© NOV 2025 | IRE Journals | Volume 9 Issue 5 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV915-1712443

Al-Based Sign Language Translator

YOGESH BALAJI REDDY'!, PRATHAMESH NANASAHEB RAUT?, ANIKET SNDIPAN
TANDALE?, PRAJESH VIKAS SURWASE*, PROF. D. J. WAGHMARE?
2343 Department of Computer Science and Engineering, Shri. Tuljabhavani College of Engineering,
Tuljapur, India

Abstract- Sign language is the primary
communication method for deaf and hard-of-
hearing (DHH) individuals, yet it remains unfamiliar
to most non-DHH people, creating a significant
communication gap. To address this, we propose an
Al-powered Sign Language Translation system that
utilizes computer vision and deep learning to
interpret hand gestures in real time and convert them
into readable text. Our system is based on a
Convolutional Neural Network (CNN) model trained
on American Sign Language (ASL) datasets and uses
webcam input for gesture recognition. This paper
outlines the design, methodology, and
implementation of the system, discusses the
challenges in sign language translation (SLT), and
highlights possible improvements using transformer-
based approaches.

Index Terms- Sign Language Translation, Artificial
Intelligence, Deep Learning, CNN, Computer
Vision.

L INTRODUCTION

Communication is a fundamental aspect of human
interaction. For deaf and hard-of-hearing (DHH)
individuals, sign language serves as the primary means
of communication. However, the lack of widespread
understanding of sign language among non-DHH
people creates a significant barrier, leading to social
isolation and communication challenges for the DHH
community. Sign Language Translation (SLT) aims to
bridge this gap by converting visual gestures into text
or speech, enabling smoother interaction between
DHH and non-DHH individuals. This project presents
an Al-powered sign language translator that
recognizes hand gestures in real-time using a webcam
and translates them into corresponding textual output.
By employing a CNN model trained on an ASL
dataset, the system identifies individual letters and

IRE 1712443

outputs their meaning using Python, OpenCV, and
TensorFlow.

1L LITERATURE REVIEW

Previous approaches to sign language translation
ranged from expensive sensor gloves to vision-based
systems using deep learning. Recent works have
shown that Convolutional Neural Networks (CNNs)
can effectively recognize static ASL alphabet gestures
with high accuracy. Some studies also explore
transformer models for sentence-level translation, but
these are often computationally intensive. Our project
focuses on a lightweight, real-time CNN-based system
using webcam input to provide an affordable solution
for daily communication.

. METHODOLOGY

The system workflow includes the following
components: image capture using a webcam, image
preprocessing (grayscale conversion, normalization,
and resizing), gesture classification using a pre-trained
CNN model, and output display as text. Python and
TensorFlow were used for model training, while
OpenCV handled real-time video capture and
preprocessing.

The CNN architecture includes convolutional,
pooling, and fully connected layers with ReLU and
Softmax activations for classification of ASL
alphabets (A-Z).

IV. IMPLEMENTATION

The Al-powered Sign Language Translator was
developed using Python with key libraries including
OpenCV for image capture and preprocessing, and
TensorFlow/Keras for building and training the CNN
model. The dataset used was the publicly available
American Sign Language (ASL) Alphabet dataset,

ICONIC RESEARCH AND ENGINEERING JOURNALS 2243

© NOV 2025 | IRE Journals | Volume 9 Issue 5 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I15-1712443

split into training and validation sets. The model
achieved approximately 92% accuracy on validation
data, confirming its reliability for static gesture
recognition.

V. RESULTS

The trained CNN model achieved 92% accuracy on
validation data. Real-time webcam testing
demonstrated accurate recognition of most static
gestures with minimal delay. However, lighting
conditions and hand orientation sometimes caused
misclassification. Future improvements may include
transformer-based temporal models, dynamic gesture
recognition, and expanded datasets for full-sentence
translation.

VL. DIAGRAM

1.FlowChart

2.Data Flow Diagram

3. Use Case Diagram

4. ER Diagram

We represent the both type of diagram properly for the
Ai Sign Language Translator.

1 .FlowChartﬂ

Select Language

Capture Image
from Live
camera

! il
ein) (Comin)
I [

Edit the prediction Edit the prediction
(Clear, Add fo sentence) (Clear, Add to sentence)

Upload Image
From Device

End

Below is a clear and complete explanation of the
Flowchart Diagram for your AI Sign Language
Translator System.

IRE 1712443

every step and both branches (uploading an image or
capturing live video).

Explanation of the Use Case / Flowchart Diagram
The diagram shows the user interaction flow in an Al
Sign Language Translator application. It explains how
the user selects the language, chooses how to input the
sign, and receives the translation.

1. Start
The process begins when the user opens the Al Sign
Language Translator application.

2. Select Language
The user is asked to choose a preferred output

language—
Example:

e English
e Hindi

e Telugu
e Tamil

e Any supported language
This ensures that the predicted sign gesture will be
translated into the selected language.

3. Select Mode (Decision Point)
A decision diamond indicates that the system now asks
the user to pick one of two modes:

Mode Options:

1. Upload Image From Device

2. Capture Image From Live Camera

This decision splits the flow into two parallel paths.

4A. Upload Image From Device (Left Branch)

If the user chooses to upload an image:

Steps:

e User selects an image containing a hand sign from
their phone or computer.

e The system prepares this image for prediction.

Then:
The system moves to the Predict step.

4B. Capture Image from Live Camera (Right Branch)
If the user chooses the live camera option:

Steps:

e The system activates the live camera.

ICONIC RESEARCH AND ENGINEERING JOURNALS 2244

© NOV 2025 | IRE Journals | Volume 9 Issue 5 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I15-1712443

e The user performs a sign gesture in front of the
camera.

e A frame is captured for recognition.

Then:

The system moves to the Predict step.

5. Predict
In both paths, the system now processes the image
using the trained Al model.

What happens here:

e Hand keypoints are extracted.

e The model identifies the sign.

e The system predicts the corresponding text
meaning.

Example:
% — “Hello”
¢ — “I Love English”
— “OK’ﬂ

6. Edit the Prediction (Clear or Add to Sentence)
After prediction, the user has two options:

Edit Options:

1. Clear — Delete the prediction and try again.

2. Add to Sentence — Append the predicted word to
build a full sentence.

Example sentence building:

“I” + “Love” + “English”

This step allows the user to create meaningful
sentences from multiple signs.

Both branches (upload or live capture) reach this same
editing step.

7. End

Once the user has completed editing or building a
sentence, the process ends.

2. Data Flow Diagram

IRE 1712443

A
Sign gestures P
Video/Sign
Input Capture Tra-processing ¥
Cleaned frames

- Keypoints P3

;i AlModel |—— D2

Sign Language Recognition d
Dataset (Deep Learning) Trained Model

Repository
Recognized sign - text
D3 Text/speech P4 -
g output Text/Speech
Text Library

Generation Output Delivery
to User

Here is a clear, step-by-step explanation of the Al Sign
Language Translator Data Flow Diagram. The
Diagram describe every block (P1-P4, D1-D5) and
how data moves through the system.

Al Sign Language Translator — Data Flow Explanation
>

The Diagram shows how an Al system captures sign
gestures from a user, processes them with deep
learning, and converts them into text or speech. The
flow is divided into Processes (P) and Data Stores (D).

1. User — P1: Video/Sign Input Capture

e The process starts with the User performing sign
gestures.

e These gestures are captured in real-time using:

e A camera

e A mobile device

e A webcam

P1: Video/Sign Input Capture

This module:

e Records video frames of hand and body
movements.

o Cleans the frames (removes noise, adjusts lighting,
etc.).

e Prepares the visual input for further processing.

Output of P1: Cleaned video frames.

2. P1 — P3 (Processing continues)
After capture, the cleaned frames are sent to the
Al model for recognition.

3. D1 — P3: Sign Language Dataset
D1: Sign Language Dataset

This contains:

e Labeled sign samples

e Keypoints (hand skeleton points)

ICONIC RESEARCH AND ENGINEERING JOURNALS 2245

© NOV 2025 | IRE Journals | Volume 9 Issue 5 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I15-1712443

e Training data used for recognizing gestures
P3 uses this dataset to compare input signs with known
patterns.

4. P3: Al Model Recognition (Deep Learning)

This is the heart of the system.

P3 Responsibilities:

e Takes cleaned frames.

e Extracts keypoints (hand, face, body joints).

e Uses Deep Learning (CNN, RNN, LSTM, or
Transformers) to:

e Recognize each sign

e Map it to a corresponding meaning

Output of P3: Recognized sign — converted to text
meaning.

Also Connected:

D2: Trained Model Repository

e Stores trained deep learning model.

o P3 loads this model to interpret signs.

5. P3 — P4: Recognized text generation
After recognizing the sign, the system sends the
interpreted text to the next process.

6. D3 — P4: Translation Text Library
D3: Translation Library

This includes:

o Natural language phrases

e Grammar rules

e Speech synthesis resources

Helps convert recognized signs into:
e Proper readable text
e Natural speech output

7. P4: Text/Speech Generation
This module generates the final communication
output.

P4 Responsibilities:

e Converts recognized text into readable sentences.

e Optionally converts text to speech using TTS
(Text-to-Speech).

o Ensures the final output is user-friendly.

Output of P4: Text or speech message.

8. P4 — DS5: Output Delivery

IRE 1712443

D5: Output Delivery to User
This includes:
Mobile device screen

Speaker output

Application display

e Notifications

Final message is delivered to the user as:

e Text (written message)

e Audio (spoken sentence)

Summary (Simple View) :=>

1. User performs sign.

2. P1 captures and cleans video.

3. P3 analyzes gestures with deep learning.
4. P4 converts recognized gestures into text/speech.
5. D5 delivers final output to user.

Data Stores support:

e DI: Sign dataset

e D2: Trained deep learning model

e D3: Language and translation library

e D5: Output handling

3.Use Case Diagram

~
Al Sign Language
Translator
- J

Explanation of the Use Case Diagram for the Al Sign
Language Translator

The Use Case Diagram illustrates the major
interactions between the User and the AI Sign
Language Translator System. It identifies the core
functionalities provided by the system and shows how
an external user interacts with each feature. This
diagram is essential for understanding the functional
requirements of the application.

1. Actor: User

The User represents anyone who operates the Al Sign
Language Translator. This may include:

e People communicating using sign language,

ICONIC RESEARCH AND ENGINEERING JOURNALS 2246

© NOV 2025 | IRE Journals | Volume 9 Issue 5 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I15-1712443

e Hearing individuals who want to understand signs,
e Researchers or administrators managing datasets
and model training.

The actor interacts with the system through all four
main use cases.

2. Use Case: Translate

This use case allows the user to convert real-time sign
language gestures (captured via camera or uploaded
video) into readable text or speech.
Functional steps may include:

e Capturing the gesture input

e Preprocessing the video frames

e Running the Al model for prediction

o Displaying the recognized text

This is the primary feature of the system.

3. Use Case: Upload Dataset

This functionality is typically used by researchers,
developers, or system administrators.
It enables the user to upload a new dataset consisting
of sign language images or video samples for model
improvement.

The purpose of this use case is:

Expanding or updating the dataset
e Improving model accuracy

Supporting diverse sign patterns

4. Use Case: Train Model

After uploading or updating the dataset, the user can

trigger the Train Model use case.

This involves:

e Data preprocessing

e Model training with machine learning or deep
learning techniques

e Generating a trained model for real-time
translation

This use case ensures the system stays accurate and

up-to-date.

5. Use Case: View Translation

This use case allows the user to view the output of the
translation process.
The system displays the translated text, which may
also be converted into speech through a text-to-speech
module.

IRE 1712443

Users can:

e Review the recognized signs

e Verify the accuracy

e Use the output for communication

Overall Functionality

The diagram clearly shows that the User is the central
actor who interacts with all system features. The
system provides four major capabilities:

1. Translate sign language

2. Upload sign datasets

3. Train or retrain Al models

4. View translation results

These use cases collectively define the functional
architecture of the Al Sign Language Translator and
ensure efficient gesture recognition, model
improvement, and user interaction.

4.ER Diagram

(user_ID Model_ID

g

Al_Model I Model_Name

(Sign_Language } Contains { Dataset_ID
(Language_Code)
(Language-Name)

@
@

(DataseLNam) Translation_ID

(Translation) Translated_Text

Explanation of the ER Diagram for Al Sign Language
Translator

The Entity—Relationship (ER) Diagram represents the
database structure of the Al Sign Language Translator
system. It shows the key entities, their attributes, and
how they are logically related. This diagram ensures
that the system has an efficient and well-organized
data model to support translation, dataset
management, and Al model training.

1. Entity: User
This entity stores information about every person who
interacts with the system.

ICONIC RESEARCH AND ENGINEERING JOURNALS 2247

© NOV 2025 | IRE Journals | Volume 9 Issue 5 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV915-1712443

Attributes:

e User ID — A unique identifier for each user.
e Name — Stores the user's name.

Purpose:

The User entity helps track:

e Who uploads datasets

e Who trains or uses models

e System-level personalization

The User is connected to the Al Model entity,
meaning each user manages or utilizes one or more Al
models.

2. Entity: AI Model

This entity represents the Al models used for sign

language translation.

Attributes:

e Model ID - Unique ID assigned to each Al model.

e Model Name — Name or type of the model (e.g.,
CNN-Model, MobileNet-Model).

Purpose:

The Al Model stores details of the machine-learning

or deep-learning models created, trained, or used.

It connects:

e With User (user who uses/trains the model)

o With Dataset (the dataset used for training)

3. Relationship: Contains

This is the central relationship connecting Al Model,
Sign Language, and Dataset.

Meaning:

The Contains relationship indicates that:

e Every Al Model contains or uses

e A Dataset, which is

o Related to a specific Sign Language

Thus, an Al Model is trained on a Dataset that belongs
to a particular Sign Language.

This helps ensure that models and datasets are
organized language-wise (example: ISL, ASL, BSL).

4. Entity: Sign_Language

This entity represents the different sign languages

supported by the system.

Attributes:

e Language Code — A unique language identifier.

e Language Name — Example: “American Sign
Language (ASL)”, “Indian Sign Language (ISL)”.

IRE 1712443

Purpose:
To categorize datasets and models based on the
language they represent.

5. Entity: Dataset

This entity stores information about the datasets used
for training Al models.

Attributes:

e Dataset ID — A unique identifier for each dataset.

e Dataset Name — Name of the dataset (e.g.,
“ASL_HandGestures V17).
Purpose:

Each dataset belongs to a specific sign language and is
used to train Al models.
Organized dataset storage ensures proper training and
updating of the system.

6. Entity: Translation

This entity stores the translations generated by the Al

model.

Attributes:

e Translation ID — Unique identifier for each
translation instance.

e Translated Text — Output text generated after
interpreting sign gestures.

Purpose:

To store and retrieve past translation results, which can

be useful for:

e Displaying results to the user

e Evaluation and accuracy testing

e Learning analytics

This entity is directly linked to the Contains

relationship through the datasets used for translation.

Overall ER Structure Summary

This ER model clearly defines how the system
manages essential elements:

o Users create or use Al Models

e Al Models are trained using Datasets

e Datasets belong to a particular Sign Language

e Translations store the recognized text output

The diagram provides a strong and normalized
database structure for efficient handling of sign
language data, training workflows, and translation
outputs.

ICONIC RESEARCH AND ENGINEERING JOURNALS 2248

© NOV 2025 | IRE Journals | Volume 9 Issue 5 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV915-1712443

VII. CONCLUSION

This paper presented an Al-based Sign Language
Translator using a CNN model to recognize ASL
alphabet gestures. The proposed system provides a
low-cost, real-time, and accessible tool for bridging
communication between deaf and hearing individuals.
Future work will explore transformer architectures,
dynamic sign recognition, and enhanced user
interfaces for everyday usability.

REFERENCES

[1] G. Eason, B. Noble, and I. N. Sneddon, “On
certain integrals of Lipschitz-Hankel type
involving products of Bessel functions,” Phil.
Trans. Roy. Soc. London, vol. A247, pp. 529—
551, April 1955.

[2] D. P. Kingma and M. Welling, “Auto-encoding
variational Bayes,” arXiv:1312.6114, 2013.

[3] Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa,
“Electron spectroscopy studies on magneto-
optical media and plastic substrate interface,”
IEEE Transl. J. Magn. Japan, vol. 2, pp. 740—
741, August 1987.

[4] TensorFlow Documentation,
https://www.tensorflow.org/.

[5] OpenCV Documentation, https://opencv.org/.

IRE 1712443 ICONIC RESEARCH AND ENGINEERING JOURNALS

2249

