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Abstract- Emerging market financial institutions
face heightened levels of uncertainty due to volatile
macroeconomic  conditions, weak regulatory
environments, data scarcity, and structural market
imperfections. Advances in data-driven modelling
spanning statistical learning, machine learning,
early warning systems, credit scoring, stress-testing
frameworks, and macro-prudential forecasting offer
significant potential to strengthen risk evaluation
and supervisory oversight. This paper provides a
comprehensive review of data-driven risk evaluation
models applicable to banks, microfinance
institutions, insurance firms, and capital-market
intermediaries operating in emerging economies.
Drawing solely on pre-2019 scholarship, the review
evaluates the evolution, methodological foundations,
strengths, and limitations of major quantitative
approaches used in credit risk assessment, liquidity
risk prediction, operational risk detection, and
systemic vulnerability monitoring. The article
identifies persistent challenges such as data quality
issues, modelling instability, weak governance, and
context adaptation gaps. A set of implications for
institutional practice and future research is outlined.
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L INTRODUCTION

Emerging market financial institutions operate within
environments characterised by structural volatility,
macroeconomic fragility, and substantial information
asymmetries [1], [2], [3]. Unlike advanced economies
where financial systems tend to exhibit high levels of
formalisation, transparency, and regulatory maturity,
emerging markets are frequently shaped by
fragmented supervisory environments, limited
institutional capacity, political uncertainty, and
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uneven financial sector development [4], [5]. These
conditions contribute to unique patterns of risk
exposure for local banks, microfinance institutions,
insurers, and capital-market intermediaries [6], [7]. As
such, the effectiveness of risk evaluation practices
becomes a foundational determinant of institutional
resilience, investor confidence, and financial system
stability [8], [9]. The last two decades have witnessed
substantial interest in developing data-driven risk
evaluation models capable of adapting to these
environments, utilising advances in statistical
learning, artificial intelligence, and computational
techniques to augment traditional supervisory
assessments [10], [11].

The adoption of data-driven approaches in risk
modelling was historically constrained by limited data
availability, poor data quality, and the absence of
reliable digital infrastructures. Prior to the mid-2000s,
many financial institutions in emerging markets relied
on manual risk evaluation techniques with limited
predictive ability. These included qualitative risk
matrices, basic scoring systems, and supervisory
checklists which, although wuseful for routine
assessment, lacked the capacity to forecast extreme
events or detect latent vulnerabilities [12], [13]. The
weaknesses of such approaches were exposed during
multiple financial disturbances affecting emerging
economies, including currency crises, banking
failures, commodity price shocks, sovereign debt
defaults, and procyclical capital flows [14]. These
events reinforced the need for methodologies capable
of processing large data volumes, capturing nonlinear
relationships, and providing early warnings of
impending instability.

Data-driven modelling gained momentum as emerging
markets underwent digital transformation in banking
operations, capital markets, and regulatory reporting
[15], [16]. The diffusion of electronic payments,
mobile banking platforms, and credit information
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infrastructures created unprecedented opportunities to
collect granular transaction data, customer behaviour
patterns, and real-time market indicators [17]. At the
same time, advancements in computational power
made it increasingly feasible to operationalise
sophisticated modelling  algorithms previously
confined to academic research or advanced economy
institutions [18], [19]. By 2018, a wide range of
statistical and machine learning models had been
adapted or proposed for emerging market risk
evaluation, including logistic regression, survival
analysis, panel-based early warning systems, support
vector machines (SVMs), random forests, gradient
boosting machines, Bayesian networks, neural
networks, and hybrid ensemble approaches [20], [21].

However, emerging market conditions introduce
several modelling challenges that differ from those
encountered in advanced economies. These challenges
include non-stationary macroeconomic environments,
volatile exchange rate regimes, incomplete reporting,
informal sector dominance, and limited availability of
long-term historical data [22]. Such conditions
frequently undermine model accuracy, impair feature
extraction, and complicate parameter estimation [23],
[24]. Furthermore, structural breaks such as sudden
policy shifts, political disturbances, or commodity
price fluctuations introduce significant instability into
model performance over time [25], [26], [27]. As a
result, risk evaluation models that perform well during
stable periods may deteriorate rapidly during crises,
rendering them unreliable for early warning or
supervisory intervention.

Due to these complexities, emerging market research
emphasises the integration of macro-financial
variables, institutional factors, and market
microstructure  indicators into risk evaluation
algorithms. For instance, credit risk models
increasingly incorporate borrower demographics,
transactional histories, behavioural indicators, and
network relationships, rather than relying solely on
financial statements which are often incomplete or
outdated [28], [29]. Similarly, liquidity risk models
utilise payment flows, interbank rate spreads, and real-
time settlement data to predict liquidity shortages.
Systemic risk evaluation frameworks integrate
banking interlinkages, contagion channels, cross-
holding patterns, and sectoral concentration indicators
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[30], [31]. In insurance markets, advancements in
nonlife claims modelling, lapse prediction, and
reserving analytics have strengthened actuarial risk
assessment, particularly where regulatory frameworks
remain underdeveloped [32], [33].

Despite these advances, the adoption of data-driven
modelling across emerging market institutions
remains uneven. Many banks and insurers lack the
technical capacity, data governance systems, or
computational resources necessary to implement
advanced analytics effectively [34]. Model risk
stemming from misspecification, overfitting, or
misinterpretation  poses  substantial  regulatory
concern, especially where governance oversight is
weak [35]. Supervisory agencies in emerging
economies have struggled to create regulatory
guidelines for advanced modelling, resulting in
fragmented or inconsistent practices. Moreover,
cultural resistance and institutional inertia hinder
transition from traditional risk evaluation paradigms to
data-oriented models.

The global financial crisis of 2008 highlighted the
limitations of traditional and data-driven models alike.
In advanced economies, several high-profile risk
models failed to capture systemic vulnerabilities due
to improper assumptions, historical bias, or structural
blind spots [36], [37]. For emerging markets, the crisis
exposed gaps in supervisory reporting systems, market
surveillance frameworks, and stress-testing practices.
In response, international organisations including
financial stability councils, multilateral development
banks, and regional regulatory associations promoted
adoption of early warning systems and macro-
prudential modelling frameworks tailored to local
conditions [38], [39]. These initiatives accelerated
experimentation with data-driven methods, fostering
hybrid approaches that combine machine learning
with expert judgment, scenario simulation, and
qualitative supervision [40], [41].

In microfinance and small-business lending, data-
driven models such as mobile credit scoring,
psychometric assessment tools, and transaction-based
scoring systems have gained prominence in several
emerging regions. These models mitigate information
asymmetry by analysing behavioural data, digital
footprints, consumption patterns, and mobile platform
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activity [42], [43]. Although these approaches hold
significant promise for financial inclusion, their
adoption raises concerns related to data privacy,
algorithmic bias, and model transparency. Similar
tensions arise in insurance markets, where predictive
analytics can improve risk classification but may
amplify inequities or violate regulatory standards on
consumer fairness [44], [45].

The technological revolution occurring across global
financial systems by 2018 created fertile ground for
the expansion of data-driven risk evaluation in
emerging markets. Distributed computing, cloud-
based analytics, and real-time data streaming
facilitated model deployment at scale, particularly for
larger banks and insurers. Advances in natural
language processing (NLP) enabled extraction of
information from financial news, social media, or
regulatory disclosures, broadening the range of risk
indicators available to analysts [46]. Graph-based
approaches and network analytics helped identify
contagion pathways between financial institutions.
Meanwhile, artificial intelligence techniques though
used cautiously showed potential in forecasting credit
events, detecting anomalies, and analysing systemic
linkages [47].

Yet the adoption of sophisticated techniques does not
eliminate fundamental constraints. Data scarcity
remains pervasive, especially among small institutions
operating in low-income regions [48], [49]. In many
cases, macroeconomic volatility undermines the
stability of predictive relationships, requiring frequent
recalibration or adaptive learning mechanisms [50],
[51]. Regulatory capacity in emerging markets varies
widely, making it difficult to standardise model
approval processes, establish validation frameworks,
or harmonise disclosure requirements. The cultural
and organisational transformation necessary for
widespread adoption of data-driven risk evaluation
remains incomplete [52], [53].

These factors underscore the need for a comprehensive
review of data-driven risk evaluation models
applicable to emerging market financial institutions
[54], [55]. Existing research is fragmented across
disciplines such as econometrics, financial
engineering, actuarial science, machine learning,
regulatory economics, and development finance [56],

IRE 1712258

[57]. A unified review is therefore essential for
synthesising methodological advances, identifying
cross-cutting themes, and highlighting gaps in the
literature [58], [59]. Such a review allows researchers
and practitioners to assess the suitability of various
models for emerging market conditions and inform
future directions in financial risk management [60],
[61].

The objectives of this review are threefold. First, the
paper examines the evolution of data-driven risk
evaluation methodologies prior to 2019, focusing on
statistical, machine learning, and hybrid frameworks.
Second, it reviews empirical applications of these
models in emerging market banks, insurers, MFIs, and
financial  regulators.  Third, it synthesises
methodological challenges and contextual factors
affecting model performance, providing insights for
future research and institutional practice.

The remainder of the paper is structured as follows.
Section 2 presents a detailed review of the literature on
data-driven risk evaluation, covering credit, liquidity,
operational, market, and systemic risk models. Section
3 synthesises cross-cutting insights, identifies research
gaps, and highlights policy implications. Section 4
concludes the paper.

IL. LITERATURE REVIEW

Data-driven risk evaluation has emerged as one of the
most transformative themes in financial sector
modelling, particularly within emerging markets
where institutions face persistent uncertainty, limited
data quality, and unstable macroeconomic conditions.
Prior to 2019, scholarly and applied research advanced
a wide spectrum of quantitative models for credit,
liquidity, operational, insurance, and systemic risk
assessment. This literature review synthesises the
evolution, methodological foundations, and empirical
applications of these models across emerging market
financial institutions.

A major strand of early work drew from classical
econometric modelling, where risk evaluation relied
heavily on linear relationships, structured probability
models, and statistically tractable assumptions.
Logistic regression became widely used for credit
default prediction due to its simplicity, interpretability,
and computational efficiency [62], [63]. Emerging
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market banks used logistic models to evaluate
borrower characteristics, financial ratios, repayment
histories, and macroeconomic indicators. While
logistic regression provided baseline predictive
capacity, its linearity often limited accuracy in
environments where borrower behaviour exhibited
nonlinear and volatile dynamics [64], [65]. Probit
models represented an alternative but similarly
encountered challenges with structural breaks and data
discontinuities characteristic of developing economies
[66], [67].

Survival analysis also gained traction for predicting
time-to-default and loan deterioration events. Cox
proportional hazard models were applied to
microfinance portfolios, SME lending, and consumer
credit lines in several emerging markets [68], [69].
These models offered insight into temporal patterns of
borrower vulnerability but were sensitive to the
proportionality assumption, which often failed during
crisis periods or high-inflation episodes [70], [71].
Meanwhile, panel-based econometric frameworks
allowed integration of cross-sectional and time-series
data, supporting early-warning indicators for banking
crises [72], [73]. These models incorporated variables
such as credit growth, nonperforming loan ratios,
exchange rate pressures, foreign reserve trends, and
capital adequacy measures. Despite empirical
usefulness, they were hampered by sparse data and
rigid specifications.

Machine learning began gaining recognition for its
flexibility and ability to capture nonlinear patterns in
financial risk prediction. Support Vector Machines
(SVMs) were among the earliest machine learning
models applied to credit risk detection in emerging
market institutions [74], [75]. Their margin-
maximisation approach and capacity to handle sparse
or high-dimensional data made them favourable for
banking datasets with inconsistent reporting.
However, SVMs required significant parameter tuning
and lacked intuitive interpretability, limiting
supervisory acceptance in less mature regulatory
environments. Decision tree algorithms and random
forests emerged as powerful alternatives capable of
capturing interactions between financial ratios,
behavioural variables, and external factors [76] .
Random forests demonstrated robustness to noisy
data, missing observations, and outlier’s conditions
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common in emerging markets but their ensemble
nature complicated transparency [77].

Artificial neural networks (ANNSs), particularly
multilayer perceptron’s, were widely applied to credit
scoring, loan-approval systems, and SME financing
models in developing countries [78]. ANNs excelled
at modelling complex risk relationships, but they
required extensive training data, making them difficult
to apply in markets with small datasets or inconsistent
data generation processes [79]. Hybrid models
combining ANNs with genetic algorithms, fuzzy logic
systems, or Bayesian optimisation were also explored
[80], [81]. These models exhibited high predictive
performance yet remained computationally intensive
and difficult to integrate into conventional risk
governance frameworks [82], [83].

Advancements in behavioural data collection enabled
machine-learning-driven credit scoring in
microfinance and financial inclusion initiatives.
Research demonstrated that mobile-money transaction
flows, telecom usage patterns, and digital wallet
activity could serve as proxies for customer
creditworthiness [84], [85]. Psychometric scoring
systems introduced additional layers of behavioural
prediction, analysing borrower traits, cognitive
responses, and risk-taking preferences. By 2018, these
systems were deployed across multiple African,
Asian, and Latin American MFIs. However, concerns
persisted regarding algorithmic fairness, data privacy,
and the risk of reinforcing social biases [86].

Market-based data-driven approaches contributed
significantly to liquidity and market-risk evaluation.
Early work applied GARCH-type models to forecast
volatility in emerging market bonds, equities, and
currency markets [87], [88]. While powerful for short-
term volatility modelling, GARCH frameworks
struggled with sudden regime shifts, a recurrent
phenomenon in volatile developing markets. More
advanced stochastic volatility models, including
Markov-switching GARCH variants, improved
adaptability but demanded large datasets often
unavailable locally [89], [90]. Machine learning
models such as gradient boosting machines (GBM)
and elastic-net regularisation expanded modelling
capacity by integrating market microstructure
variables such as order-book imbalances, bid-ask
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spread dynamics, and sentiment indicators extracted
from financial news [91], [92]. Nevertheless, market
fragmentation and liquidity constraints in many
emerging economies limited the reliability of such
indicators.

Operational risk modelling evolved from basic loss-
distribution approaches toward analytics-enabled
frameworks capable of detecting fraudulent
transactions, cyber intrusions, internal process
failures, and human-error-induced incidents. Pre-2018
research on anomaly detection used unsupervised
learning, clustering algorithms, and outlier-based
scoring to identify irregular patterns in financial
transactions [93], [94]. For instance, k-means
clustering and density-based approaches were adopted
for fraud detection in electronic payment systems
prevalent in emerging markets [95]. Although useful,
false-positive rates remained high due to unstable
behavioural patterns and limited labelled fraud data.

Systemic-risk modelling became increasingly relevant
after the 2008 financial crisis. Network theory
emerged as a dominant analytical paradigm for
assessing interbank linkages, contagion channels,
cross-holding exposures, and financial
interconnectedness in emerging markets [96], [97].
Graph-based models measured centrality, clustering,
and vulnerability across banking networks, yielding
insight into systemic fragility. Stress-testing
frameworks incorporated network spillovers, enabling
regulators to evaluate the resilience of financial
institutions under macroeconomic shocks [98].
Furthermore, agent-based models were explored to
simulate heterogeneous financial behaviours and
institutional feedback loops . Despite conceptual
richness, data limitations impeded widespread
adoption.

Insurance-sector risk evaluation models also
experienced data-driven transformation. Nonlife
actuarial risk modelling employed generalized linear
models (GLMs), generalized additive models
(GAMs), and machine learning methods such as
random forests and boosted trees for claims prediction,
reserve estimation, and fraud detection [99]. Life
insurers experimented with lapse modelling, mortality
forecasting, and policy-holder behaviour prediction
using survival models and ANNs [100]. Emerging
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markets posed challenges such as low insurance
penetration, sparse historical data, and limited
actuarial expertise. Nonetheless, advances in mobile-
based micro-insurance platforms yielded new data
sources for predictive analytics [101], [102].

Macroeconomic early-warning  systems (EWS)
constituted another major research domain. EWS
models typically integrated macro-financial variables
such as interest-rate spreads, credit-to-GDP gaps,
foreign reserve fluctuations, asset-price
misalignments, banking profitability indicators, and
external vulnerability indices [103], [104]. Composite
indicator frameworks and signal extraction models
were applied across Asia, Africa, and Latin America
to anticipate currency crises, banking distress, and
sovereign debt defaults [105]. Machine learning
enhancements improved predictive capability by
capturing nonlinear interactions between global
commodity prices, capital flows, and domestic credit
cycles [106]. However, emerging markets’ exposure
to external shocks often reduced model robustness.

Big-data analytics played a growing role in data-
driven risk evaluation, supported by increased
adoption of cloud computing, distributed databases,
and digital financial services infrastructure.
Techniques such as text mining, natural language
processing (NLP), and social media analysis were
used to assess investor sentiment, detect reputational
risk, and forecast market reactions [107]. Mobile-
network metadata, satellite imagery, and alternative
data sources enhanced risk intelligence for agricultural
lending, disaster insurance, and supply-chain-linked
financing [108]. Constraints remained in model
validation, regulatory guidance, and data governance
frameworks.

Another influential stream examined the governance
dimensions of data-driven modelling. Scholars
highlighted that risk model performance was highly
dependent on institutional capacity, board oversight,
and data governance quality [109]. Weak governance
contributed to model misuse, poor calibration, and
overreliance on automated systems without adequate
human judgment. Regulatory agencies in emerging
markets struggled to evaluate model risk, enforce
validation standards, and monitor algorithmic opacity
in machine-learning-based tools [110]. This
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necessitated  hybrid  supervisory  frameworks
combining quantitative risk scores with qualitative
assessments.

The literature also emphasised the distinction between
micro-level risk evaluation at the institutional level
and macro-level systemic-risk evaluation. Micro-level
models focused on borrower creditworthiness,
institutional liquidity, capital adequacy, operational
vulnerabilities, and insurance risk exposure. Macro-
level models addressed cross-institution linkages,
asset—liability mismatches, contagion pathways, and
global spillover effects. Many scholars argued for
integrated modelling approaches combining these
perspectives, although implementation remained
limited in emerging markets due to data fragmentation
[111].

In summary, the literature demonstrates substantial
progress in applying data-driven methods to emerging
market risk evaluation across banks, insurers, MFIs,
and capital-market intermediaries. However, pre-2019
research consistently notes that modelling constraints
including weak data infrastructure, macroeconomic
instability, regulatory gaps, and cultural resistance
continue to hinder widespread adoption. The review
shows that while machine learning and hybrid
approaches significantly enhance predictive accuracy,
practical implementation must address governance,
transparency, and data-quality challenges. These
findings underscore the need for risk modelling
frameworks that balance predictive performance with
interpretability, regulatory = compatibility, and
contextual adaptability.

III.  DISCUSSION

The evolution of data-driven risk evaluation models
reflects an ongoing transformation in how financial
institutions particularly those operating in emerging
markets conceptualise, measure, and respond to
financial vulnerabilities. The literature reviewed
demonstrates that emerging market conditions
fundamentally shape the types of models that can be
effectively deployed, the quality and quantity of data
available, and the institutional capacity required to
sustain  sophisticated analytical systems. This
discussion synthesises the key insights drawn from the
preceding review and critically reflects on the
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implications for practitioners, policymakers, and
researchers.

A central theme emerging from the literature is that
data-driven models have significantly enhanced
predictive capability compared to traditional rule-
based or judgment-based methods, yet they remain
constrained by contextual limitations inherent in
emerging economies. Statistical approaches such as
logistic regression, probit models, and survival
analysis provided foundational analytic structures for
early modelling efforts. Their appeal lay in simplicity,
transparency, ease of interpretation, and low data
requirements. However, these methods were
frequently insufficient for capturing nonlinear
patterns, behavioural complexities, or rapid structural
changes in macroeconomic environments. Emerging
markets are prone to volatile inflation rates, political
instability, commodity price shocks, and irregular
credit cycles, which reduce the stability of traditional
econometric models. As a result, their predictive
accuracy deteriorates during periods of stress precisely
when institutions require reliable assessments of risk.

The rise of machine learning methods offered
solutions to several of these challenges. Models such
as random forests, support vector machines, neural
networks, and gradient boosting algorithms gained
prominence due to their ability to capture nonlinear
interactions and process high-dimensional data [112] .
Their adoption in credit scoring, fraud detection,
claims forecasting, and market-risk prediction
represented a substantial advancement in modelling
sophistication. Yet machine learning models introduce
a critical trade-off between predictive power and
interpretability. In emerging market regulatory
environments often characterised by limited technical
expertise and  underdeveloped supervisory
frameworks this opacity can limit institutional
adoption. Regulators may hesitate to approve models
whose internal mechanics are difficult to explain or
audit. This tension highlights the continued relevance
of hybrid modelling approaches that combine machine
learning techniques with transparent statistical
components or expert judgment frameworks.

An equally important finding is that emerging market
financial institutions face persistent data-related
constraints that affect model performance. Weak
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reporting  infrastructures, incomplete borrower
histories, and inconsistent regulatory filings
undermine model calibration and back-testing. For
smaller institutions, particularly MFIs and
community-level lenders, limited digitisation further
restricts access to structured datasets. In these
contexts, mobile-money transaction data, telecom
metadata, psychometric assessments, and alternative
data sources have emerged as partial solutions. These
new data streams compensate for absent financial
records, although they generate new challenges
relating to privacy, algorithmic bias, and data
ownership. Ethical considerations surrounding the use
of behavioural and psychological data for credit
scoring remain an area of active debate and require
careful regulatory oversight.

Liquidity, market, operational, and systemic risk
modelling in emerging markets also face significant
methodological challenges. Market-based models
such as GARCH variants, stochastic volatility models,
and sentiment-driven analytics perform well in liquid
markets but struggle in fragmented or thinly traded
environments [113]. Liquidity constraints amplify
price distortions, undermine assumptions of market
efficiency, and reduce reliability of market
microstructure indicators. Operational risk models,
particularly anomaly detection and clustering
algorithms, are sensitive to high noise levels and
irregular behavioural patterns. Fraud patterns in
emerging markets evolve rapidly, requiring
continuous model retraining and adaptation. Systemic
risk modelling, while theoretically powerful, is
hindered by limited availability of interbank exposure
data and the absence of centralised data repositories in
many jurisdictions. These limitations underscore the
importance of developing hybrid and adaptive models
capable of functioning effectively within imperfect
information environments.

Insurance-sector risk evaluation models face
additional constraints distinct from the banking sector.
Sparse historical claims data, low insurance
penetration, high rates of policy lapsation, and limited
actuarial capacity hinder predictive analytics in many
emerging economies. While GLMs, GAMs, and
random forests have strengthened nonlife actuarial
modelling their performance is constrained by
inconsistent reporting and limited digitalisation of
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claims workflows. Life insurance modelling for
mortality and lapse prediction benefits from survival
analysis and neural networks, but these require
substantial data not always available. Micro-insurance
platforms have improved data collection and risk
pooling but remain vulnerable to idiosyncratic claims
shocks, natural disasters, and climate-related events
[114].

A recurring insight across the literature is that
institutional capacity including governance structures,
risk culture, and technical expertise plays a decisive
role in determining the success of data-driven risk
evaluation models. Weak governance contributes to
model misuse, insufficient oversight, poor validation
practices, and overreliance on automated outputs
without proper contextual interpretation [115] . Many
emerging market regulators lack the capacity to
independently assess sophisticated machine learning
models, complicating the approval process for
advanced algorithms. The absence of established
model risk management frameworks increases
vulnerability to overfitting, calibration drift, and
misspecification. These governance gaps illustrate that
improvements in modelling must be accompanied by
parallel investments in supervisory capability,
institutional training, and data governance.

The discussion further reveals that macro-level and
micro-level risk modelling approaches have often
evolved independently. Micro-level models address
borrower repayment risk, institutional liquidity
pressures, operational inefficiencies, and internal
vulnerabilities, whereas macro-level models examine
broader systemic linkages, capital flow dynamics, and
aggregate financial stability. The reviewed literature
emphasises the potential for integrated modelling
frameworks that combine institution-specific data with
macro-financial indicators. Despite conceptual appeal,
practical implementation remains limited due to data
fragmentation and institutional silos. Nevertheless, the
growing availability of digital financial data,
alternative datasets, and cloud-based computing
environments indicates potential for future integration.

Another important implication is that emerging market
financial institutions require risk evaluation models
that remain robust under regime shifts, political
instability, and externally induced shocks. Traditional
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models assume relatively  stable  structural
relationships, but emerging markets experience
frequent and abrupt changes in regulatory policies,
exchange rate regimes, and fiscal environments. These
dynamics often necessitate frequent recalibration and
stress testing. Techniques such as Markov-switching
approaches, adaptive learning algorithms, and
scenario-based evaluation frameworks can partially
address these challenges, but they remain
underutilised due to technical complexity and limited
data availability.

Despite methodological advances, it is evident that
data-driven models must complement not replace
human judgment in risk evaluation. Model outputs
require careful interpretation within local contexts,
integrating  institutional ~ experience, = market
knowledge, and qualitative insights. Hybrid human—
machine systems, where risk analysts critically
evaluate model outcomes and adjust for contextual
nuances, represent a pragmatic approach for emerging
market institutions. This aligns with governance
frameworks emphasising accountability, model
validation, and supervisory review.

In conclusion, the literature indicates that data-driven
risk evaluation models offer substantial promise for
enhancing predictability, improving institutional
decision-making, and supporting financial stability in
emerging markets. However, effective
implementation requires attention to contextual factors
such as data quality, regulatory capacity, institutional
governance, and market structure. Robust model risk
management, ethical data usage, and integration of
human judgment remain essential. The insights from
this literature review form the basis for refining risk
evaluation frameworks and guiding future research in
emerging market financial analytics.

IV.  CONCLUSION

The purpose of this review was to synthesise the
development and application of data-driven risk
evaluation models for emerging market financial
institutions prior to 2019. The analysis shows that
while substantial progress has been made in adopting
quantitative, computational, and machine-learning-
based risk modelling techniques, the effective
translation of these innovations into emerging market
contexts remains uneven. The key challenge lies not in
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the absence of methodological sophistication but in
navigating the structural, institutional, and data-related
limitations that shape financial systems in developing
regions.

A central insight emerging from the literature is that
traditional econometric models such as logistic
regression, probit analysis, hazard models, and early-
warning panel frameworks continue to provide an
important baseline for risk assessment due to their
interpretability, transparency, and relative simplicity.
However, their performance is constrained in
environments marked by macroeconomic instability,
structural breaks, and incomplete data. Machine
learning models, including SVMs, random forests,
neural networks, and ensemble algorithms, offer
substantial predictive advantages by capturing
nonlinearities and processing high-dimensional
inputs. Yet these advantages come at the cost of
interpretability and governance complexity, posing
challenges for regulatory acceptance and model risk
management in emerging markets.

The review further demonstrates that the contextual
realities of emerging markets such as fragmented
datasets, limited historical depth, inconsistent
regulatory reporting, and the prevalence of informal-
sector financial activity significantly influence model
applicability. Data-driven models must therefore be
adapted to accommodate data sparsity, high noise
levels, and sudden regime shifts. Methods relying on
large, stable datasets frequently underperform, while
those designed to operate under uncertainty and
structural volatility demonstrate greater resilience. As
financial digitalisation accelerates, new data sources
such as mobile-money platforms, telecom metadata,
psychometric assessments, and alternative datasets
provide opportunities to strengthen risk evaluation,
though they introduce ethical, regulatory, and
governance considerations that must be addressed
carefully.

The literature also highlights the importance of
institutional capacity in shaping model performance.
Strong  governance  structures, robust data
management systems, and skilled analytical personnel
play decisive roles in determining whether
sophisticated models can be implemented effectively.
Weak regulatory oversight, insufficient validation
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frameworks, and limited technical expertise generate
risk of model misuse or misinterpretation, particularly
when deploying black-box machine learning systems.
In this context, hybrid modelling approaches
combining statistical modelling, machine learning,
and expert judgment emerge as a practical strategy for
balancing predictive accuracy with interpretability and
regulatory compliance.

Another key conclusion of the review is that micro-
level and macro-level risk assessment approaches are
often treated separately, limiting their effectiveness in
identifying system-wide vulnerabilities. While micro-
level models provide insights into borrower risk,
institutional liquidity, and operational vulnerabilities,
macro-level models emphasise systemic risk
propagation, contagion pathways, and financial
stability indicators. Integrating these perspectives
remains a major research and policy challenge but
offers substantial potential for improving early-
warning capabilities in emerging market financial
systems.

Overall, this review underscores that data-driven risk
evaluation models offer transformative potential for
enhancing risk management practices, supervisory
oversight, and financial stability in emerging markets.
Their successful adoption requires contextual
adaptation, strong governance, ethical safeguards, and
regulatory frameworks capable of managing model
risk. Future research must explore robust methods for
modelling under structural uncertainty, integrating
heterogeneous data sources, and combining machine
learning with domain expertise. Practitioners and
policymakers should prioritise capacity development,
data infrastructure investment, and the establishment
of model validation standards suited to emerging
market realities.

In summary, data-driven risk evaluation represents
both an opportunity and a challenge for emerging
market financial institutions. When appropriately
designed and implemented, these models can
strengthen financial resilience, improve resource
allocation, and support inclusive growth. However,
their potential will only be realised through sustained
investment in data quality, institutional capability, and
regulatory alignment. This review contributes to
ongoing academic and policy discussions by providing
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a coherent synthesis of pre-2019 developments and
outlining directions for future inquiry aimed at
advancing risk evaluation in contexts where it is
needed most.
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