection systems, we designed 

and developed an Artificial Neural Network (ANN)-

based system. Our ANN-based fire detection system 

integrates six (6) sensors, including temperature, 

humidity, smoke, gas, flame, and light sensors, with 

an ESP32s microcontroller into a sensing node to 

maximize the properties of each sensor and reduce 

false alarms. Four sensing nodes were developed to 

capture environmental dimensions during data 

acquisition. A Central data Station (mainly 

comprising Raspberry Pi 3 B+ microcomputer, real-

time clock, display screen, buzzer, and indicators) 

was also developed to serve as the processing device 

and the central hub for decision making. The 

ground truth was established using a manual switch 

attached to the Central data station (i.e., 'ON' or a 

'1' for fire scenarios and 'OFF' or a '0' for no fire 

situations), and data were collected on a Google 

sheet. The collected data was processed and used to 

train ANN models of different architectures and 

hyperparameters on the Central Data Station. The 

best model was selected using the F1-score 

evaluation metric. The trained model was deployed 

to make predictions in real-time. Compared to many 

conventional systems, the system demonstrated 

exceptional accuracy of 95% with a false alert rate 

of less than 3%. Additionally, the system's relative 

response time is good; on average, fires were 

detected within 10 seconds of their start. By 

providing enhanced security and ensuring a prompt 

response in the event of a fire, this state-of-the-art 

fire detection system offers a competitive alternative 

to traditional methods. 

 

Index Terms- Fire Detection, Artificial Neural 

Networks, Sensors, Microcontroller, Accuracy, 

Response Time. 

I. INTRODUCTION 
 

Artificial Neural Networks (ANN), inspired by the 

Human brain, are known for their ability to learn 

their own useful features (from input features) for 

effective prediction [1]. This property of ANNs 

enables ANNs to fit complex data better in 

classification problems (as compared to other 

classification supervised learning algorithms like 

Logistic regression), such as Fire or no-fire binary 

classification. An ANN network basically consists of 

an Input Layer, Hidden layer(s), and an Output Layer 

[1], which all comprise units also called neurons. 

Each layer is interconnected in such a way that each 

unit in the next layer is connected to all units in the 

previous layer [2], as shown in Figure 1.1. The 

number of units in the input layer is usually fixed to 

the number of features x; hidden layers can be one or 

more with multiple units; output layer units are 

usually fixed to the number of classes, with one unit 

used in binary classification [3] and more units in 

multi-class classification. [4] 
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Figure 1.1 A simple Artificial Neural Network 

Architecture [2] 

 

Each connection between neurons is associated with 

a weight [5], which is adjusted during the training 

process [5], [6]. The weighted sum of an input to a 

unit is calculated using a dot product operation [7].  

Given an input vector x and a weight vector w, the 

weighted sum z of a unit can be calculated as: 

 

z = x  w + b  (1.1) 

Where: 

z is the weighted sum, also called the logit 

x is the input vector of the unit 

w is the weight vector of the unit 

b is the bias term of the unit. 

 

The logits (z) are inputted to an activation function to 

determine the output of a neuron. Common activation 

functions [8] include Linear, sigmoid, ReLU 

(Rectified Linear Unit), and hyperbolic tangent, 

represented mathematically by: 

 

Linear activation (a) = g(z) = z          (1.2) 

 

Sigmoid activation (a) = g(z) = 1/ 1 + exp(-z)  (1.3) 

 

ReLu activation (a) = g(z) = Max (0, z)   (1.4) 

 

Hyperbolic tangent activation (a) = tanh (z) (1.5) 

 

To determine the final output of a Neural network, 

each layers up to the output layer are activated 

vectorially [9] using Matrix operations given by: 

 

Layer (L) = g (WXT + b)  (1.6) 

Where: 

 g is the activation function used. 

 X is an m by n input feature matrix ( m is the number 

of training examples and n is the number of input 

features) 

W is a weight matrix of layer L with dimension j by n 

(j is the number of units in the layer) 

b is the bias vector of the layer L. 

The outputs of Layer (L-1) serve as the input X to 

Layer (L). 

 

The process of computing prediction (activating the 

layers) from input to output is called Forward 

propagation [10]. In training an artificial neural 

network, a loss function (also called the cost 

function) measures the error between the predicted 

output and the true target values [11]. The Binary 

Cross-Entropy loss function [11], [12] was used. It is 

expressed as: 

 

Binary Cross-Entropy Loss = -1/m m
i = 1 yi log 

pi + (1-yi) log (1 - pi)          (1.7) 

Where: 

  y is the true target (0 or 1) 

 p is the predicted probability value 

 m is the number of data samples. 

The closer the loss value is to zero, the closer the 

predictions of the model are to the targets [12]. 

 

Back propagation algorithm [10], [13] is used in 

computing the gradient of the loss function with 

respect to the network’s weights and biases, which is 

required in training an ANN model. 

 

II. METHODOLOGY 

 

This work was actualized in two phases, which are 

the development phase and the deployment phase.  

 

2.1 The development phase 

 This phase includes:  

I. System Design and Implementation 

II. Data Collection and Processing 

III. Model training and Performance evaluation 
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I. System Design and Implementation:  

Four sensing nodes and a Central data Station were 

designed and implemented. Figure 2.1 shows a block 

diagram depicting the entire designed system. 

  

 
Figure 2.1 Block diagram of the entire system 

 

Each sensing node comprises sensors (smoke 

detecting sensors, flame sensors, temperature sensors, 

gas sensors, light sensors), indicators, and an ESP32s 

microcontroller integrated to serve as an input device 

for data acquisition in the data collection phase and a 

real-time data input in the system deployment phase. 

Figures 2.2, 2.3, and 2.4 show the block diagram of a 

sensing node, the circuit diagram, and the constructed 

sensing node, respectively 

 

 
Figure 2.2 Block diagram of a sensing node 

 

 
Figure 2.3 Circuit diagram of a sensing node 

 

 
 

 
Figure 2.4 Constructed sensing node 

The Central data station, comprising the Raspberry Pi 

3 B+ microcomputer, a ground truth switch, 

indicators, a buzzer, a display screen, and a real-time 

clock, serves as the processing hub. Figures 2.5, 2.6, 

and 2.7 show the block diagram, circuit diagram, and 

constructed Central data station. 
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Figure 2.5 Block diagram of the central data station 

Figure 2.6 Circuit diagram of the central data station 

 
 

 
Figure 2.7 Constructed central data station 

II. Data Collection and Processing:  

The designed sensing nodes were placed around a 

fire source strategically (all at a distance between 1m 

and 5m at different times to form different patterns) 

in both open and confined spaces and data using three 

different fire scenarios (gas fire, fire from burning 

soft solids like papers, and wild fire created from 

burning woods) and a no fire scenario were gathered 

across seasons in 6 months. The sensing nodes were 

programmed to stack data from each calibrated 

sensor of a sensing node into one row and each row 

from all four sensing nodes into a single tracked list. 

The data list was then sent to the central data station 

every 2 seconds through the MQTT communication 

protocol [14]. The central data station reads the real 

time clock and the class label digital signal (1 or On 

indicating fire scenario and 0 or Off indicating no fire 

scenario) from the manual class label switch and 

automatically append the date, time and the class 

label or ground truth to the data list after which it 

then logs the data list in a Google sheet row after row 

in every time instance of 5 seconds. Figures 2.8, 2.9, 

and 2.10 show a snippet of the logged data sheet, a 

fire scenario, and a no-fire scenario.  

 

 
Figure 2.8 Snippet of the logged data sheet 
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Figure 2.9 fire scenario 

 

 
Figure 2.10 A no-fire scenario 

 

The data collected was visualized to better 

understand the data, randomized to avoid any 

potential biases in the dataset, cleaned and processed 

to remove outliers, duplicates, and handle missing 

values. Data from the light sensors were observed to 

have a random pattern across different fire and no fire 

scenarios. These values were removed from each 

row. Figures 2.11 and 2.12 show a snippet of the 

processed data and a heatmap of the data after 

processing. 

 

 
Figure 2.11 A snippet of the cleaned data 

 

 
Figure 2.12 Heat map of the data set. Feature 

Correlation: A Heat Map shows correlation between 

features. Very light indicates high positive correlation 

and while dark indicates high negative correlation 

 

III. Model Training and Performance Evaluation: 

An ANN-model of different architectures were 

trained on different train/test split dataset (60-40, 70-

30, and 80-20) the input layer was fixed to the 

number of features and the output layer have a single 

unit for binary classification (fire event or no fire 

event), the sigmoid activation function (equation 1.3) 

was used in all units. The dataset features were scaled 

using the scikit-learn standard scalar library. (This 

was done to ensure that the features have comparable 

ranges, thus making the model training faster and 

more effective.) TensorFlow and other relevant 

Python libraries on a Jupyter notebook were used in 

training the models on a personal computer. The F1-

score metric was used to evaluate the performance of 

each model on the test sets.  

 

F1-Score = 2   Precision  Recall / (Precision + 

Recall) ------------(2.1) 

Where: 

Precision = True Positives / (True Positives + False 

Positives) ------------(2.2) 
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Recall (Sensitivity) = True Positives / (True Positives 

+ False Negatives) --------- (2.3) 

 

In this formula: 

True Positives (TP) are the number of correct 

positive predictions. 

False Positives (FP) are the number of incorrect 

positive predictions. 

False Negatives (FN) are the number of actual 

positive instances that were incorrectly predicted as 

negative. 

 

Table 2.1 shows the performance of each architecture 

on each train/test split dataset. 

Data set Hidde

n 

layer 

units 

Train/te

st split 

(%) 

Accurac

y (%) 

F1-

score 

(decima

l) 

 

 

Unprocess

ed 

 

10 

60/40 99.7 0.997 

70/30 98.6 0.986 

80/20 100 1.0 

15 60/40 100 1.0 

 

 

 

Processed 

 

1 

60/40 87.90 0.935 

70/30 87.88 0.935 

80/20 100 1.0 

 

3 

60/40 100 1.0 

80/20 100 1.0 

5 60/40 100 1.0 

Table 2.1 Performance of the models 

 

Figure 2.13 is a flowchart showing the development 

phase. 

 
Figure 2.13 The development phase flowchart 

 

2.2 The deployment and testing phase  

On the processed data, different model architectures 

achieved a perfect F1-score, as shown in Table 2.1. 

The trained artificial neural network model with 5 

hidden layers was saved and exported in PKL format 

using the joblib library in Python and Jupyter 

Notebook. This model was deployed on the Central 

data station. The deployed model was tested on real-

time data from the sensing nodes in both fire and 

non-fire scenarios. To avoid false alerts, the central 

data station was programmed to give a prediction 

every 3 seconds by first processing the in-stream data 

from the sensing nodes to the model standard and 

combining them with the deployed model to give a 

prediction. prediction samples within every 3 seconds 

are compared, after which the system gives a final 

prediction based on the majority output. If the final 

prediction is a 1 (i.e, fire detected), it automatically 

activates the buzzer, displays fire on the screen, and 

blinks the red indicator to alert the user. The system 

was tested 1012 times in an open and confined space 
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environment with 717 fire scenarios and 295 no-fire 

scenarios. The system gave a correct prediction 972 

times with 683 correct fire predictions and 289 

correct no-fire predictions, indicating an accuracy of 

95% and a false alert rate of 2.03%. Figures 2.14 and 

2.15 show a flowchart of the system in operation 

during testing and the system in operation. The 

system was able to detect fire in an average of 10 

seconds from start time.  

 

 
Figure 2.14 Operation flowchart 

 

 
Figure 2.15 System in Operation 

 

III. RESULTS, DISCUSSION, AND FUTURE 

DIRECTIONS 

 

The following results were obtained from the testing 

phase: 

I. Accuracy: The deployed artificial neural 

network model achieved an accuracy of 95% 

in detecting fires, indicating a high success 

rate. 

II. False Positives: There were a small number of 

false positives (6 times), resulting in a false 

alert rate of 2.03%, mainly caused by factors 

such as dust or temperature fluctuations. 

III. Response Time: The system can detect fire in 

an average time of 10 seconds from the start 

time. 

 

Table 3.1 summarizes the results from the testing 

phase. 

 Number of 

Events 

Testing 1012 

Fire Scenario 717 

No-Fire Scenario 295 

Total Correct Prediction 972 

Correct Fire Prediction 683 

Correct No-Fire Prediction 289 

Detection Accuracy (%) 95.2 

System Average Response Time 

(s) 

10 

False Alert rate (%) 2.03 

Table 3.1 System Testing Result 

 

The sensors were found to have an average sensing 

range of approximately 1 m, which limits the ability 

of the sensing nodes to capture environmental 

dimensions effectively. This limitation can be 

addressed by either deploying more sensing nodes 

throughout the controlled environment or by using 

sensors with better sensing ranges. Gathering data 

across seasons, in different environments, and with 

different fire sources ensures robustness of the 

system to seasonal changes, environmental changes, 

and different types of fire. The data gathering process 

is tedious and time-consuming, and there was 
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insufficient data to encompass various environmental 

seasons, conditions, and changes. This hindered the 

model's ability to generalize effectively. This issue 

can be addressed by allocating more time to data 

collection and ensuring data is captured across 

different seasons, which will, in turn, increase the 

accuracy of the system. In the future, the system can 

be trained with a combination of data from classes A, 

B, C, D, and K fires [15] to ensure more robustness. 

The model's response time is not swift, averaging up 

to 10 seconds for predictions. This delay can 

potentially be reduced by incorporating components 

with faster response times and by increasing the 

number of sensors to capture additional features, 

thereby improving the system's response time. 

 

IV. CONCLUSION 

 

In the effort to improve fire detection systems for 

swiftness in safeguarding lives and property in the 

event of fire, this work, which utilized an Artificial 

Neural Network algorithm in fire detection, achieved 

a good response time, accuracy, and false alert rate. 

Integrating an Artificial neural network algorithm in 

traditional systems redefined the effectiveness and 

efficiency of fire detection systems, increasing the 

reliability of these systems. This developed system 

has the potential to achieve better results with more 

training data gathered across different seasons, fire 

sources, and environmental conditions. 
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