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Abstract- The integration of Internet of Things (IoT) 

devices and artificial intelligence has revolutionized smart 

healthcare, enabling continuous monitoring, personalized 

treatment, and proactive intervention. Cardiovascular 

disease (CVD) is still one of the main causes of death 

worldwide, yet we don’t have a strong, unified way to 

monitor it in real time using deep learning. Traditional 

machine learning methods often fall short; they strive to 

combine different kinds of medical data, deal with delays 

in processing, and work reliably in low-resource settings 

where technology and infrastructure are limited. This 

review focuses on closing that gap by examining how 

transformer-based deep learning models can be applied to 

multimodal IoT data in smart healthcare, with a special 

emphasis on predicting CVD. We classify and assess the 

latest transformer architectures based on how they fuse 

data, their areas of application, and their readiness for 

real-time use. Our analysis shows that transformer 

models, with their attention mechanisms and ability to 

handle information across multiple formats, perform 

much better than traditional approaches when it comes to 

combining data from sources like physiological signals, 

medical imaging, and clinical records. However, we also 

identify several challenges: high computational demands 

for edge devices, limited interpretability, a limited 

multimodal dataset, and infrastructure barriers in under-

resourced regions. To address these challenges, we 

highlight future directions such as creating lightweight 

transformer models, using privacy-preserving federated 

learning, and developing unified multimodal pretraining 

strategies. This review aims to provide a roadmap for 

building fair, scalable, and low-latency AI solutions for 

real-time cardiovascular prediction, offering valuable 

insights for both researchers and healthcare system 

developers. 

 

Index Terms- Transformer Models, Internet of Things, 

Multimodal Data Fusion, Cardiovascular Disease 

Monitoring, Real-Time Deployment 

 

I. INTRODUCTION 

 

CVD remains the leading cause of death globally, 

emphasizing the need for continuous and intelligent 

monitoring systems. As a result of CVD, there were 

nearly 17.9 million deaths in 2019, a figure 

representing 32% of worldwide deaths (WHO, 2021). 

This epidemic requires innovative methodologies for 

early detection, continuous monitoring, and 

appropriate intervention. The emergence of 

the Internet of Things (IoT) leading to Internet of 

Medical Things (IoMT) has led to a pattern shift in 

smart healthcare, enabling a unified collection of 

multimodal physiological data, such as 

electrocardiograms (ECG), blood pressure (BP), 

oxygen saturation (SpO₂), and accelerometer 

readings, through wearable and implantable sensors 

(Osama et al., 2023). These heterogeneous data 

streams offer unique opportunities for detailed patient 

representation; nevertheless, new challenges include 

integrating such data streams, noise resilience, and 

real-time processing (Chen et al., 2024). 

 

In unimodal cardiovascular disease analysis, 

conventional deep learning architectures, particularly 

CNNs, have proven highly effective (Acharya et al., 

2017). However, they struggle to model cross-modal 

dependencies and long-range sequential patterns 

rooted in multimodal IoT data. 

 

While transformers were first developed for natural 

language processing, their adaptability has made 

them a cornerstone of modern AI. The secret to their 

success is self-attention, a technique that excels at 

identifying contextual connections across completely 

different kinds of data. This capability is a natural fit 
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for the complex challenge of multimodal fusion 

(Dosovitskiy et al., 2020). Transformer models for 

real-time CVD monitoring are a relatively recent 

phenomenon. They have been somewhat constrained 

in their computational resources, particularly 

concerning different data sources and required 

architectures for edge computing (Noor et al., 2025). 

 

Although many reviews address deep learning for 

healthcare (Morid et al., 2023) and IoT systems (Li et 

al., 2024), only very few studies (Saleh et al., 2025) 

deal specifically with transformer-based multimodal 

fusion for real-time monitoring of CVD. Same early, 

late, or hybrid fusion approaches remain fragmented 

and do not provide standardized benchmarks for 

CVD applications (Krones et al., 2025). While 

foundational models like BERT and ViT have 

demonstrated state-of-the-art performance, their 

considerable computational complexity and high 

latency render them unsuitable for deployment on 

resource-constrained edge devices requiring real-time 

inference (Madan et al., 2024). Additionally, most 

studies fail to account for socioeconomic and 

infrastructural tasks in regions with the highest CVD 

burden, such as Sub-Saharan Africa (Roth et al., 

2020). The limited diversity of publicly available 

multimodal CVD datasets further obscures 

generalizability (Wang et al., 2024). While 

multimodal cardiology frameworks like CardioNet+ 

achieve 99.1% accuracy and a 99.0% AUC-ROC by 

integrating ECG/PPG signals with chest X-ray data, 

they significantly outperform single-modal models in 

heart failure detection (Adeyi, 2025), surpassing 

single-modal models and establishing a new 

benchmark in heart failure identification systems. 

 

II. RELATED WORKS 

 

A significant trend in modern healthcare is the 

leveraging of IoT-generated multimodal data for 

advanced analytics in chronic disease management, 

with notable applications in CVD. The widespread 

deployment of biomedical sensors, wearables, and 

imaging platforms has resulted in data ecosystems 

characterized by high volume, variety, and 

complexity, presenting both unprecedented 

opportunities and analytical challenges. Extracting 

actionable insights demands advanced fusion 

frameworks capable of handling such data diversity. 

This section reviews existing literature on 

multimodal data fusion in smart healthcare, focusing 

on CVD prediction. It explores IoT's role, sensor 

technologies, fusion strategies, and the impact of ML, 

DL, and transformer-based models. Furthermore, it 

addresses infrastructure for real-time monitoring and 

discusses challenges in building scalable, 

interpretable fusion systems, highlighting gaps and 

future research directions in cardiovascular 

healthcare applications. 

 

A. Multimodal IoT in Smart Healthcare 

Unimodal data collects information from a single 

source rather than combining multiple data streams. 

In implies that, models rely on only one category of 

modality to make predictions. Zhong et al. (2022) in 

their study highlights the limitations of unimodal 

models in predicting antenatal depression. While 

unimodal methods depict certain patterns, their 

accuracy, sensitivity, and reliability are limited. In 

contrast to multimodal methods, they fail to reflect 

the complex cross-modal interactions affecting 

maternal mental health, making them less effective 

and likely to miss important predictive signals 

essential for early detection and intervention (Zhong 

et al., 2022). 

 

Multimodal IoT refers to the combined use of 

different types of data, like physiological signals, 

environmental sensors, medical images, and EHRs to 

improve how we monitor patients and make 

diagnoses. In recent years, the integration of these 

multimodal IoT technologies into smart healthcare 

systems has drawn a lot of attention, as it helps 

deliver real-time, personalized, and proactive medical 

care.Initial efforts were focused on unimodality IoT-

based monitoring systems for health assessment, such 

as wearable ECG monitors or glucose sensors 

(Mahmmod et al., 2024). The unimodality monitoring 

approaches presented uneven views of the health 

state of a patient, and to address this problem, 

researchers began to integrate multiple sensor 

modalities with different matching health data. 

 

Multimodal fusion of heterogeneous streams of 

physiological data from wearables (ECG, 

photoplethysmography (PPG)), ambient sensor 

signals, and implantable devices is known to 

introduce complementary aspects of cardiovascular 
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activity and thus enable better patient understanding 

that it would not otherwise be possible to achieve 

using individual modalities (Ahmad et al., 2025; 

Moon et al., 2023). ECG can monitor direct cardiac 

activity as a subset of the heart's electrical signal. 

Still, PPG shows peripheral hemodynamics, and 

accelerometers capture motion variability, thus 

further improving robustness against noise and 

uncertainty (Xing et al., 2025).  

 

Recent studies have adopted ML and DL models for 

effective multimodal fusion (Chen et al., 2025). Cretu 

et al. (2023) demonstrated that combining ECG, 

arterial blood pressure (ABP), and central venous 

pressure (CVP) signals significantly improved the 

accuracy of arrhythmia detection, with a ResNet50 

model achieving 99.58% accuracy across five 

arrhythmia classes.  Likewise, Wang et al. (2023) 

recent work revealed that healthcare systems are 

integrating AI, big data, and wearable IoT 

technologies, and highlighted improved health 

management and disease prevention through the 

combination of physiological signal monitoring, 

personalized elderly care, and EHRs. 

 

In many studies, fusion approaches differ between 

studies. Some may use early fusion (with pre-

processed raw data streams combined before feature 

extraction), while others may apply late fusion, where 

predictions from one or more individual modalities 

are merged. Hybrid approaches, which combine both 

feature and decision-level integration, are also 

emerging to optimize performance (Kulasekara et al., 

2025). These data fusion techniques frequently 

leverage deep learning architectures, including 

CNNs, RNNs, and, more recently, transformer-based 

models, which are particularly adept at capturing 

long-range dependencies across different modalities, 

 

 

B. IoT in Cardiovascular Healthcare  

CVD is responsible for 17.9 million yearly deaths 

worldwide, representing 32% of global mortality 

(WHO, 2021). Developing nations are confronting a 

growing burden of CVD, driven by rapid 

epidemiological transitions and constrained 

healthcare access. The IoT offers a promising 

approach to mitigate these challenges by facilitating 

remote patient monitoring. Wearable sensors, which 

track parameters such as ECG, blood pressure, and 

pulse, enable the continuous collection of real-time 

physiological data. The multimodal data collected is 

analyzed to improve early detection and risk 

stratification beyond traditional unimodal systems. 

IoT solutions, such as Predictis, demonstrate 

potential for scalable preventive care, particularly in 

resource-limited settings, by combining affordable 

sensors with user-friendly mobile interfaces for 

proactive CVD management (Islam et al., 2023). 

 

Unimodal IoT systems focus on acquiring single-

parameter physiological data for cardiovascular 

monitoring, typically concentrating on either ECG or 

echocardiogram (Echo) signals. Single-signal 

monitoring systems have important limitations in 

CVD care. They track just one type of body signal, 

fails to account for the broader context of heart health 

(Yan et al., 2022). Consequently, in the absence of 

complementary data such as blood pressure or 

oxygen saturation, these methods cannot provide a 

comprehensive assessment of the risks associated 

with complex cardiac conditions. While effective for 

detecting specific anomalies like arrhythmias, they 

are often limited in their capacity to identify broader 

cardiovascular risk factors. Likewise, these systems 

are more likely to give wrong readings due to body 

movements or technical errors (Wang et al., 2024).  

 

To overcome the single-signal constraint, multimodal 

IoT systems are used that combine multiple health 

data, such as ECG, PPG, blood pressure, oxygen 

saturation, breathing rate, etc., which offer healthcare 

professionals a more comprehensive view of heart 

health (John et al., 2024; Boikanyo, et al., 2023). The 

fusion of multimodal data from complementary 

sensors enhances the accuracy and robustness of 

smart healthcare systems, thereby improving their 

overall reliability. Multimode data fusion greatly 

reduces noise and accurately finds optimal impact for 

achieving high efficiency in the health sector (Kern, 

2025). In addition, it provides for real-time 

processing and contextual understanding for systems 

of increasing complexity (e. g. medical diagnosis and 

autonomous systems). 
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C. Biomedical Sensors for Multimodal Data Fusion 

in CVD Monitoring 

The integration of multimodal data has significantly 

enhanced the monitoring of CVD, leading to more 

accurate, reliable, and clinically actionable patient 

assessments. This progress is largely driven by 

advances in biosensor technology, which can capture 

complementary physiological signals. Such sensors 

facilitate continuous monitoring and improved risk 

stratification in both clinical and ambulatory settings. 

This section examines the principal sensor modalities 

employed in these multimodal systems, detailing 

their physiological targets, key technological 

features, and representative applications in 

contemporary research. 

 

• ECG Sensors 

ECG is the cornerstone of cardiac monitoring, 

providing critical insights into the heart's electrical 

activity. Consequently, ECG sensors are essential for 

identifying arrhythmias, ischemia, myocardial 

infarction, and other cardiac pathologies. Chester 

straps, patch-type monitors, and wearable ECG 

equipment can be used to collect data continuously 

and provide a wide range of patient mobility and 

flexibility for long-term cardiac surveillance. New 

devices that combine ECG signals with additional 

signal monitoring techniques such as PPG and 

accelerometry have been developed and evaluated for 

improved arrhythmia detection and stress monitoring 

accuracy (Alimbayeva et al., 2024). 

 

• PPG Sensors 

Kim and Baek (2023) review the current state of PPG 

technology for wearable devices, including its non-

invasive use in a range of applications, including 

monitoring heart rate, oxygen saturation, blood 

pressure, sleep quality, and stress. They review 

technology developments in small multi-wavelength 

sensors and low-power consumption systems and 

identify critical challenges that include motion 

artifacts, measurement accuracy, skin tone 

variability, and battery life limitations. 

Kim and Baek (2023) stated that further research in 

PPG will focus on further improving accuracy in 24-

hour continuous monitoring, developing novel health 

parameters, improving cuffless blood pressure 

monitoring and glucose monitoring, and analysis of 

stress and sleep. Further progress in multi-

wavelength sensors, adaptive algorithms, and real-

world validation studies in clinical applications is 

critical for further strengthening the reliability of 

PPG and its applications in wearable healthcare 

technology. 

 

• Impedance Cardiography (ICG) Sensors 

According to Mansouri et al. (2022), ICG offers a 

non-invasive and cost-effective method for 

diagnosing CVDs. This technique measures thoracic 

bioimpedance to estimate real-time hemodynamic 

parameters, including cardiac output, stroke volume, 

and arterial compliance. Consequently, ICG has 

diagnostic utility for a range of conditions, such as 

valvular heart disease, hypertension, arrhythmias, 

vascular disorders, heart failure, and Cushing's 

syndrome. The authors state that the use of a large-

scale ICG signal database would improve the 

automatic diagnosis of CVDs by artificial 

intelligence and in other ways address the existing 

issues, such as a lack of signals, voltage variability 

between electrodes, and smaller-scale clinical trials. 

A fusion system of ICG data in AI for automatic 

cardiovascular disease diagnosis needs to be explored 

(Mansouri et al., 2022). The authors also emphasize 

the need for a comprehensive database of ICG signals 

to enhance the diagnostic accuracy of machine 

learning models, mitigate the challenges of signal 

variability, and advance the development of 

automated CVD detection systems. 

 

• Blood Pressure (BP) Sensors 

Islam et al. (2023) describe BP sensors as a core 

component of a wearable IoT-based health 

monitoring system named Predictis. It involves an 

automatic blood pressure monitor on a wrist wearable 

type JZK-003 for real-time BP measurement, and its 

data is transmitted via Bluetooth to a mobile app for 

continuous cardiovascular monitoring and CVD risk 

level prediction. Data from the BP sensor in real-time 

can also assist in an accurate and timely assessment 

of heart health conditions (Islam et al. 2023). The 
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authors emphasize that future BP sensor systems 

should not only provide accurate measurements of 

BP in real-time, but also implement algorithms from 

cloud-based platforms to support continuous 

monitoring, risk prediction, emergency warning, and 

mobile application interfacing. 

 

• Respiratory Rate and Thoracic Motion Sensors 

Respiratory parameters are closely linked with 

cardiac function. Sensors for instance respiratory 

inductance plethysmography bands, strain gauges, 

and accelerometers, when placed on the chest, are 

used to take respiratory rate and tidal volume. These 

sensors are valuable in conditions such as heart 

failure and sleep apnea, where ventilation-perfusion 

mismatch and sympathetic overactivity are prominent 

(Ceccarelli et al., 2022). 

 

The combination of respiratory signals with 

cardiovascular data has led to improved models for 

detecting sleep-disordered breathing and assessing 

cardiorespiratory coupling. For example, smart 

garments that integrate ECG, PPG, and respiratory 

motion sensors have been used to monitor nocturnal 

events and assess autonomic dysfunction in patients 

with heart disease (Lu et al., 2024). 

 

D. Data Transmission and Integration Mechanisms 

for Multimodal Data Fusion  

Multimodal data fusion systems integrate information 

from diverse sources to provide a more 

comprehensive understanding, which is crucial in 

various applications like healthcare (Abdar et al., 

2023). The process involves several mechanisms for 

data transmission and integration to overcome the 

limitations of single-modal data (Abdar et al., 2023). 

 

• Data Transmission Mechanisms 

Multimodal data, which encompasses both structured 

and unstructured formats, is generated in massive 

volumes daily by a diverse array of sensors and 

systems (Ahmad et al., 2025). A prominent example 

is the IoMT, where networks of sensors continuously 

collect various health metrics, including vital signs, 

physical activity levels, and ECG readings 

(Adedinsewo, 2023). This data is then transmitted 

through various layers and protocols: 

 

• Sensor Layer: This foundational layer in IoMT 

systems collects data from patients using sensors, 

controllers, and actuators (Ahmad et al., 2025). It 

includes a data-entry sublayer for signal 

acquisition, utilizing techniques like General 

Packet Radio Service (GPRS), Radio Frequency 

Identification (RFID), and graphic codes (Ahmad 

et al., 2025). 

• Transmission Technologies: Collected data is 

securely transmitted to a central location (e.g., 

cloud server, hospital data center) (Adedinsewo et 

al., 2023). Short-range data transmission methods 

include Bluetooth, Bluetooth Low Energy (BLE), 

Wi-Fi, and Zigbee (Koulouras et al., 2025). Long-

range communication approaches, such as LoRa, 

Sigfox, 4G, and 5G, are also employed (Al-

Shareeda et al., 2023). Ethernet offers robust and 

high-speed wired transmission for applications 

that require high bandwidth. 

• Gateway Layer (Fog/Edge Layer): This layer 

enables real-time data transfer and data 

preparation, combining different networks, data 

warehouses, and data description formats. Edge 

computing frequently performs data preparation 

at this level, closer to the data sources (Yıldırım et 

al., 2025). 

• Cloud Layer: Large medical and healthcare 

systems integrate with the cloud for daily 

operations, including storing patient data and 

processing updated medical samples (Banimfreg, 

2023). 

• Layered Architecture: IoT communication, 

including multimodal data transmission, is 

organized into a layered architecture like the OSI 

model, which ensures efficient data exchange and 

proper handling across different protocols. Each 

layer has a specific task, from physical connection 

(Physical Layer) to error-free transmission (Data 

Link Layer), routing (Network Layer), reliable 

delivery (Transport Layer), session management 

(Session Layer), data format translation 

(Presentation Layer), and user application 

interface (Application Layer) (Gupta et al., 2024). 

• Specialized Protocols: Certain protocols are used 

for certain data types and applications, such as 

OBD2/CAN-BUS for vehicle diagnostic data and 

OPC UA for secure industrial data exchange 

(Henke, 2022). 
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• Data Integration Mechanisms 

Data integration, frequently termed data fusion, 

addresses the challenge of insufficient or noisy 

single-source data by combining information from 

multiple modalities. The objective is to leverage the 

complementary and redundant information inherent 

across these diverse sources. The methodologies for 

this integration have been profoundly transformed by 

deep learning, marking a paradigm shift from 

reliance on hand-crafted feature engineering to 

automated, learned representation. Fusion strategies 

are generally categorized by the stage at which data 

from different modalities are combined within the 

processing pipeline: 

 

• Early Fusion (Data-Level Fusion) 

In early fusion, raw or minimally pre-processed data 

from multiple modalities are combined at the input 

level and fed into a single processing model. This 

approach maintains the original information from 

each modality and decreases computational costs by 

means of a single encoder, letting the model to learn 

cross-modal relationships from low-level features. 

However, it can result in very high input dimensions 

with multiple modalities and is best suited for 

homogeneous data or a limited number of modalities, 

as it may fail to capture relationships that emerge at 

higher abstraction levels (Kulasekara et al., 2025). 

 

• Intermediate fusion (Feature-level fusion) 

Intermediate fusion, or feature-level fusion, involves 

processing data from each modality separately to 

extract feature vectors, which are then combined 

within the network before making a final decision. 

This method allows flexibility in how and when 

features are fused, enabling precise modeling of 

relationships and ensuring heterogeneous data are 

transformed into comparable feature vectors, making 

it robust to missing modalities and dimensional 

imbalances. It includes marginal fusion, where 

features are concatenated before classification, and 

joint fusion, where additional layers learn abstract 

cross-modality interactions (Guarrasi et al., 2025). 

 

• Late Fusion (Decision-Level Fusion) 

Late Fusion, or decision-level fusion, is a multimodal 

integration strategy where separate models are 

trained independently on distinct data modalities. The 

final decision is derived by aggregating the outputs of 

these models through techniques such as weighted 

averaging or majority voting. This approach allows 

each model to be fine-tuned for its specific data type, 

which can lead to complementary, uncorrelated errors 

and is simple to implement, even combining deep and 

shallow learning methods. However, it cannot 

capture interactions between features at the data or 

feature level, as fusion only happens at the decision 

stage (Kulasekara et al., 2025). 

 

• Hybrid Fusion 

Hybrid fusion systems merge components of early, 

intermediate, and late fusion, dynamically selecting 

the suitable fusion level based on task requirements 

and environmental settings (Shaik et al., 2024). 

Beyond traditional methods, deep learning has 

introduced fine-grained techniques like encoder-

decoder fusion, which maps multimodal data into 

latent spaces for flexible prediction. Attention-based 

fusion selectively weighs inputs through self-

attention and cross-attention, effectively modeling 

dependencies within and across modalities, as seen in 

Transformer architectures. Graph Neural Networks 

(GNNs) provide a natural framework for modeling 

relational multimodal data by representing it within a 

unified graph structure. To complement, Generative 

Neural Networks (GenNNs) can be employed to 

synthesize missing data modalities or to enforce 

semantic consistency across them. The choice of an 

optimal fusion strategy is contingent upon the data 

characteristics, specific application requirements, and 

the critical trade-offs between model accuracy, 

robustness, and computational efficiency (Shaik et 

al., 2024). 

 

• Significance of Multimodal Data Fusion in CVD 

Prediction 

The complexity of CVD arises from its multifactorial 

nature, involving genetic, physiological, behavioral, 

and environmental components (Valeria et al., 2024). 

Thus, traditional predictive models relying on 

unimodal data regularly fall short in capturing the 

complex interrelationships that bring about CVD 

onset and progression. In multimodal data fusion, the 

integration of heterogeneous data sources such as 

clinical records, imaging, genomics, and wearable 

sensor data has emerged as a pivotal strategy for 
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enhancing the precision and robustness of predictive 

models (Li et al., 2024). 

 

Multimodal data fusion enables a comprehensive 

representation of patient health by integrating 

complementary data types. EHRs provide detailed 

information on patient history, diagnoses, and 

medications, while medical imaging techniques such 

as echocardiography or CT angiography deliver 

spatial and morphological characterization of cardiac 

structure and function (Zhou et al., 2023). Integrating 

these with genomic data can illuminate genetic 

predispositions to atherosclerosis or cardiomyopathy, 

while wearable sensor data can capture real-time 

physiological signals like heart rate variability, 

physical activity, and sleep patterns. The integration 

of diverse data streams through multimodal fusion 

yields patient profiles of greater granularity and 

contextual richness, which in turn enhances 

predictive performance. Concurrently, advances in 

ML and DL have accelerated the adoption of these 

multimodal approaches. Techniques such as deep 

learning are particularly well-suited for this task, as 

they can model complex, non-linear relationships 

across different data modalities. For instance, Solares 

et al. (2020) demonstrated that DL models, capable 

of processing large-scale, multimodal, and sequential 

EHR data, significantly outperform traditional 

statistical models in clinical risk prediction. This 

superior performance is largely attributable to the 

ability of deep learning to automatically learn 

intricate patterns and interactions directly from raw 

data. Similarly, the work of Lu et al. (2024) shows 

that deep learning models employing multimodal 

data fusion significantly outperform traditional 

methods. Their approach effectively learns both 

shared and subtype-specific patient representations. 

By integrating knowledge graphs, the model not only 

enhances its interpretability but also mitigates data 

scarcity through a shared-private feature learning 

framework. This approach improves clinical 

prediction tasks, such as disease outcome predictions, 

even in few-shot and zero-shot scenarios (Krones et 

al., 2025). 

 

The integration of multimodal data significantly 

improves model interpretability and clinical utility. 

By combining structured information, such as lab 

results, with unstructured data, like clinical notes, 

models can achieve a more holistic representation of 

disease pathology. This comprehensive approach 

facilitates the discovery of novel biomarkers and the 

identification of complex risk factors (Shaik et al., 

2024). Additionally, the fusion of temporally 

combined data, such as longitudinal EHRs and 

constant monitoring from wearable devices, aids the 

development of dynamic prediction models that can 

adjust to changes in patient health condition over 

time. 

 

• Transformer Models for Multimodal Data Fusion 

in Healthcare 

Transformer-based models have rapidly proven their 

ability to design sophisticated multimodal data fusion 

algorithms capable of representing complex 

relationships across heterogeneous data streams. In 

the context of healthcare, in which data are usually 

acquired from diverse modalities such as time series 

physiological signals, imaging, and clinical notes, 

transformers provide a flexible and scalable method 

required for disease diagnosis and monitoring. 

Transformers bring multimodal cardiovascular data 

fusion to a new level of self-attention by relying on 

attention mechanisms across heterogeneous streams 

of various data, including ECG, PPG, imaging, and 

clinical notes (Noor et al., 2025). The core innovation 

in transformer-based fusion comprises:  

 

• Cross-modal attention: Cross-modal attention is a 

neural mechanism in transformer architectures 

that supports dynamic interaction between diverse 

data sources (e.g., ECG signals and clinical text) 

by calculating relevance scores between 

modalities. Cross-modal attention synchronizes 

asynchronous data streams by dynamically 

aligning temporal events (Zhu et al., 2024). It 

identifies clinically significant inter-modal 

relationships by learning latent connections and it 

suppresses noisy modalities (e.g., ignoring 

motion-corrupted PPG during exercise) 

using gated attention. 

• Lightweight Architectures for Edge Deployment: 

Designing lightweight transformer architectures 

for real-time, on-device healthcare monitoring 

using the reduced computational burden of 

traditional models (like BERT). With the help of 

knowledge distillation and pruning techniques, 
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models like DistilBERT can achieve a very high-

performance level with fewer parameters. 

Cardiovascular care frameworks like CardioNet+ 

have often been built using cloud processing, but 

now with lightweight adaptations that can run on 

edge devices (Psomakelis et al., 2023). That 

allows continuous CVD monitoring without 

internet access, which was extremely important in 

remote or even rural settings.  

• Transformer-based models enable the 

combination of structured data (ECG, vital signs) 

and unstructured data (clinical notes, photos, etc.) 

via attention mechanisms to a larger 

understanding and hence the predictive ability 

(Madan et al., 2024). 

 

• Transformer-based Model for Categorical Data 

Categorical and integer data are essential elements of 

structured datasets in healthcare analytics. 

Categorical variables represent discrete, non-

numerical groups, such as diagnostic classifications 

or patient demographics. In contrast, integer variables 

encompass numerical counts or measurements, 

including age or blood pressure readings. Effectively 

modeling these data types requires specialized 

techniques to capture their distinct patterns and 

relationships, ensuring accurate predictions in clinical 

and epidemiological studies. The key models include: 

 

• Tab Transformer encodes categorical columns 

using embedding layers and applies self-

attention mechanisms to model feature 

interactions within tabular data. This approach 

provides a more robust representation of 

categorical variables, which enhances model 

performance in both classification and 

regression tasks. It has been effectively 

applied in domains like finance, healthcare, 

and retail (Alam et al., 2023). 

• FT-Transformer introduces a framework 

where structured tabular data is tokenized into 

feature tokens, which are processed using a 

standard Transformer encoder. This 

architecture generalizes well across diverse 

tabular machine learning tasks by learning 

complex feature relationships. It demonstrates 

strong performance benchmarks in general-

purpose applications across various industries 

(Gutheil & Donsa et al, 2022). 

• SAINT leverages both intra-feature attention 

(capturing dependencies among features) and 

inter-sample attention (modeling relationships 

across different data instances) in tabular 

datasets. This dual-attention mechanism 

enhances predictive performance on 

classification and regression problems. SAINT 

has shown notable improvements in tasks 

involving categorical data representations 

(Gutheil & Donsa et al., 2022). 

• TabNet applies a sequential attention 

mechanism on feature subsets, rather than 

using a full Transformer architecture, to 

maintain interpretability while processing 

tabular data. The model's attention mechanism 

facilitates feature selection by identifying the 

most salient variables for tasks such as risk 

prediction, fraud detection, and clinical 

decision support. Consequently, TabNet has 

become a model of choice in domains that 

demand not only high accuracy but also 

transparent, explainable decision-making 

(Alam et al., 2023). 

• Med-BERT adapts the BERT architecture 

customized to process structured diagnosis 

codes from Electronic Health Records 

(EHRs), such as sequences of International 

Classification of Diseases (ICD) codes. By 

leveraging pretraining on large-scale medical 

datasets, it achieves state-of-the-art 

performance in predictive tasks, including 

chronic disease prediction and patient 

outcome modeling. This model enhances 

EHR-based clinical analytics through context-

aware encoding of medical codes (Rasmy et 

al., 2021). 

• BEHRT employs a time-aware Transformer 

model to capture patient health trajectories 

through sequences of diagnosis codes. By 

integrating temporal information, it models 

disease progression and patient history with 

greater clinical relevance. BEHRT has proven 

effective in longitudinal healthcare 

applications for early disease detection (Li et 

al., 2024). 
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• Retain-Transformer is designed for 

longitudinal health records, incorporating 

interpretability-focused attention mechanisms 

that highlight influential clinical events over 

time. This model facilitates risk prediction 

tasks, such as forecasting heart failure and 

other adverse outcomes, by making temporal 

relationships in EHRs transparent. It bridges 

performance with interpretability in clinical 

decision-making (Lentzen et al., 2023). 

 

• Transformer-Based Models in Medical Imaging 

Transformer-based models have demonstrated 

significant potential in analyzing complex visual 

patterns within medical imaging, including MRI, CT, 

and X-rays. These images contain rich spatial and 

contextual information that is critical for accurate 

diagnosis and effective treatment planning. 

The key models include: 

 

• TransUNet fuses a CNN-based encoder with a 

transformer-based decoder to model both local 

texture details and global anatomical 

structures in medical images. The hybrid 

architecture yields superior segmentation 

accuracy, especially in delineating complex 

boundaries. It has been effectively applied to 

CT and MRI image segmentation tasks in 

clinical settings (Chen et al., 2021). 

• UNETR employs a pure transformer encoder 

connected to a CNN decoder via skip 

connections to capture long-range 

dependencies in 3D volumetric data. This 

design achieves precise segmentation of 

complex anatomical structures in MRI scans 

by building upon UNETR, a model with 

established utility in 3D medical imaging 

applications (Hatamizadeh et al., 2022). 

• Swin UNet incorporates Swin Transformer 

blocks for hierarchical feature extraction, 

allowing effective multiscale representation of 

medical images. This method enhances 

segmentation performance by modeling both 

local and global spatial relations through 

shifted window attention. It has shown 

significant success in organ and tumor 

segmentation tasks using CT and MRI data 

(Cao et al., 2022). 

• MedT introduces Gated Transformer Units 

(GTUs) to enhance the segmentation of 

medical images, especially when annotated 

data is scarce. By leveraging an attention 

mechanism to focus on clinically relevant 

regions, MedT achieves high diagnostic 

accuracy even in data-scarce clinical 

environments. It has been applied to 

segmentation tasks on CT and X-ray datasets 

(Valanarasu et al., 2021). 

• DINO-ViT leverages self-distillation-based 

Vision Transformers to learn robust feature 

representations without labeled data, 

enhancing classification performance in 

medical imaging. The proposed self-

supervised framework offers a significant 

reduction in the need for expensively 

annotated data, while preserving a level of 

diagnostic accuracy comparable to supervised 

methods. DINO-ViT has been utilized in 

classification tasks involving X-ray and CT 

images (Anand et al., 2023). 

• BioViL-T aligns chest X-ray images with 

respective radiology text reports using a 

vision-language transformer trained with 

contrastive learning. This approach improves 

multimodal understanding, facilitating 

automated report generation and image-text 

retrieval. BioViL-T has been successfully 

applied to radiology report comprehension and 

multimodal diagnostic tasks (Bannur et al., 

2023). 

• SwinIR-Med adapts Swin Transformer 

architectures for image enhancement tasks, 

focusing on super-resolution and denoising in 

low-quality medical images. The model 

effectively restores details in noisy MRI and 

PET scans, improving image clarity for 

clinical interpretation. SwinIR-Med has been 

used in scenarios requiring high-fidelity 

reconstruction of degraded medical images 

(Puttagunta et al., 2022). 

• ViT-Medical fine-tunes Vision Transformers 

specifically for medical image classification 

and lesion detection, optimizing them for 

clinical datasets. This adaptation enables 

accurate identification of disease markers in 

X-ray and CT scans. ViT-Medical has been 
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applied across various diagnostic imaging 

tasks in healthcare (Manzari et al., 2023). 

• Regressive Vision Transformer (RVT) 

combines global self-attention from Vision 

Transformers with localized attention 

approaches for enhancing feature extraction in 

radiology images. The hybrid approach 

enhances disease classification accuracy by 

leveraging both coarse and fine-grained 

patterns. RVT has been applied to chest X-ray 

and CT-based disease classification tasks (Li 

and Zhang, 2024). 

 

E. Machine Learning and Deep Learning Models for 

CVD Prediction 

The persistent global burden of CVD mortality has 

motivated the exploration of advanced computational 

methods. This has led to a progression from 

traditional ML to DL, and more recently, to hybrid 

models that integrate multiple approaches to harness 

their complementary advantages. 

 

• Traditional ML 

 

o Logistic Regression (LR) 

     Despite their assumption of linearity, which is 

an inherent limitation, logistic regression (LR) 

models remain valuable in CVD risk 

prediction due to their computational 

efficiency and interpretability. However, since 

linear relationships between risk factors are 

assumed to be constant throughout the model, 

LR models struggle to generalize among a 

sample of individual risk factors such as CVD 

to a much wider population and thus tend to 

underestimate risk in people younger, females, 

and minorities. Due to these limitations, more 

sophisticated and flexible machine learning 

models have been developed that can capture 

the dynamic and multifactorial risk profile 

more precisely (Kasartzian and Tsiampalis, 

2025).  

 

o Random Forest (RF) 

     Yang et al. (2024) in their paper adds that 

Random Forest is a promising classifier for 

CVD achieving 91% accuracy on the Long 

Beach VA dataset and 90% AUC after 

applying the proposed data balancing 

technique. RF is found to be superior to other 

classifiers due to its ability to reduce 

overfitting and the difficulties in handling 

imbalanced datasets making it suitable for 

clinical applications. The model's 

interpretability, achieved through SHAP 

values, aligns with established clinical 

expertise, thereby fostering greater trust in its 

utility for clinical decision-making. (Yang et 

al., 2024). 

 

o Deep learning (DL) 

      Deep learning has revolutionized the medical 

imaging industry by giving rise to automated 

and high-quality feature extraction and 

interpretation with significantly better 

accuracy compared to existing methods for 

diseases detection, segmentation, and 

classification in more challenging image data 

sets such as MRI, CT scan, and ultrasound.  

 

o Convolutional Neural Network (CNN) 

     There is increasing importance of CNNs for 

the analysis of medical images for CVD, with 

particular emphasis on applications such as 

classification, segmentation and detection (Jia 

et al., 2024). Common CNN models like 

ResNet and U-Net are commonly used for the 

analysis of CT and MRI images, which are at 

the center of CVD research (Jia et al., 2024). 

The authors acknowledge challenges, 

including the cost of data annotation and data 

privacy concerns. Nonetheless, they 

emphasize the potential of Convolutional 

Neural Networks (CNNs) to enhance 

diagnostic accuracy and improve workflow 

efficiency. Emerging areas include 

multimodal learning and federated learning to 

overcome data limitations (Jia et al., 2024). 

 

o Long Short-Term Memory (LSTM) 

      LSTM networks, a specialized variant of 

Recurrent Neural Networks (RNNs), were 

developed to model long-term temporal 

dependencies in sequential data, such as 

electrocardiogram (ECG) signals. They 

overcome the vanishing gradient problem via 

memory cells and gating mechanisms, 

enabling retention of temporal patterns across 
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extended heartbeat sequences. This makes 

LSTMs effective for detecting arrhythmias 

dependent on multi-beat irregularities (e.g., 

Atrial Fibrillation). However, these models are 

computationally demanding (e.g., standard 

RNNs or MLPs) (Ansari et al., 2023). 

 

• Hybrid Model 

Hybrid models represent a growing trend in which 

multimodal data are processed by integrating 

complementary architectures to achieve superior 

predictive performance.  

 

o CNN-LSTM model  

      CNN-LSTM model incorporates 

convolutional feature extraction layers with 

LSTM layers to capture temporal 

dependencies. Sudha and Kumar (2023) in 

their heart disease prediction designed an 

architecture consisting of 5 convolutional and 

pooling layers followed by LSTM and fully 

connected layers with Softmax activation. On 

the basis of UCI heart disease tabular data, the 

missing values are normalized with z-score 

and features are selected by the SVM 

weighting method. The authors train the 

model with the Adam optimizer over 200 

epochs with a learning rate of 0. 001% and 

obtain 89% accuracy, 81% sensitivity and 

93% specificity. It outperforms traditional 

classifiers due to their dynamic dimension of 

the data. 

 

o CNN-Transformer  

     Hybrid Vision Transformer (HVT) 

architectures integrate the complementary 

strengths of Convolutional Neural Networks 

(CNNs) and Vision Transformers (ViTs). 

They typically leverage CNNs to extract fine-

grained local features and employ the self-

attention mechanisms of ViTs to capture long-

range global dependencies. To capture 

complementary information at both local and 

global scales, studies have employed various 

integration strategies, notably sequential, 

parallel, and hierarchical integration. In 

general, HVTs outperform standalone CNNs 

and ViTs in image recognition and 

segmentation tasks in limited datasets. In 

addition, the technique convolutional token 

embedding enhances efficient computation, 

for example by decreasing computational cost 

without compromising accuracy (Sagheer et 

al., 2025). 

 

o Graph Neural Networks (GNNs) 

     The application of Graph Neural Networks 

(GNNs) offers a robust paradigm for 

analyzing healthcare data, which is inherently 

relational. By representing medical entities as 

nodes and their interactions as edges, GNNs 

can directly model the complex dependencies 

within such data. Architecturally, GNNs are 

categorized into recurrent, spatial, and spectral 

approaches, which support fundamental tasks 

including node-level, link-level, and graph-

level prediction. These models consistently 

surpass traditional machine learning methods, 

primarily due to their superior handling of 

data heterogeneity, temporal dynamics, and 

sparsity. Consequently, the proficiency of 

GNNs in modeling dynamic processes, fusing 

multi-modal inputs, and offering explainable 

predictions establishes them as a pivotal 

technology for advancing healthcare, 

particularly in the realms of disease 

prognostication, drug repurposing, 

personalized treatment planning, and 

enhanced clinical decision-support systems 

(Paul et al., 2024). 

 

o Autoencoder–Random Forest  

     Hybrid autoencoder–random forest 

architecture primarily within the context of 

anomaly detection. This hybrid approach 

employs autoencoders for efficient feature 

extraction and dimensionality reduction, 

enabling the learning of compact and 

semantically meaningful representations of the 

input data. The extracted features are 

subsequently fed into a Random Forest 

classifier, which demonstrates strong 

performance in handling classification tasks, 

particularly in scenarios involving imbalanced 

or complex datasets (Berahmand et al., 2024). 

This hybrid model leverages the unsupervised 

feature learning of autoencoders and the 

strong classification capability of random 
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forests to achieve higher detection accuracy 

and better generalization across diverse 

datasets (Berahmand et al., 2024). 

 

o CNN-SVM  

      Hybrid CNN-SVM architecture integrates 

CNNs for hierarchical feature extraction with 

support vector machines (SVMs) for robust 

classification of cancer types using high-

dimensional RNA-Seq data. Among the 

evaluated models, the Hybrid-CNN-SVM 

architecture, incorporating parallel 

convolutional layers, achieved the highest 

accuracy (96%), surpassing the performance 

of the standalone CNN and SVM models. This 

hybrid approach enhances generalization 

through the SVM’s structural risk 

minimization principle and improves 

robustness to noise, effectively addressing 

critical challenges in biomedical data analysis. 

The results demonstrate the hybrid model's 

effectiveness for complex classification tasks 

in genomics and precision medicine 

applications (Nejad, 2025). 

 

F. Application Domains of Multimodal Data Fusion 

and IoT in Healthcare 

It is vital to emphasize the contributions that IoT, 

combined with multimodal data fusion, as a whole, 

has made towards modern healthcare by providing an 

ability for more rapid acquisition, transmission, and 

analysis of biomedical data. The integration of these 

factors has resulted in enhanced predictive accuracy, 

personalized healthcare delivery, and improved 

anticipatory care. The scope of multimodal data 

fusion and IoT technologies is extensive, 

encompassing both clinical and non-clinical domains, 

including remote patient monitoring, chronic disease 

management, medical imaging, critical care, 

psychological assessment, and rehabilitation services. 

In this section, this study explores the key medical 

domains in which multimodal data fusion and the IoT 

have exerted significant influence. 

 

• Remote Patient Monitoring and Telemedicine 

Remote patient monitoring (RPM) represents a key 

application domain, particularly for aging 

populations and individuals with chronic conditions 

such as cardiovascular diseases, diabetes, and 

respiratory disorders. IoT-based wearable sensors and 

mobile health platforms allow continuous tracking of 

physiological signals, heart rate, blood pressure, 

oxygen saturation, body temperature, and ECG data, 

which are fused with contextual and environmental 

information to create holistic health profiles 

(Boikanyo et al., 2023). 

 

The integration of NLP of physician–patient 

conversations with facial expression and 

physiological signal analysis enhances remote 

consultations by enabling the capture of both verbal 

and non-verbal cues. This multimodal approach 

enables deeper patient understanding, supports 

mental health assessments, and improves diagnostic 

accuracy during telemedicine interactions by 

analyzing emotions, stress, and physiological states 

in real-time (Farrokhi et al., 2024). 

 

Chronic Disease Management   

Ahmad et al. (2025) provides a review of emerging 

rapid detection methods for monitoring CVDs, 

emphasizing wearable sensors (ECG, PPG) and 

point-of-care (POC) technologies for real-time 

biomarker detection. While AI-driven analytics have 

demonstrated the potential to enhance diagnostic 

accuracy, persistent challenges concerning signal 

integrity and data security continue to pose 

limitations. Future directions should prioritize the 

integration of personalized medicine approaches, 

interdisciplinary collaboration, and technological 

innovations to optimize chronic disease management. 

 

Medical Imaging and Radiomics 

Assen et al. (2023) highlight the use of imaging and 

AI-based fusion modeling techniques in cardiac care. 

Imaging modalities such as CT, CMR, 

echocardiography, and nuclear imaging provide 

important biomarkers such as coronary calcium, 

plaque volume, and patient age to help cardiovascular 

risk prediction and patients’ personalized treatment. 

AI provides automatic extraction and analysis of 

imaging features to improve both clinical and general 

assessment accuracy and efficiency. Advances in 

medical imaging technologies have significantly 

enhanced capabilities in early heart failure detection, 

digital heart twin construction for personalized 

ablation planning, and predictive modeling of drug 

responses. 
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The authors further state that fusing clinical and 

imaging data can pointedly improve risk prediction 

and personalization in cardiovascular disease, and 

combining it with AI models will result in a higher 

diagnostic performance, easier treatment planning, 

and greater prognostic insight, particularly for 

cardiovascular conditions, including coronary artery 

disease and heart failure. 

 

Intensive Care and Emergency Medicine 

The intensive care units (ICU) high-stakes nature 

demands a shift from reactive to proactive care, 

achievable only through multimodal IoT systems. 

The fusion of wearable, visual, and environmental 

sensing modalities enables continuous, high-

resolution monitoring of functional and behavioral 

metrics, such as mobility, pain, and sleep, thus 

addressing key limitations in current healthcare 

monitoring practices. Achieving success depends on 

addressing privacy challenges, ensuring 

interoperability, and demonstrating real-world 

effectiveness through rigorous validation. Berikol et 

al. (2025) in their study demonstrate how multimodal 

AI in emergency medicine combines imaging, EHRs, 

and physiological data to improve diagnostics. Even 

though standardization challenges persist, these 

methods enable holistic evaluations.  

 

Mental Health and Behavioral Analysis 

Guo et al. (2022) propose the CASTLE framework, 

which utilizes multimodal data fusion to assess 

students’ mental health status by integrating social 

life, academic performance, physical, and 

demographic features. The framework leverages 

representation learning in conjunction with a multi-

view embedding algorithm for social networks and a 

deep neural network (DNN) for detection. The 

experimental results demonstrate its efficacy in 

identifying mental health issues while effectively 

addressing challenges such as data heterogeneity and 

label imbalance. The authors further analyze behavior 

via multi-view social networks (friendship, advice-

sharing) using the MOON algorithm to detect mental 

health risks. It links social patterns (e.g., isolation, 

cooperation) to psychological states but notes 

limitations like static data and self-report bias. 

 

Rehabilitation and Assistive Technologies 

Multimodal data fusion in assistive healthcare 

technologies to enhance functionality for individuals 

with neurological disabilities. It integrates brain–

computer interfaces (BCIs), AI-driven devices, and 

sensor-based systems to enhance mobility, 

communication, and cognitive assistance. For 

instance, the integration of BCIs with virtual reality 

(VR) facilitates real-time monitoring of cognitive 

load, while AI algorithms dynamically adapt assistive 

technologies (ATs) based on users’ behavioral and 

physiological data. Challenges include usability and 

ethical concerns, but multimodal approaches promise 

personalized, adaptive solutions (Bonanno et al., 

2025).  

 

Raj and Kos (2024) in their article highlight 

that multimodal sensor fusion is pivotal in assistive 

robotics, enhancing perception and interaction by 

integrating data from LiDAR, IMUs, EMG, and 

vision sensors. This fusion improves environmental 

awareness, intention recognition, and adaptive 

control, enabling safer Human-Robot Interaction 

(HRI). Combining infrared and IMU data aids 

navigation for the visually impaired, while EMG and 

vision enable responsive prosthetics. Future 

advancements in deep learning–based fusion are 

anticipated to further enhance real-time adaptability 

and personalized user assistance. 

 

Challenges of Multimodal Data Fusion Systems 

Multimodal data fusion offers significant advantages 

in healthcare, including enhanced diagnostic 

accuracy and comprehensive access to diverse 

medical information. Its application and use, 

however, present several significant challenges. The 

challenges of multimodal data fusion systems 

include: 

 

• Data Quality and Interoperability: One of the 

challenging problems is meeting the quality 

and interoperability of data that originates 

from different sources in healthcare, which 

requires the creation of quality data standards 

and comprehensive interoperability 

frameworks (Kumar et al., 2024). 

• Privacy and security: Protection of sensitive 

patient data, obtained from multiple sources, 

is critical; such protection should encompass 
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mechanisms like encryption and secure 

storage techniques, and privacy-preserving 

techniques, as well as continuous monitoring 

and auditing for ensuring data integrity and 

confidentiality of the data (Shaik et al., 2024). 

• Data Processing and Analysis: Scalability of 

systems has become an important and difficult 

aspect in this area, and therefore, the fusion of 

data requires the development of different 

approaches of ML and AI, as well as a 

scalable data processing and real-time 

analytics infrastructure (Shaik et al., 2024). 

• Clinical Integration and Adoption: Effectively 

integrating multimodal fusion into current 

clinical practice demands the effective 

involvement of healthcare professionals. It 

also necessitates the design of user-friendly 

interfaces, the provision of adequate user 

training, and the integration of these emerging 

technologies into existing medical systems 

(AL-Mosawi and Al-Shammari, 2024). 

• Ethics considerations: Privacy, autonomy, and 

fairness concerning patients should be 

important ethical considerations; this includes 

obtaining informed consent, establishing 

ownership of data, detailed governance 

policies, and rigorously remediating any 

biases, whether in the data or the algorithm 

used (Shaik et al., 2023). 

• Interpretation of Results: The complexity of 

multimodal fusion outcomes presents 

interpretive challenges; therefore, employing 

visual analytics, explainable AI approaches, 

and robust clinical validation is vital to ensure 

meaningful and clinically relevant insights 

(Shaik et al., 2024). 

Though multimodal data fusion is essential for a 

holistic understanding of patient health in smart 

healthcare, it requires careful consideration and 

ongoing research to address its complex technical and 

ethical aspects. 

 

Real-Time Applications and Challenges of CVD 

Monitoring 

Real-time monitoring systems have become a crucial 

tool for early diagnosis and intervention of diseases 

such as arrhythmias, myocardial infarction, and 

hypertension (WHO, 2021). Using wearable sensor 

technologies, mobile applications, and cloud 

computing has significantly improved CVD risk 

through the collection, analysis, and acting on the 

physiological signals to decrease mortality and 

improve medical results (Boikanyo et al., 2023). 

 

Wearable health monitoring devices, such as ECG 

patches, smartwatches, and fitness trackers, 

continuously capture cardiovascular parameters 

including heart rate, rhythm, and blood pressure for 

real-time analysis. These monitors stream data to 

mobile or web-based applications that process the 

information using Artificial intelligence. 

Transformer-based models have demonstrated 

superior capability in capturing temporal 

dependencies within sequential health data (Xu et al., 

2023). Their integration also allows early anomaly 

detection, individual feedback, as well as emergency 

notification. 

 

mHealth applications facilitate remote patient 

monitoring by tracking symptoms, analyzing trends, 

and generating alerts when readings exceed normal 

thresholds. In clinical environments, real-time 

dashboards process multimodal patient data 

aggregated from diverse sources to support doctors’ 

clinical decision-making (Kumar et al., 2023). 

Combination with Electronic Health Records (EHRs) 

improves monitoring and decision-making. 

 

Notwithstanding these benefits, real-time CVD 

monitoring can be at risk of several problems; that is, 

sensor data are often altered by motion artifacts and 

environmental noise, which lowers accuracy (Khan et 

al., 2025). Implementing complex models like 

transformers on edge devices entails optimization to 

exceed latency and energy constraints. Additionally, 

real-time data transmission raises privacy and 

security worries, particularly in cloud-based 

platforms (Wang et al., 2025). 

 

Another significant challenge is the interpretability of 

these AI models. Medical professionals often distrust 

black-box systems, particularly in high-stakes 

diagnoses. The absence of clinical validation through 

large-scale randomized controlled trials continues to 

impede regulatory approval and broader 

implementation. Furthermore, infrastructural 

limitations in low- and middle-income countries 
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constrain access to these technologies, despite the 

disproportionately high burden of CVDs (Sokol et al., 

2025). 

 

G. Future Directions 

Future work on transformer-based multimodal IoT 

data fusion for real-time smart healthcare should 

focus more on developing light architectures for easy 

edge deployment. These models need to maintain 

diagnostic accuracy at lower computational cost and 

enable real-time CVD monitoring on wearable 

devices and low-power sensors (Ahmad et al., 2025; 

Khan et al., 2025). At the same time, federated 

learning techniques can support privacy-preserving 

collaboration across decentralized healthcare nodes 

without transferring sensitive patient data, aligning 

with privacy laws and ethical standards (Shukla et al., 

2025). Unified multimodal pretraining represents a 

promising alternative, facilitating the learning of 

cross-modal relationships from ECG, PPG, imaging, 

and clinical notes to improve model robustness and 

generalization. 

Transformer models also need to be adaptable to 

produce real-time predictive alerts by processing 

continuous streams of data and the estimation of 

uncertainty to avoid important events (e. g. heart 

attack) into clinical decision support systems 

(CDSS). They require interpretable outputs and 

adequate consistency with electronic health records 

to ensure clinician trust and usability (Shaik et al., 

2024). Equality-focused benchmarking and policy 

implementation in resource-limited settings are 

critical for ensuring equitable global deployment of 

transformer-based healthcare innovations. 

Infrastructural limitations, gender-related disparities, 

and implementation challenges continue to hinder the 

effective integration of transformer models in clinical 

settings. 

III. CONCLUSION 

 

Transformer-based multimodal fusion is a paradigm 

shift in CVD monitoring with the integration of 

IoMT signal streams (ECG, PPG, imaging, EHRs) 

into unified diagnostic insights. By integrating 

physiological, clinical, and imaging data, these 

approaches offer a more holistic basis for prediction, 

which can translate to timelier, proactive patient 

management, especially in time-sensitive care 

settings. This review show that transformer-based 

models outperform traditional models on many data 

fusion tasks, yet the widespread application of 

transformer-based models in clinical settings is 

consistently hindered by numerous significant 

challenges: high computational complexity, poor 

interpretability, data heterogeneity, and poor 

deployment performance in resource-constrained 

settings. 

 

In addition, the review points out the need to develop 

lightweight variants of transformers for inference on 

the device, merge explainable AI techniques for 

clinical trust considerations, and use learner 

paradigms that conserve privacy, such as federated 

learning. The deployment of real-time systems 

remains a developing challenge, requiring careful 

optimization of latency, energy efficiency, and 

predictive accuracy. Moreover, the absence of 

standardized benchmarks for multimodal CVD 

applications impedes cross-study comparisons and 

limits the generalizability of findings. Integrating 

streams of IoT data and simply applying transformer-

based models for real-time monitoring and prediction 

cannot be achieved until all relevant stakeholders in 

the health sector are brought together to turn the 

theoretical approach into something that happens in 

real life. 

 

Achieving equitable global health advancements 

necessitates overcoming significant infrastructural, 

ethical, and socioeconomic barriers. This is 

particularly critical in developing nations such as 

Nigeria, where constraints in essential infrastructure, 

funding, trained personnel, and technology persist. 
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