
© NOV 2025 | IRE Journals | Volume 9 Issue 5 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I5-1712443

IRE 1712443 ICONIC RESEARCH AND ENGINEERING JOURNALS 2243

AI-Based Sign Language Translator

YOGESH BALAJI REDDY1, PRATHAMESH NANASAHEB RAUT2, ANIKET SNDIPAN

TANDALE3, PRAJESH VIKAS SURWASE4, PROF. D. J. WAGHMARE5
1, 2, 3, 4, 5Department of Computer Science and Engineering, Shri. Tuljabhavani College of Engineering,

Tuljapur, India

Abstract- Sign language is the primary

communication method for deaf and hard-of-

hearing (DHH) individuals, yet it remains unfamiliar

to most non-DHH people, creating a significant

communication gap. To address this, we propose an

AI-powered Sign Language Translation system that

utilizes computer vision and deep learning to

interpret hand gestures in real time and convert them

into readable text. Our system is based on a

Convolutional Neural Network (CNN) model trained

on American Sign Language (ASL) datasets and uses

webcam input for gesture recognition. This paper

outlines the design, methodology, and

implementation of the system, discusses the

challenges in sign language translation (SLT), and

highlights possible improvements using transformer-

based approaches.

Index Terms- Sign Language Translation, Artificial

Intelligence, Deep Learning, CNN, Computer

Vision.

I. INTRODUCTION

Communication is a fundamental aspect of human

interaction. For deaf and hard-of-hearing (DHH)

individuals, sign language serves as the primary means

of communication. However, the lack of widespread

understanding of sign language among non-DHH

people creates a significant barrier, leading to social

isolation and communication challenges for the DHH

community. Sign Language Translation (SLT) aims to

bridge this gap by converting visual gestures into text

or speech, enabling smoother interaction between

DHH and non-DHH individuals. This project presents

an AI-powered sign language translator that

recognizes hand gestures in real-time using a webcam

and translates them into corresponding textual output.

By employing a CNN model trained on an ASL

dataset, the system identifies individual letters and

outputs their meaning using Python, OpenCV, and

TensorFlow.

II. LITERATURE REVIEW

Previous approaches to sign language translation

ranged from expensive sensor gloves to vision-based

systems using deep learning. Recent works have

shown that Convolutional Neural Networks (CNNs)

can effectively recognize static ASL alphabet gestures

with high accuracy. Some studies also explore

transformer models for sentence-level translation, but

these are often computationally intensive. Our project

focuses on a lightweight, real-time CNN-based system

using webcam input to provide an affordable solution

for daily communication.

III. METHODOLOGY

The system workflow includes the following

components: image capture using a webcam, image

preprocessing (grayscale conversion, normalization,

and resizing), gesture classification using a pre-trained

CNN model, and output display as text. Python and

TensorFlow were used for model training, while

OpenCV handled real-time video capture and

preprocessing.

The CNN architecture includes convolutional,

pooling, and fully connected layers with ReLU and

Softmax activations for classification of ASL

alphabets (A–Z).

IV. IMPLEMENTATION

The AI-powered Sign Language Translator was

developed using Python with key libraries including

OpenCV for image capture and preprocessing, and

TensorFlow/Keras for building and training the CNN

model. The dataset used was the publicly available

American Sign Language (ASL) Alphabet dataset,

© NOV 2025 | IRE Journals | Volume 9 Issue 5 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I5-1712443

IRE 1712443 ICONIC RESEARCH AND ENGINEERING JOURNALS 2244

split into training and validation sets. The model

achieved approximately 92% accuracy on validation

data, confirming its reliability for static gesture

recognition.

V. RESULTS

The trained CNN model achieved 92% accuracy on

validation data. Real-time webcam testing

demonstrated accurate recognition of most static

gestures with minimal delay. However, lighting

conditions and hand orientation sometimes caused

misclassification. Future improvements may include

transformer-based temporal models, dynamic gesture

recognition, and expanded datasets for full-sentence

translation.

VI. DIAGRAM

1.FlowChart

2.Data Flow Diagram

3. Use Case Diagram

4. ER Diagram

We represent the both type of diagram properly for the

Ai Sign Language Translator.

1.FlowChart

Below is a clear and complete explanation of the

Flowchart Diagram for your AI Sign Language

Translator System.

every step and both branches (uploading an image or

capturing live video).

Explanation of the Use Case / Flowchart Diagram

The diagram shows the user interaction flow in an AI

Sign Language Translator application. It explains how

the user selects the language, chooses how to input the

sign, and receives the translation.

1. Start

The process begins when the user opens the AI Sign

Language Translator application.

2. Select Language

The user is asked to choose a preferred output

language—

Example:

• English

• Hindi

• Telugu

• Tamil

• Any supported language

This ensures that the predicted sign gesture will be

translated into the selected language.

3. Select Mode (Decision Point)

A decision diamond indicates that the system now asks

the user to pick one of two modes:

Mode Options:

1. Upload Image From Device

2. Capture Image From Live Camera

This decision splits the flow into two parallel paths.

4A. Upload Image From Device (Left Branch)

If the user chooses to upload an image:

Steps:

• User selects an image containing a hand sign from

their phone or computer.

• The system prepares this image for prediction.

Then:

The system moves to the Predict step.

4B. Capture Image from Live Camera (Right Branch)

If the user chooses the live camera option:

Steps:

• The system activates the live camera.

© NOV 2025 | IRE Journals | Volume 9 Issue 5 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I5-1712443

IRE 1712443 ICONIC RESEARCH AND ENGINEERING JOURNALS 2245

• The user performs a sign gesture in front of the

camera.

• A frame is captured for recognition.

Then:

The system moves to the Predict step.

5. Predict

In both paths, the system now processes the image

using the trained AI model.

What happens here:

• Hand keypoints are extracted.

• The model identifies the sign.

• The system predicts the corresponding text

meaning.

Example:

 ➝ “Hello”

 ➝ “I Love English”

 ➝ “OK”

6. Edit the Prediction (Clear or Add to Sentence)

After prediction, the user has two options:

Edit Options:

1. Clear – Delete the prediction and try again.

2. Add to Sentence – Append the predicted word to

build a full sentence.

Example sentence building:

“I” + “Love” + “English”

This step allows the user to create meaningful

sentences from multiple signs.

Both branches (upload or live capture) reach this same

editing step.

7. End

Once the user has completed editing or building a

sentence, the process ends.

2. Data Flow Diagram

Here is a clear, step-by-step explanation of the AI Sign

Language Translator Data Flow Diagram. The

Diagram describe every block (P1–P4, D1–D5) and

how data moves through the system.

AI Sign Language Translator – Data Flow Explanation

:→

The Diagram shows how an AI system captures sign

gestures from a user, processes them with deep

learning, and converts them into text or speech. The

flow is divided into Processes (P) and Data Stores (D).

1. User → P1: Video/Sign Input Capture

• The process starts with the User performing sign

gestures.

• These gestures are captured in real-time using:

• A camera

• A mobile device

• A webcam

P1: Video/Sign Input Capture

This module:

• Records video frames of hand and body

movements.

• Cleans the frames (removes noise, adjusts lighting,

etc.).

• Prepares the visual input for further processing.

Output of P1: Cleaned video frames.

2. P1 → P3 (Processing continues)

 After capture, the cleaned frames are sent to the

AI model for recognition.

3. D1 → P3: Sign Language Dataset

D1: Sign Language Dataset

This contains:

• Labeled sign samples

• Keypoints (hand skeleton points)

© NOV 2025 | IRE Journals | Volume 9 Issue 5 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I5-1712443

IRE 1712443 ICONIC RESEARCH AND ENGINEERING JOURNALS 2246

• Training data used for recognizing gestures

P3 uses this dataset to compare input signs with known

patterns.

4. P3: AI Model Recognition (Deep Learning)

This is the heart of the system.

P3 Responsibilities:

• Takes cleaned frames.

• Extracts keypoints (hand, face, body joints).

• Uses Deep Learning (CNN, RNN, LSTM, or

Transformers) to:

• Recognize each sign

• Map it to a corresponding meaning

Output of P3: Recognized sign → converted to text

meaning.

Also Connected:

D2: Trained Model Repository

• Stores trained deep learning model.

• P3 loads this model to interpret signs.

5. P3 → P4: Recognized text generation

After recognizing the sign, the system sends the

interpreted text to the next process.

6. D3 → P4: Translation Text Library

D3: Translation Library

This includes:

• Natural language phrases

• Grammar rules

• Speech synthesis resources

Helps convert recognized signs into:

• Proper readable text

• Natural speech output

7. P4: Text/Speech Generation

This module generates the final communication

output.

P4 Responsibilities:

• Converts recognized text into readable sentences.

• Optionally converts text to speech using TTS

(Text-to-Speech).

• Ensures the final output is user-friendly.

Output of P4: Text or speech message.

8. P4 → D5: Output Delivery

D5: Output Delivery to User

This includes:

• Mobile device screen

• Speaker output

• Application display

• Notifications

Final message is delivered to the user as:

• Text (written message)

• Audio (spoken sentence)

 Summary (Simple View) :→

1. User performs sign.

2. P1 captures and cleans video.

3. P3 analyzes gestures with deep learning.

4. P4 converts recognized gestures into text/speech.

5. D5 delivers final output to user.

Data Stores support:

• D1: Sign dataset

• D2: Trained deep learning model

• D3: Language and translation library

• D5: Output handling

3.Use Case Diagram

Explanation of the Use Case Diagram for the AI Sign

Language Translator

The Use Case Diagram illustrates the major

interactions between the User and the AI Sign

Language Translator System. It identifies the core

functionalities provided by the system and shows how

an external user interacts with each feature. This

diagram is essential for understanding the functional

requirements of the application.

1. Actor: User

The User represents anyone who operates the AI Sign

Language Translator. This may include:

• People communicating using sign language,

© NOV 2025 | IRE Journals | Volume 9 Issue 5 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I5-1712443

IRE 1712443 ICONIC RESEARCH AND ENGINEERING JOURNALS 2247

• Hearing individuals who want to understand signs,

• Researchers or administrators managing datasets

and model training.

The actor interacts with the system through all four

main use cases.

2. Use Case: Translate

This use case allows the user to convert real-time sign

language gestures (captured via camera or uploaded

video) into readable text or speech.

Functional steps may include:

• Capturing the gesture input

• Preprocessing the video frames

• Running the AI model for prediction

• Displaying the recognized text

This is the primary feature of the system.

3. Use Case: Upload Dataset

This functionality is typically used by researchers,

developers, or system administrators.

It enables the user to upload a new dataset consisting

of sign language images or video samples for model

improvement.

The purpose of this use case is:

• Expanding or updating the dataset

• Improving model accuracy

• Supporting diverse sign patterns

4. Use Case: Train Model

After uploading or updating the dataset, the user can

trigger the Train Model use case.

This involves:

• Data preprocessing

• Model training with machine learning or deep

learning techniques

• Generating a trained model for real-time

translation

This use case ensures the system stays accurate and

up-to-date.

5. Use Case: View Translation

This use case allows the user to view the output of the

translation process.

The system displays the translated text, which may

also be converted into speech through a text-to-speech

module.

Users can:

• Review the recognized signs

• Verify the accuracy

• Use the output for communication

Overall Functionality

The diagram clearly shows that the User is the central

actor who interacts with all system features. The

system provides four major capabilities:

1. Translate sign language

2. Upload sign datasets

3. Train or retrain AI models

4. View translation results

These use cases collectively define the functional

architecture of the AI Sign Language Translator and

ensure efficient gesture recognition, model

improvement, and user interaction.

4.ER Diagram

Explanation of the ER Diagram for AI Sign Language

Translator

The Entity–Relationship (ER) Diagram represents the

database structure of the AI Sign Language Translator

system. It shows the key entities, their attributes, and

how they are logically related. This diagram ensures

that the system has an efficient and well-organized

data model to support translation, dataset

management, and AI model training.

1. Entity: User

This entity stores information about every person who

interacts with the system.

© NOV 2025 | IRE Journals | Volume 9 Issue 5 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I5-1712443

IRE 1712443 ICONIC RESEARCH AND ENGINEERING JOURNALS 2248

Attributes:

• User_ID – A unique identifier for each user.

• Name – Stores the user's name.

Purpose:

The User entity helps track:

• Who uploads datasets

• Who trains or uses models

• System-level personalization

The User is connected to the AI_Model entity,

meaning each user manages or utilizes one or more AI

models.

2. Entity: AI_Model

This entity represents the AI models used for sign

language translation.

Attributes:

• Model_ID – Unique ID assigned to each AI model.

• Model_Name – Name or type of the model (e.g.,

CNN-Model, MobileNet-Model).

Purpose:

The AI_Model stores details of the machine-learning

or deep-learning models created, trained, or used.

It connects:

• With User (user who uses/trains the model)

• With Dataset (the dataset used for training)

3. Relationship: Contains

This is the central relationship connecting AI_Model,

Sign_Language, and Dataset.

Meaning:

The Contains relationship indicates that:

• Every AI Model contains or uses

• A Dataset, which is

• Related to a specific Sign Language

Thus, an AI Model is trained on a Dataset that belongs

to a particular Sign Language.

This helps ensure that models and datasets are

organized language-wise (example: ISL, ASL, BSL).

4. Entity: Sign_Language

This entity represents the different sign languages

supported by the system.

Attributes:

• Language_Code – A unique language identifier.

• Language_Name – Example: “American Sign

Language (ASL)”, “Indian Sign Language (ISL)”.

Purpose:

To categorize datasets and models based on the

language they represent.

5. Entity: Dataset

This entity stores information about the datasets used

for training AI models.

Attributes:

• Dataset_ID – A unique identifier for each dataset.

• Dataset_Name – Name of the dataset (e.g.,

“ASL_HandGestures_V1”).

Purpose:

Each dataset belongs to a specific sign language and is

used to train AI models.

Organized dataset storage ensures proper training and

updating of the system.

6. Entity: Translation

This entity stores the translations generated by the AI

model.

Attributes:

• Translation_ID – Unique identifier for each

translation instance.

• Translated_Text – Output text generated after

interpreting sign gestures.

Purpose:

To store and retrieve past translation results, which can

be useful for:

• Displaying results to the user

• Evaluation and accuracy testing

• Learning analytics

This entity is directly linked to the Contains

relationship through the datasets used for translation.

Overall ER Structure Summary

This ER model clearly defines how the system

manages essential elements:

• Users create or use AI Models

• AI Models are trained using Datasets

• Datasets belong to a particular Sign Language

• Translations store the recognized text output

The diagram provides a strong and normalized

database structure for efficient handling of sign

language data, training workflows, and translation

outputs.

© NOV 2025 | IRE Journals | Volume 9 Issue 5 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I5-1712443

IRE 1712443 ICONIC RESEARCH AND ENGINEERING JOURNALS 2249

VII. CONCLUSION

This paper presented an AI-based Sign Language

Translator using a CNN model to recognize ASL

alphabet gestures. The proposed system provides a

low-cost, real-time, and accessible tool for bridging

communication between deaf and hearing individuals.

Future work will explore transformer architectures,

dynamic sign recognition, and enhanced user

interfaces for everyday usability.

REFERENCES

[1] G. Eason, B. Noble, and I. N. Sneddon, “On

certain integrals of Lipschitz-Hankel type

involving products of Bessel functions,” Phil.

Trans. Roy. Soc. London, vol. A247, pp. 529–

551, April 1955.

[2] D. P. Kingma and M. Welling, “Auto-encoding

variational Bayes,” arXiv:1312.6114, 2013.

[3] Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa,

“Electron spectroscopy studies on magneto-

optical media and plastic substrate interface,”

IEEE Transl. J. Magn. Japan, vol. 2, pp. 740–

741, August 1987.

[4] TensorFlow Documentation,

https://www.tensorflow.org/.

[5] OpenCV Documentation, https://opencv.org/.

