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Abstract- The integration of Internet of Things (IoT)
devices and artificial intelligence has revolutionized smart
healthcare, enabling continuous monitoring, personalized
treatment, and proactive intervention. Cardiovascular
disease (CVD) is still one of the main causes of death
worldwide, yet we don’t have a strong, unified way to
monitor it in real time using deep learning. Traditional
machine learning methods often fall short; they strive to
combine different kinds of medical data, deal with delays
in processing, and work reliably in low-resource settings
where technology and infrastructure are limited. This
review focuses on closing that gap by examining how
transformer-based deep learning models can be applied to
multimodal IoT data in smart healthcare, with a special
emphasis on predicting CVD. We classify and assess the
latest transformer architectures based on how they fuse
data, their areas of application, and their readiness for
real-time use. Qur analysis shows that transformer
models, with their attention mechanisms and ability to
handle information across multiple formats, perform
much better than traditional approaches when it comes to
combining data from sources like physiological signals,
medical imaging, and clinical records. However, we also
identify several challenges: high computational demands
for edge devices, limited interpretability, a limited
multimodal dataset, and infrastructure barriers in under-
resourced regions. To address these challenges, we
highlight future directions such as creating lightweight
transformer models, using privacy-preserving federated
learning, and developing unified multimodal pretraining
strategies. This review aims to provide a roadmap for
building fair, scalable, and low-latency Al solutions for
real-time cardiovascular prediction, offering valuable
insights for both researchers and healthcare system
developers.

Index Terms- Transformer Models, Internet of Things,

Multimodal Data Fusion, Cardiovascular Disease
Monitoring, Real-Time Deployment
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L INTRODUCTION

CVD remains the leading cause of death globally,
emphasizing the need for continuous and intelligent
monitoring systems. As a result of CVD, there were
nearly 17.9 million deaths in 2019, a figure
representing 32% of worldwide deaths (WHO, 2021).
This epidemic requires innovative methodologies for
early detection, continuous monitoring, and
appropriate  intervention. The emergence of
the Internet of Things (IoT) leading to Internet of
Medical Things (IoMT) has led to a pattern shift in
smart healthcare, enabling a unified collection of
multimodal  physiological  data, such  as
electrocardiograms (ECG), blood pressure (BP),
oxygen saturation (SpO:), and accelerometer
readings, through wearable and implantable sensors
(Osama et al., 2023). These heterogeneous data
streams offer unique opportunities for detailed patient
representation; nevertheless, new challenges include
integrating such data streams, noise resilience, and
real-time processing (Chen et al., 2024).

In unimodal cardiovascular disease analysis,
conventional deep learning architectures, particularly
CNNs, have proven highly effective (Acharya et al.,
2017). However, they struggle to model cross-modal
dependencies and long-range sequential patterns
rooted in multimodal IoT data.

While transformers were first developed for natural
language processing, their adaptability has made
them a cornerstone of modern Al. The secret to their
success is self-attention, a technique that excels at
identifying contextual connections across completely
different kinds of data. This capability is a natural fit
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for the complex challenge of multimodal fusion
(Dosovitskiy et al., 2020). Transformer models for
real-time CVD monitoring are a relatively recent
phenomenon. They have been somewhat constrained
in their computational resources, particularly
concerning different data sources and required
architectures for edge computing (Noor et al., 2025).

Although many reviews address deep learning for
healthcare (Morid et al., 2023) and IoT systems (Li et
al., 2024), only very few studies (Saleh et al., 2025)
deal specifically with transformer-based multimodal
fusion for real-time monitoring of CVD. Same early,
late, or hybrid fusion approaches remain fragmented
and do not provide standardized benchmarks for
CVD applications (Krones et al, 2025). While
foundational models like BERT and ViT have
demonstrated state-of-the-art performance, their
considerable computational complexity and high
latency render them unsuitable for deployment on
resource-constrained edge devices requiring real-time
inference (Madan et al., 2024). Additionally, most
studies fail to account for socioeconomic and
infrastructural tasks in regions with the highest CVD
burden, such as Sub-Saharan Africa (Roth et al.,
2020). The limited diversity of publicly available
multimodal CVD  datasets further obscures
generalizability (Wang et al, 2024). While
multimodal cardiology frameworks like CardioNet+
achieve 99.1% accuracy and a 99.0% AUC-ROC by
integrating ECG/PPG signals with chest X-ray data,
they significantly outperform single-modal models in
heart failure detection (Adeyi, 2025), surpassing
single-modal models and establishing a new
benchmark in heart failure identification systems.

II. RELATED WORKS

A significant trend in modern healthcare is the
leveraging of IoT-generated multimodal data for
advanced analytics in chronic disease management,
with notable applications in CVD. The widespread
deployment of biomedical sensors, wearables, and
imaging platforms has resulted in data ecosystems
characterized by high volume, variety, and
complexity,  presenting  both  unprecedented
opportunities and analytical challenges. Extracting
actionable insights demands advanced fusion
frameworks capable of handling such data diversity.
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This section reviews existing literature on
multimodal data fusion in smart healthcare, focusing
on CVD prediction. It explores IoT's role, sensor
technologies, fusion strategies, and the impact of ML,
DL, and transformer-based models. Furthermore, it
addresses infrastructure for real-time monitoring and
discusses  challenges in  building scalable,
interpretable fusion systems, highlighting gaps and
future research directions in cardiovascular
healthcare applications.

A. Multimodal IoT in Smart Healthcare

Unimodal data collects information from a single
source rather than combining multiple data streams.
In implies that, models rely on only one category of
modality to make predictions. Zhong et al. (2022) in
their study highlights the limitations of unimodal
models in predicting antenatal depression. While
unimodal methods depict certain patterns, their
accuracy, sensitivity, and reliability are limited. In
contrast to multimodal methods, they fail to reflect
the complex cross-modal interactions affecting
maternal mental health, making them less effective
and likely to miss important predictive signals
essential for early detection and intervention (Zhong
et al., 2022).

Multimodal IoT refers to the combined use of
different types of data, like physiological signals,
environmental sensors, medical images, and EHRs to
improve how we monitor patients and make
diagnoses. In recent years, the integration of these
multimodal IoT technologies into smart healthcare
systems has drawn a lot of attention, as it helps
deliver real-time, personalized, and proactive medical
care.Initial efforts were focused on unimodality IoT-
based monitoring systems for health assessment, such
as wearable ECG monitors or glucose sensors
(Mahmmod et al., 2024). The unimodality monitoring
approaches presented uneven views of the health
state of a patient, and to address this problem,
researchers began to integrate multiple sensor
modalities with different matching health data.

Multimodal fusion of heterogeneous streams of
physiological data from  wearables (ECG,
photoplethysmography (PPG)), ambient sensor
signals, and implantable devices is known to
introduce complementary aspects of cardiovascular
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activity and thus enable better patient understanding
that it would not otherwise be possible to achieve
using individual modalities (Ahmad et al., 2025;
Moon et al., 2023). ECG can monitor direct cardiac
activity as a subset of the heart's electrical signal.
Still, PPG shows peripheral hemodynamics, and
accelerometers capture motion variability, thus
further improving robustness against noise and
uncertainty (Xing et al., 2025).

Recent studies have adopted ML and DL models for
effective multimodal fusion (Chen et al., 2025). Cretu
et al. (2023) demonstrated that combining ECG,
arterial blood pressure (ABP), and central venous
pressure (CVP) signals significantly improved the
accuracy of arrhythmia detection, with a ResNet50
model achieving 99.58% accuracy across five
arrhythmia classes. Likewise, Wang et al. (2023)
recent work revealed that healthcare systems are
integrating Al, big data, and wearable IoT
technologies, and highlighted improved health
management and disease prevention through the
combination of physiological signal monitoring,
personalized elderly care, and EHRs.

In many studies, fusion approaches differ between
studies. Some may use early fusion (with pre-
processed raw data streams combined before feature
extraction), while others may apply late fusion, where
predictions from one or more individual modalities
are merged. Hybrid approaches, which combine both
feature and decision-level integration, are also
emerging to optimize performance (Kulasekara et al.,
2025). These data fusion techniques frequently
leverage deep learning architectures, including
CNNs, RNNs, and, more recently, transformer-based
models, which are particularly adept at capturing
long-range dependencies across different modalities,

B. IoT in Cardiovascular Healthcare

CVD is responsible for 17.9 million yearly deaths
worldwide, representing 32% of global mortality
(WHO, 2021). Developing nations are confronting a
growing burden of CVD, driven by rapid
epidemiological  transitions and  constrained
healthcare access. The IoT offers a promising
approach to mitigate these challenges by facilitating
remote patient monitoring. Wearable sensors, which
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track parameters such as ECG, blood pressure, and
pulse, enable the continuous collection of real-time
physiological data. The multimodal data collected is
analyzed to improve early detection and risk
stratification beyond traditional unimodal systems.
IoT solutions, such as Predictis, demonstrate
potential for scalable preventive care, particularly in
resource-limited settings, by combining affordable
sensors with user-friendly mobile interfaces for
proactive CVD management (Islam et al., 2023).

Unimodal IoT systems focus on acquiring single-
parameter physiological data for cardiovascular
monitoring, typically concentrating on either ECG or
echocardiogram  (Echo) signals.  Single-signal
monitoring systems have important limitations in
CVD care. They track just one type of body signal,
fails to account for the broader context of heart health
(Yan et al., 2022). Consequently, in the absence of
complementary data such as blood pressure or
oxygen saturation, these methods cannot provide a
comprehensive assessment of the risks associated
with complex cardiac conditions. While effective for
detecting specific anomalies like arrhythmias, they
are often limited in their capacity to identify broader
cardiovascular risk factors. Likewise, these systems
are more likely to give wrong readings due to body
movements or technical errors (Wang et al., 2024).

To overcome the single-signal constraint, multimodal
IoT systems are used that combine multiple health
data, such as ECG, PPG, blood pressure, oxygen
saturation, breathing rate, etc., which offer healthcare
professionals a more comprehensive view of heart
health (John et al., 2024; Boikanyo, et al., 2023). The
fusion of multimodal data from complementary
sensors enhances the accuracy and robustness of
smart healthcare systems, thereby improving their
overall reliability. Multimode data fusion greatly
reduces noise and accurately finds optimal impact for
achieving high efficiency in the health sector (Kern,
2025). In addition, it provides for real-time
processing and contextual understanding for systems
of increasing complexity (e. g. medical diagnosis and
autonomous systems).
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C. Biomedical Sensors for Multimodal Data Fusion
in CVD Monitoring
The integration of multimodal data has significantly
enhanced the monitoring of CVD, leading to more
accurate, reliable, and clinically actionable patient
assessments. This progress is largely driven by
advances in biosensor technology, which can capture
complementary physiological signals. Such sensors
facilitate continuous monitoring and improved risk
stratification in both clinical and ambulatory settings.
This section examines the principal sensor modalities
employed in these multimodal systems, detailing
their physiological targets, key technological
features, and representative applications in
contemporary research.

e ECG Sensors

ECG is the cornerstone of cardiac monitoring,
providing critical insights into the heart's electrical
activity. Consequently, ECG sensors are essential for
identifying  arrhythmias, ischemia, myocardial
infarction, and other cardiac pathologies. Chester
straps, patch-type monitors, and wearable ECG
equipment can be used to collect data continuously
and provide a wide range of patient mobility and
flexibility for long-term cardiac surveillance. New
devices that combine ECG signals with additional
signal monitoring techniques such as PPG and
accelerometry have been developed and evaluated for
improved arrhythmia detection and stress monitoring
accuracy (Alimbayeva et al., 2024).

e PPG Sensors

Kim and Baek (2023) review the current state of PPG
technology for wearable devices, including its non-
invasive use in a range of applications, including
monitoring heart rate, oxygen saturation, blood
pressure, sleep quality, and stress. They review
technology developments in small multi-wavelength
sensors and low-power consumption systems and
identify critical challenges that include motion
artifacts, measurement accuracy, skin tone
variability, and battery life limitations.
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Kim and Baek (2023) stated that further research in
PPG will focus on further improving accuracy in 24-
hour continuous monitoring, developing novel health
parameters, improving cuffless blood pressure
monitoring and glucose monitoring, and analysis of
stress and sleep. Further progress in multi-
wavelength sensors, adaptive algorithms, and real-
world validation studies in clinical applications is
critical for further strengthening the reliability of
PPG and its applications in wearable healthcare
technology.

e Impedance Cardiography (ICG) Sensors
According to Mansouri et al. (2022), ICG offers a
non-invasive and  cost-effective method for
diagnosing CVDs. This technique measures thoracic
bioimpedance to estimate real-time hemodynamic
parameters, including cardiac output, stroke volume,
and arterial compliance. Consequently, ICG has
diagnostic utility for a range of conditions, such as
valvular heart disease, hypertension, arrhythmias,
vascular disorders, heart failure, and Cushing's
syndrome. The authors state that the use of a large-
scale ICG signal database would improve the
automatic  diagnosis of CVDs by artificial
intelligence and in other ways address the existing
issues, such as a lack of signals, voltage variability
between electrodes, and smaller-scale clinical trials.
A fusion system of ICG data in Al for automatic
cardiovascular disease diagnosis needs to be explored
(Mansouri et al., 2022). The authors also emphasize
the need for a comprehensive database of ICG signals
to enhance the diagnostic accuracy of machine
learning models, mitigate the challenges of signal
variability, and advance the development of
automated CVD detection systems.

e Blood Pressure (BP) Sensors

Islam et al. (2023) describe BP sensors as a core
component of a wearable IoT-based health
monitoring system named Predictis. It involves an
automatic blood pressure monitor on a wrist wearable
type JZK-003 for real-time BP measurement, and its
data is transmitted via Bluetooth to a mobile app for
continuous cardiovascular monitoring and CVD risk
level prediction. Data from the BP sensor in real-time
can also assist in an accurate and timely assessment
of heart health conditions (Islam et al. 2023). The
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authors emphasize that future BP sensor systems
should not only provide accurate measurements of
BP in real-time, but also implement algorithms from
cloud-based platforms to support
monitoring, risk prediction, emergency warning, and
mobile application interfacing.

continuous

e Respiratory Rate and Thoracic Motion Sensors
Respiratory parameters are closely linked with
cardiac function. Sensors for instance respiratory
inductance plethysmography bands, strain gauges,
and accelerometers, when placed on the chest, are
used to take respiratory rate and tidal volume. These
sensors are valuable in conditions such as heart
failure and sleep apnea, where ventilation-perfusion
mismatch and sympathetic overactivity are prominent
(Ceccarelli et al., 2022).

The combination of respiratory signals with
cardiovascular data has led to improved models for
detecting sleep-disordered breathing and assessing
cardiorespiratory coupling. For example, smart
garments that integrate ECG, PPG, and respiratory
motion sensors have been used to monitor nocturnal
events and assess autonomic dysfunction in patients
with heart disease (Lu et al., 2024).

D. Data Transmission and Integration Mechanisms
for Multimodal Data Fusion

Multimodal data fusion systems integrate information

from diverse provide a more

comprehensive understanding, which is crucial in

various applications like healthcare (Abdar et al.,

2023). The process involves several mechanisms for

sources to

data transmission and integration to overcome the
limitations of single-modal data (Abdar et al., 2023).

e Data Transmission Mechanisms

Multimodal data, which encompasses both structured
and unstructured formats, is generated in massive
volumes daily by a diverse array of sensors and
systems (Ahmad et al., 2025). A prominent example
is the IToMT, where networks of sensors continuously
collect various health metrics, including vital signs,
physical activity levels, and ECG readings
(Adedinsewo, 2023). This data is then transmitted
through various layers and protocols:
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Sensor Layer: This foundational layer in IoMT
systems collects data from patients using sensors,
controllers, and actuators (Ahmad et al., 2025). It
includes a data-entry sublayer for signal
acquisition, utilizing techniques like General
Packet Radio Service (GPRS), Radio Frequency
Identification (RFID), and graphic codes (Ahmad
et al., 2025).

Transmission Technologies: Collected data is
securely transmitted to a central location (e.g.,
cloud server, hospital data center) (Adedinsewo et
al., 2023). Short-range data transmission methods
include Bluetooth, Bluetooth Low Energy (BLE),
Wi-Fi, and Zigbee (Koulouras et al., 2025). Long-
range communication approaches, such as LoRa,
Sigfox, 4G, and 5G, are also employed (Al-
Shareeda et al., 2023). Ethernet offers robust and
high-speed wired transmission for applications
that require high bandwidth.

Gateway Layer (Fog/Edge Layer): This layer
enables real-time data transfer and data
preparation, combining different networks, data
warehouses, and data description formats. Edge
computing frequently performs data preparation
at this level, closer to the data sources (Yildirim et
al., 2025).

Cloud Layer: Large medical and healthcare
systems integrate with the cloud for daily
operations, including storing patient data and
processing updated medical samples (Banimfreg,
2023).

Layered Architecture: IoT
including multimodal data transmission, is
organized into a layered architecture like the OSI

communication,

model, which ensures efficient data exchange and
proper handling across different protocols. Each
layer has a specific task, from physical connection
(Physical Layer) to error-free transmission (Data
Link Layer), routing (Network Layer), reliable
delivery (Transport Layer), session management
(Session Layer), data format translation
(Presentation Layer), and wuser application
interface (Application Layer) (Gupta et al., 2024).
Specialized Protocols: Certain protocols are used
for certain data types and applications, such as
OBD2/CAN-BUS for vehicle diagnostic data and
OPC UA for secure industrial data exchange
(Henke, 2022).
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e Data Integration Mechanisms

Data integration, frequently termed data fusion,
addresses the challenge of insufficient or noisy
single-source data by combining information from
multiple modalities. The objective is to leverage the
complementary and redundant information inherent
across these diverse sources. The methodologies for
this integration have been profoundly transformed by
deep learning, marking a paradigm shift from
reliance on hand-crafted feature engineering to
automated, learned representation. Fusion strategies
are generally categorized by the stage at which data
from different modalities are combined within the
processing pipeline:

e Early Fusion (Data-Level Fusion)

In early fusion, raw or minimally pre-processed data
from multiple modalities are combined at the input
level and fed into a single processing model. This
approach maintains the original information from
each modality and decreases computational costs by
means of a single encoder, letting the model to learn
cross-modal relationships from low-level features.
However, it can result in very high input dimensions
with multiple modalities and is best suited for
homogeneous data or a limited number of modalities,
as it may fail to capture relationships that emerge at
higher abstraction levels (Kulasekara et al., 2025).

¢ Intermediate fusion (Feature-level fusion)
Intermediate fusion, or feature-level fusion, involves
processing data from each modality separately to
extract feature vectors, which are then combined
within the network before making a final decision.
This method allows flexibility in how and when
features are fused, enabling precise modeling of
relationships and ensuring heterogencous data are
transformed into comparable feature vectors, making
it robust to missing modalities and dimensional
imbalances. It includes marginal fusion, where
features are concatenated before classification, and
joint fusion, where additional layers learn abstract
cross-modality interactions (Guarrasi et al., 2025).

o Late Fusion (Decision-Level Fusion)

Late Fusion, or decision-level fusion, is a multimodal
integration strategy where separate models are
trained independently on distinct data modalities. The
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final decision is derived by aggregating the outputs of
these models through techniques such as weighted
averaging or majority voting. This approach allows
each model to be fine-tuned for its specific data type,
which can lead to complementary, uncorrelated errors
and is simple to implement, even combining deep and
shallow learning methods. However, it cannot
capture interactions between features at the data or
feature level, as fusion only happens at the decision
stage (Kulasekara et al., 2025).

e Hybrid Fusion

Hybrid fusion systems merge components of early,
intermediate, and late fusion, dynamically selecting
the suitable fusion level based on task requirements
and environmental settings (Shaik et al., 2024).
Beyond traditional methods, deep learning has
introduced fine-grained techniques like encoder-
decoder fusion, which maps multimodal data into
latent spaces for flexible prediction. Attention-based
fusion selectively weighs inputs through self-
attention and cross-attention, effectively modeling
dependencies within and across modalities, as seen in
Transformer architectures. Graph Neural Networks
(GNNs) provide a natural framework for modeling
relational multimodal data by representing it within a
unified graph structure. To complement, Generative
Neural Netwo:ks (GenNNs) can be employed to
synthesize missing data modalities or to enforce
semantic consistency across them. The choice of an
optimal fusion strategy is contingent upon the data
characteristics, specific application requirements, and
the critical trade-offs between model accuracy,
robustness, and computational efficiency (Shaik et
al., 2024).

o Significance of Multimodal Data Fusion in CVD
Prediction
The complexity of CVD arises from its multifactorial
nature, involving genetic, physiological, behavioral,
and environmental components (Valeria et al., 2024).
Thus, traditional predictive models relying on
unimodal data regularly fall short in capturing the
complex interrelationships that bring about CVD
onset and progression. In multimodal data fusion, the
integration of heterogeneous data sources such as
clinical records, imaging, genomics, and wearable
sensor data has emerged as a pivotal strategy for
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enhancing the precision and robustness of predictive
models (Li et al., 2024).

Multimodal data fusion enables a comprehensive
representation of patient health by integrating
complementary data types. EHRs provide detailed
information on patient history, diagnoses, and
medications, while medical imaging techniques such
as echocardiography or CT angiography deliver
spatial and morphological characterization of cardiac
structure and function (Zhou et al., 2023). Integrating
these with genomic data can illuminate genetic
predispositions to atherosclerosis or cardiomyopathy,
while wearable sensor data can capture real-time
physiological signals like heart rate variability,
physical activity, and sleep patterns. The integration
of diverse data streams through multimodal fusion
yields patient profiles of greater granularity and
contextual richness, which in turn enhances
predictive performance. Concurrently, advances in
ML and DL have accelerated the adoption of these
multimodal approaches. Techniques such as deep
learning are particularly well-suited for this task, as
they can model complex, non-linear relationships
across different data modalities. For instance, Solares
et al. (2020) demonstrated that DL models, capable
of processing large-scale, multimodal, and sequential
EHR data, significantly outperform traditional
statistical models in clinical risk prediction. This
superior performance is largely attributable to the
ability of deep learning to automatically learn
intricate patterns and interactions directly from raw
data. Similarly, the work of Lu et al. (2024) shows
that deep learning models employing multimodal
data fusion significantly outperform traditional
methods. Their approach effectively learns both
shared and subtype-specific patient representations.
By integrating knowledge graphs, the model not only
enhances its interpretability but also mitigates data
scarcity through a shared-private feature learning
framework. This approach improves clinical
prediction tasks, such as disease outcome predictions,
even in few-shot and zero-shot scenarios (Krones et
al., 2025).

The integration of multimodal data significantly
improves model interpretability and clinical utility.
By combining structured information, such as lab
results, with unstructured data, like clinical notes,
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models can achieve a more holistic representation of
disease pathology. This comprehensive approach
facilitates the discovery of novel biomarkers and the
identification of complex risk factors (Shaik et al.,
2024). Additionally, the fusion of temporally
combined data, such as longitudinal EHRs and
constant monitoring from wearable devices, aids the
development of dynamic prediction models that can
adjust to changes in patient health condition over
time.

e Transformer Models for Multimodal Data Fusion
in Healthcare

Transformer-based models have rapidly proven their
ability to design sophisticated multimodal data fusion
algorithms capable of representing complex
relationships across heterogeneous data streams. In
the context of healthcare, in which data are usually
acquired from diverse modalities such as time series
physiological signals, imaging, and clinical notes,
transformers provide a flexible and scalable method
required for disease diagnosis and monitoring.
Transformers bring multimodal cardiovascular data
fusion to a new level of self-attention by relying on
attention mechanisms across heterogeneous streams
of various data, including ECG, PPG, imaging, and
clinical notes (Noor et al., 2025). The core innovation
in transformer-based fusion comprises:

e Cross-modal attention: Cross-modal attention is a
neural mechanism in transformer architectures
that supports dynamic interaction between diverse
data sources (e.g., ECG signals and clinical text)
by calculating relevance scores between
modalities. Cross-modal attention synchronizes
asynchronous data streams by dynamically
aligning temporal events (Zhu et al., 2024). It
identifies  clinically significant inter-modal
relationships by learning latent connections and it
suppresses noisy modalities (e.g., ignoring
motion-corrupted  PPG  during  exercise)
using gated attention.

o Lightweight Architectures for Edge Deployment:
Designing lightweight transformer architectures
for real-time, on-device healthcare monitoring
using the reduced computational burden of
traditional models (like BERT). With the help of
knowledge distillation and pruning techniques,
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models like DistilBERT can achieve a very high-
performance level with fewer parameters.
Cardiovascular care frameworks like CardioNet+
have often been built using cloud processing, but
now with lightweight adaptations that can run on
edge devices (Psomakelis et al., 2023). That
allows continuous CVD monitoring without
internet access, which was extremely important in
remote or even rural settings.

e Transformer-based models enable the
combination of structured data (ECG, vital signs)
and unstructured data (clinical notes, photos, etc.)
via attention mechanisms to a larger
understanding and hence the predictive ability
(Madan et al., 2024).

Transformer-based Model for Categorical Data

Categorical and integer data are essential elements of
structured  datasets in  healthcare  analytics.
Categorical variables represent discrete, non-
numerical groups, such as diagnostic classifications
or patient demographics. In contrast, integer variables
encompass numerical counts or measurements,
including age or blood pressure readings. Effectively
modeling these data types requires specialized
techniques to capture their distinct patterns and
relationships, ensuring accurate predictions in clinical
and epidemiological studies. The key models include:

e Tab Transformer encodes categorical columns
using embedding layers and applies self-
attention mechanisms to model feature
interactions within tabular data. This approach
provides a more robust representation of
categorical variables, which enhances model
performance in both classification and
regression tasks. It has been effectively
applied in domains like finance, healthcare,
and retail (Alam et al., 2023).

e FT-Transformer introduces a framework
where structured tabular data is tokenized into
feature tokens, which are processed using a
standard ~ Transformer  encoder.  This
architecture generalizes well across diverse
tabular machine learning tasks by learning
complex feature relationships. It demonstrates
strong performance benchmarks in general-
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purpose applications across various industries
(Gutheil & Donsa et al, 2022).

SAINT leverages both intra-feature attention
(capturing dependencies among features) and
inter-sample attention (modeling relationships
across different data instances) in tabular
datasets. This dual-attention mechanism
enhances  predictive  performance  on
classification and regression problems. SAINT
has shown notable improvements in tasks
involving categorical data representations
(Gutheil & Donsa et al., 2022).

TabNet applies a sequential attention
mechanism on feature subsets, rather than
using a full Transformer architecture, to
maintain interpretability while processing
tabular data. The model's attention mechanism
facilitates feature selection by identifying the
most salient variables for tasks such as risk
prediction, fraud detection, and clinical
decision support. Consequently, TabNet has
become a model of choice in domains that
demand not only high accuracy but also
transparent,  explainable  decision-making
(Alam et al., 2023).

Med-BERT adapts the BERT architecture
customized to process structured diagnosis
codes from Electronic Health Records
(EHRs), such as sequences of International
Classification of Diseases (ICD) codes. By
leveraging pretraining on large-scale medical
datasets, it achieves state-of-the-art
performance in predictive tasks, including
chronic disease prediction and patient
outcome modeling. This model enhances
EHR-based clinical analytics through context-
aware encoding of medical codes (Rasmy et
al., 2021).

BEHRT employs a time-aware Transformer
model to capture patient health trajectories
through sequences of diagnosis codes. By
integrating temporal information, it models
disease progression and patient history with
greater clinical relevance. BEHRT has proven
effective in longitudinal healthcare
applications for early disease detection (Li et
al., 2024).
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Retain-Transformer is designed for
longitudinal health records, incorporating
interpretability-focused attention mechanisms
that highlight influential clinical events over
time. This model facilitates risk prediction
tasks, such as forecasting heart failure and
other adverse outcomes, by making temporal
relationships in EHRs transparent. It bridges
performance with interpretability in clinical
decision-making (Lentzen et al., 2023).

Transformer-Based Models in Medical Imaging

Transformer-based models have

demonstrated

significant potential in analyzing complex visual
patterns within medical imaging, including MRI, CT,
and X-rays. These images contain rich spatial and
contextual information that is critical for accurate

diagnosis  and

effective  treatment planning.

The key models include:
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TransUNet fuses a CNN-based encoder with a
transformer-based decoder to model both local
details and global
structures in medical images. The hybrid
architecture yields superior segmentation
accuracy, especially in delineating complex
boundaries. It has been effectively applied to
CT and MRI image segmentation tasks in
clinical settings (Chen et al., 2021).

UNETR employs a pure transformer encoder
connected to a CNN decoder via skip
connections to capture long-range
dependencies in 3D volumetric data. This
design achieves precise segmentation of

texture anatomical

complex anatomical structures in MRI scans
by building upon UNETR, a model with
established utility in 3D medical imaging
applications (Hatamizadeh et al., 2022).

Swin UNet incorporates Swin Transformer
blocks for hierarchical feature extraction,
allowing effective multiscale representation of
medical images. This method enhances
segmentation performance by modeling both
local and global spatial relations through
shifted window attention. It has shown
significant success in organ and tumor
segmentation tasks using CT and MRI data
(Cao et al., 2022).

ICONIC RESEARCH AND ENGINEERING JOURNALS

MedT introduces Gated Transformer Units
(GTUs) to enhance the segmentation of
medical images, especially when annotated
data is scarce. By leveraging an attention
mechanism to focus on clinically relevant
regions, MedT achieves high diagnostic
accuracy even in data-scarce clinical
environments. It has been applied to
segmentation tasks on CT and X-ray datasets
(Valanarasu et al., 2021).

DINO-ViT leverages self-distillation-based
Vision Transformers to learn robust feature

representations  without  labeled  data,
enhancing classification performance in
medical imaging. The proposed self-

supervised framework offers a significant
reduction in the need for expensively
annotated data, while preserving a level of
diagnostic accuracy comparable to supervised
methods. DINO-VIiT has been utilized in
classification tasks involving X-ray and CT
images (Anand et al., 2023).

BioViL-T aligns chest X-ray images with
respective radiology text reports using a
vision-language transformer trained with
contrastive learning. This approach improves
multimodal understanding, facilitating
automated report generation and image-text
retrieval. BioViL-T has been successfully
applied to radiology report comprehension and
multimodal diagnostic tasks (Bannur et al.,
2023).

SwinlR-Med adapts Swin Transformer
architectures for image enhancement tasks,
focusing on super-resolution and denoising in
low-quality medical images. The model
effectively restores details in noisy MRI and
PET scans, improving image clarity for
clinical interpretation. Swinl[R-Med has been
used in scenarios requiring high-fidelity
reconstruction of degraded medical images
(Puttagunta et al., 2022).

ViT-Medical fine-tunes Vision Transformers
specifically for medical image classification
and lesion detection, optimizing them for
clinical datasets. This adaptation enables
accurate identification of disease markers in
X-ray and CT scans. ViT-Medical has been
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applied across various diagnostic imaging
tasks in healthcare (Manzari et al., 2023).

e Regressive Vision Transformer (RVT)
combines global self-attention from Vision
Transformers  with  localized  attention
approaches for enhancing feature extraction in
radiology images. The hybrid approach
enhances disease classification accuracy by
leveraging both coarse and fine-grained
patterns. RVT has been applied to chest X-ray
and CT-based disease classification tasks (Li
and Zhang, 2024).

E. Machine Learning and Deep Learning Models for
CVD Prediction

The persistent global burden of CVD mortality has
motivated the exploration of advanced computational
methods. This has led to a progression from
traditional ML to DL, and more recently, to hybrid
models that integrate multiple approaches to harness
their complementary advantages.

e Traditional ML

o Logistic Regression (LR)

Despite their assumption of linearity, which is
an inherent limitation, logistic regression (LR)
models remain valuable in CVD risk
prediction due to their computational
efficiency and interpretability. However, since
linear relationships between risk factors are
assumed to be constant throughout the model,
LR models struggle to generalize among a
sample of individual risk factors such as CVD
to a much wider population and thus tend to
underestimate risk in people younger, females,
and minorities. Due to these limitations, more
sophisticated and flexible machine learning
models have been developed that can capture
the dynamic and multifactorial risk profile
more precisely (Kasartzian and Tsiampalis,
2025).

o Random Forest (RF)
Yang et al. (2024) in their paper adds that
Random Forest is a promising classifier for
CVD achieving 91% accuracy on the Long
Beach VA dataset and 90% AUC after
applying the proposed data balancing

technique. RF is found to be superior to other
classifiers due to its ability to reduce
overfitting and the difficulties in handling
imbalanced datasets making it suitable for
clinical applications. The model's
interpretability, achieved through SHAP
values, aligns with established clinical
expertise, thereby fostering greater trust in its
utility for clinical decision-making. (Yang et
al., 2024).

Deep learning (DL)

Deep learning has revolutionized the medical
imaging industry by giving rise to automated
and high-quality feature extraction and
interpretation ~ with  significantly  better
accuracy compared to existing methods for
diseases  detection, segmentation, and
classification in more challenging image data
sets such as MRI, CT scan, and ultrasound.

Convolutional Neural Network (CNN)

There is increasing importance of CNNs for
the analysis of medical images for CVD, with
particular emphasis on applications such as
classification, segmentation and detection (Jia
et al.,, 2024). Common CNN models like
ResNet and U-Net are commonly used for the
analysis of CT and MRI images, which are at
the center of CVD research (Jia et al., 2024).
The authors acknowledge challenges,
including the cost of data annotation and data
privacy  concerns.  Nonetheless,  they
emphasize the potential of Convolutional
Neural Networks (CNNs) to enhance
diagnostic accuracy and improve workflow
efficiency. Emerging areas include
multimodal learning and federated learning to
overcome data limitations (Jia et al., 2024).

Long Short-Term Memory (LSTM)

LSTM networks, a specialized variant of
Recurrent Neural Networks (RNNs), were
developed to model long-term temporal
dependencies in sequential data, such as
electrocardiogram (ECG) signals. They
overcome the vanishing gradient problem via
memory cells and gating mechanisms,
enabling retention of temporal patterns across
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extended heartbeat sequences. This makes
LSTMs effective for detecting arrhythmias
dependent on multi-beat irregularities (e.g.,
Atrial Fibrillation). However, these models are
computationally demanding (e.g., standard
RNNs or MLPs) (Ansari et al., 2023).

e Hybrid Model

Hybrid models represent a growing trend in which
multimodal data are processed by integrating
complementary architectures to achieve superior
predictive performance.

o CNN-LSTM model

CNN-LSTM model incorporates
convolutional feature extraction layers with
LSTM  layers to capture temporal
dependencies. Sudha and Kumar (2023) in
their heart disease prediction designed an
architecture consisting of 5 convolutional and
pooling layers followed by LSTM and fully
connected layers with Softmax activation. On
the basis of UCI heart disease tabular data, the
missing values are normalized with z-score
and features are selected by the SVM
weighting method. The authors train the
model with the Adam optimizer over 200
epochs with a learning rate of 0. 001% and
obtain 89% accuracy, 81% sensitivity and
93% specificity. It outperforms traditional
classifiers due to their dynamic dimension of
the data.

o CNN-Transformer
Hybrid Vision Transformer (HVT)
architectures integrate the complementary
strengths of Convolutional Neural Networks
(CNNs) and Vision Transformers (ViTs).
They typically leverage CNNs to extract fine-
grained local features and employ the self-
attention mechanisms of ViTs to capture long-
range global dependencies. To capture
complementary information at both local and
global scales, studies have employed various
integration strategies, notably sequential,
parallel, and hierarchical integration. In
general, HVTs outperform standalone CNNs
and ViTs in image recognition and
segmentation tasks in limited datasets. In

addition, the technique convolutional token
embedding enhances efficient computation,
for example by decreasing computational cost
without compromising accuracy (Sagheer et
al., 2025).

Graph Neural Networks (GNNs)

The application of Graph Neural Networks
(GNNs) offers a robust paradigm for
analyzing healthcare data, which is inherently
relational. By representing medical entities as
nodes and their interactions as edges, GNNs
can directly model the complex dependencies
within such data. Architecturally, GNNs are
categorized into recurrent, spatial, and spectral
approaches, which support fundamental tasks
including node-level, link-level, and graph-
level prediction. These models consistently
surpass traditional machine learning methods,
primarily due to their superior handling of
data heterogeneity, temporal dynamics, and
sparsity. Consequently, the proficiency of
GNNs in modeling dynamic processes, fusing
multi-modal inputs, and offering explainable
predictions establishes them as a pivotal
technology  for  advancing  healthcare,
particularly in the realms of disease
prognostication, drug repurposing,
personalized  treatment  planning, and
enhanced clinical decision-support systems
(Paul et al., 2024).

Autoencoder—Random Forest

Hybrid autoencoder—random forest
architecture primarily within the context of
anomaly detection. This hybrid approach
employs autoencoders for efficient feature
extraction and dimensionality reduction,
enabling the learning of compact and
semantically meaningful representations of the
input data. The extracted features are
subsequently fed into a Random Forest
classifier, ~which  demonstrates  strong
performance in handling classification tasks,
particularly in scenarios involving imbalanced
or complex datasets (Berahmand et al., 2024).
This hybrid model leverages the unsupervised
feature learning of autoencoders and the
strong classification capability of random
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forests to achieve higher detection accuracy
and Dbetter generalization across diverse
datasets (Berahmand et al., 2024).

o CNN-SVM

Hybrid CNN-SVM architecture integrates
CNNs for hierarchical feature extraction with
support vector machines (SVMs) for robust
classification of cancer types using high-
dimensional RNA-Seq data. Among the
evaluated models, the Hybrid-CNN-SVM
architecture, incorporating parallel
convolutional layers, achieved the highest
accuracy (96%), surpassing the performance
of the standalone CNN and SVM models. This
hybrid approach enhances generalization
through the SVM’s  structural  risk
minimization  principle and  improves
robustness to noise, effectively addressing
critical challenges in biomedical data analysis.
The results demonstrate the hybrid model's
effectiveness for complex classification tasks
in genomics and precision medicine
applications (Nejad, 2025).

F. Application Domains of Multimodal Data Fusion
and IoT in Healthcare

It is vital to emphasize the contributions that IoT,
combined with multimodal data fusion, as a whole,
has made towards modern healthcare by providing an
ability for more rapid acquisition, transmission, and
analysis of biomedical data. The integration of these
factors has resulted in enhanced predictive accuracy,
personalized healthcare delivery, and improved
anticipatory care. The scope of multimodal data
fusion and IoT technologies is extensive,
encompassing both clinical and non-clinical domains,
including remote patient monitoring, chronic disease
management, medical imaging, critical care,
psychological assessment, and rehabilitation services.
In this section, this study explores the key medical
domains in which multimodal data fusion and the IoT
have exerted significant influence.

e Remote Patient Monitoring and Telemedicine

Remote patient monitoring (RPM) represents a key
application  domain, particularly for aging
populations and individuals with chronic conditions
such as cardiovascular diseases, diabetes, and
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respiratory disorders. loT-based wearable sensors and
mobile health platforms allow continuous tracking of
physiological signals, heart rate, blood pressure,
oxygen saturation, body temperature, and ECG data,
which are fused with contextual and environmental
information to create holistic health profiles
(Boikanyo et al., 2023).

The integration of NLP of physician—patient
conversations ~ with  facial  expression  and
physiological signal analysis enhances remote
consultations by enabling the capture of both verbal
and non-verbal cues. This multimodal approach
enables deeper patient understanding, supports
mental health assessments, and improves diagnostic
accuracy during telemedicine interactions by
analyzing emotions, stress, and physiological states
in real-time (Farrokhi et al., 2024).

Chronic Disease Management

Ahmad et al. (2025) provides a review of emerging
rapid detection methods for monitoring CVDs,
emphasizing wearable sensors (ECG, PPG) and
point-of-care (POC) technologies for real-time
biomarker detection. While Al-driven analytics have
demonstrated the potential to enhance diagnostic
accuracy, persistent challenges concerning signal
integrity and data security continue to pose
limitations. Future directions should prioritize the
integration of personalized medicine approaches,
interdisciplinary collaboration, and technological
innovations to optimize chronic disease management.

Medical Imaging and Radiomics

Assen et al. (2023) highlight the use of imaging and
Al-based fusion modeling techniques in cardiac care.
Imaging modalities such as CT, CMR,
echocardiography, and nuclear imaging provide
important biomarkers such as coronary calcium,
plaque volume, and patient age to help cardiovascular
risk prediction and patients’ personalized treatment.
Al provides automatic extraction and analysis of
imaging features to improve both clinical and general
assessment accuracy and efficiency. Advances in
medical imaging technologies have significantly
enhanced capabilities in early heart failure detection,
digital heart twin construction for personalized
ablation planning, and predictive modeling of drug
responses.
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The authors further state that fusing clinical and
imaging data can pointedly improve risk prediction
and personalization in cardiovascular disease, and
combining it with Al models will result in a higher
diagnostic performance, easier treatment planning,
and greater prognostic insight, particularly for
cardiovascular conditions, including coronary artery
disease and heart failure.

Intensive Care and Emergency Medicine

The intensive care units (ICU) high-stakes nature
demands a shift from reactive to proactive care,
achievable only through multimodal IoT systems.
The fusion of wearable, visual, and environmental
sensing modalities enables continuous, high-
resolution monitoring of functional and behavioral
metrics, such as mobility, pain, and sleep, thus
addressing key limitations in current healthcare
monitoring practices. Achieving success depends on
addressing privacy challenges, ensuring
interoperability, and demonstrating real-world
effectiveness through rigorous validation. Berikol et
al. (2025) in their study demonstrate how multimodal
Al in emergency medicine combines imaging, EHRs,
and physiological data to improve diagnostics. Even
though standardization challenges persist, these
methods enable holistic evaluations.

Mental Health and Behavioral Analysis

Guo et al. (2022) propose the CASTLE framework,
which utilizes multimodal data fusion to assess
students’ mental health status by integrating social
life, academic performance, physical, and
demographic features. The framework leverages
representation learning in conjunction with a multi-
view embedding algorithm for social networks and a
deep neural network (DNN) for detection. The
experimental results demonstrate its efficacy in
identifying mental health issues while effectively
addressing challenges such as data heterogeneity and
label imbalance. The authors further analyze behavior
via multi-view social networks (friendship, advice-
sharing) using the MOON algorithm to detect mental
health risks. It links social patterns (e.g., isolation,
cooperation) to psychological states but notes
limitations like static data and self-report bias.

IRE 1712301

Rehabilitation and Assistive Technologies

Multimodal data fusionin assistive healthcare
technologies to enhance functionality for individuals
with neurological disabilities. It integrates brain—
computer interfaces (BCIs), Al-driven devices, and
sensor-based  systems to enhance mobility,
communication, and cognitive assistance. For
instance, the integration of BCIs with virtual reality
(VR) facilitates real-time monitoring of cognitive
load, while Al algorithms dynamically adapt assistive
technologies (ATs) based on users’ behavioral and
physiological data. Challenges include usability and
ethical concerns, but multimodal approaches promise

personalized, adaptive solutions (Bonanno et al.,
2025).

Raj and Kos (2024) in their article highlight
that multimodal sensor fusion is pivotal in assistive
robotics, enhancing perception and interaction by
integrating data from LiDAR, IMUs, EMG, and
vision sensors. This fusion improves environmental
awareness, intention recognition, and adaptive
control, enabling safer Human-Robot Interaction
(HRI). Combining infrared and IMU data aids
navigation for the visually impaired, while EMG and
vision enable responsive prosthetics. Future
advancements in deep learning—based fusion are
anticipated to further enhance real-time adaptability
and personalized user assistance.

Challenges of Multimodal Data Fusion Systems
Multimodal data fusion offers significant advantages
in healthcare, including enhanced diagnostic
accuracy and comprehensive access to diverse
medical information. Its application and use,
however, present several significant challenges. The
challenges of multimodal data fusion systems
include:

e Data Quality and Interoperability: One of the
challenging problems is meeting the quality
and interoperability of data that originates
from different sources in healthcare, which
requires the creation of quality data standards
and comprehensive interoperability
frameworks (Kumar et al., 2024).

e Privacy and security: Protection of sensitive
patient data, obtained from multiple sources,
is critical; such protection should encompass
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mechanisms like encryption and secure
storage techniques, and privacy-preserving
techniques, as well as continuous monitoring
and auditing for ensuring data integrity and
confidentiality of the data (Shaik et al., 2024).

e Data Processing and Analysis: Scalability of
systems has become an important and difficult
aspect in this area, and therefore, the fusion of
data requires the development of different
approaches of ML and Al, as well as a
scalable data processing and real-time
analytics infrastructure (Shaik et al., 2024).

e Clinical Integration and Adoption: Effectively
integrating multimodal fusion into current
clinical practice demands the -effective
involvement of healthcare professionals. It
also necessitates the design of user-friendly
interfaces, the provision of adequate user
training, and the integration of these emerging
technologies into existing medical systems
(AL-Mosawi and Al-Shammari, 2024).

e FEthics considerations: Privacy, autonomy, and
fairness concerning patients should be
important ethical considerations; this includes
obtaining informed consent, establishing
ownership of data, detailed governance
policies, and rigorously remediating any
biases, whether in the data or the algorithm
used (Shaik et al., 2023).

o Interpretation of Results: The complexity of
multimodal  fusion  outcomes  presents
interpretive challenges; therefore, employing
visual analytics, explainable AI approaches,
and robust clinical validation is vital to ensure
meaningful and clinically relevant insights
(Shaik et al., 2024).

Though multimodal data fusion is essential for a
holistic understanding of patient health in smart
healthcare, it requires careful consideration and
ongoing research to address its complex technical and
ethical aspects.

Real-Time Applications and Challenges of CVD
Monitoring

Real-time monitoring systems have become a crucial
tool for early diagnosis and intervention of diseases
such as arrhythmias, myocardial infarction, and
hypertension (WHO, 2021). Using wearable sensor
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technologies, mobile applications, and cloud
computing has significantly improved CVD risk
through the collection, analysis, and acting on the
physiological signals to decrease mortality and
improve medical results (Boikanyo et al., 2023).

Wearable health monitoring devices, such as ECG
patches, smartwatches, and fitness trackers,
continuously capture cardiovascular parameters
including heart rate, rhythm, and blood pressure for
real-time analysis. These monitors stream data to
mobile or web-based applications that process the
Artificial intelligence.
Transformer-based models have demonstrated

information using

superior  capability in  capturing  temporal
dependencies within sequential health data (Xu et al.,
2023). Their integration also allows early anomaly
detection, individual feedback, as well as emergency
notification.

mHealth applications facilitate remote patient
monitoring by tracking symptoms, analyzing trends,
and generating alerts when readings exceed normal
thresholds. In clinical environments, real-time
dashboards process multimodal patient data
aggregated from diverse sources to support doctors’
clinical decision-making (Kumar et al., 2023).
Combination with Electronic Health Records (EHRs)
improves monitoring and decision-making.

Notwithstanding these benefits, real-time CVD
monitoring can be at risk of several problems; that is,
sensor data are often altered by motion artifacts and
environmental noise, which lowers accuracy (Khan et
al.,, 2025). Implementing complex models like
transformers on edge devices entails optimization to
exceed latency and energy constraints. Additionally,
real-time data transmission raises privacy and
security ~worries, particularly in cloud-based
platforms (Wang et al., 2025).

Another significant challenge is the interpretability of
these Al models. Medical professionals often distrust
black-box systems, particularly in high-stakes
diagnoses. The absence of clinical validation through
large-scale randomized controlled trials continues to
impede  regulatory  approval and  broader
implementation. Furthermore, infrastructural
limitations in low- and middle-income countries
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constrain access to these technologies, despite the
disproportionately high burden of CVDs (Sokol et al.,
2025).

G. Future Directions

Future work on transformer-based multimodal IoT
data fusion for real-time smart healthcare should
focus more on developing light architectures for easy
edge deployment. These models need to maintain
diagnostic accuracy at lower computational cost and
enable real-time CVD monitoring on wearable
devices and low-power sensors (Ahmad et al., 2025;
Khan et al., 2025). At the same time, federated
learning techniques can support privacy-preserving
collaboration across decentralized healthcare nodes
without transferring sensitive patient data, aligning
with privacy laws and ethical standards (Shukla et al.,
2025). Unified multimodal pretraining represents a
promising alternative, facilitating the learning of
cross-modal relationships from ECG, PPG, imaging,
and clinical notes to improve model robustness and
generalization.

Transformer models also need to be adaptable to
produce real-time predictive alerts by processing
continuous streams of data and the estimation of
uncertainty to avoid important events (e. g. heart
attack) into clinical decision support systems
(CDSS). They require interpretable outputs and
adequate consistency with electronic health records
to ensure clinician trust and usability (Shaik et al.,
2024). Equality-focused benchmarking and policy
implementation in resource-limited settings are
critical for ensuring equitable global deployment of
transformer-based healthcare innovations.
Infrastructural limitations, gender-related disparities,
and implementation challenges continue to hinder the
effective integration of transformer models in clinical
settings.

III. CONCLUSION

Transformer-based multimodal fusion is a paradigm
shift in CVD monitoring with the integration of
IoMT signal streams (ECG, PPG, imaging, EHRs)
into unified diagnostic insights. By integrating
physiological, clinical, and imaging data, these
approaches offer a more holistic basis for prediction,
which can translate to timelier, proactive patient
management, especially in time-sensitive care
settings. This review show that transformer-based
models outperform traditional models on many data
fusion tasks, yet the widespread application of
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transformer-based models in clinical settings is
consistently hindered by numerous significant
challenges: high computational complexity, poor
interpretability, data heterogeneity, and poor
deployment performance in resource-constrained
settings.

In addition, the review points out the need to develop
lightweight variants of transformers for inference on
the device, merge explainable Al techniques for
clinical trust considerations, and wuse learner
paradigms that conserve privacy, such as federated
learning. The deployment of real-time systems
remains a developing challenge, requiring careful
optimization of latency, energy efficiency, and
predictive accuracy. Moreover, the absence of
standardized benchmarks for multimodal CVD
applications impedes cross-study comparisons and
limits the generalizability of findings. Integrating
streams of [oT data and simply applying transformer-
based models for real-time monitoring and prediction
cannot be achieved until all relevant stakeholders in
the health sector are brought together to turn the
theoretical approach into something that happens in
real life.

Achieving equitable global health advancements
necessitates overcoming significant infrastructural,
ethical, and socioeconomic barriers. This is
particularly critical in developing nations such as
Nigeria, where constraints in essential infrastructure,
funding, trained personnel, and technology persist.
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