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Abstract- Sign language is the primary 

communication method for deaf and hard-of-

hearing (DHH) individuals, yet it remains unfamiliar 

to most non-DHH people, creating a significant 

communication gap. To address this, we propose an 

AI-powered Sign Language Translation system that 

utilizes computer vision and deep learning to 

interpret hand gestures in real time and convert them 

into readable text. Our system is based on a 

Convolutional Neural Network (CNN) model trained 

on American Sign Language (ASL) datasets and uses 

webcam input for gesture recognition. This paper 

outlines the design, methodology, and 

implementation of the system, discusses the 

challenges in sign language translation (SLT), and 

highlights possible improvements using transformer-

based approaches. 

 

Index Terms- Sign Language Translation, Artificial 

Intelligence, Deep Learning, CNN, Computer 

Vision. 

 

I. INTRODUCTION 

 

Communication is a fundamental aspect of human 

interaction. For deaf and hard-of-hearing (DHH) 

individuals, sign language serves as the primary means 

of communication. However, the lack of widespread 

understanding of sign language among non-DHH 

people creates a significant barrier, leading to social 

isolation and communication challenges for the DHH 

community. Sign Language Translation (SLT) aims to 

bridge this gap by converting visual gestures into text 

or speech, enabling smoother interaction between 

DHH and non-DHH individuals. This project presents 

an AI-powered sign language translator that 

recognizes hand gestures in real-time using a webcam 

and translates them into corresponding textual output. 

By employing a CNN model trained on an ASL 

dataset, the system identifies individual letters and 

outputs their meaning using Python, OpenCV, and 

TensorFlow. 

 

II. LITERATURE REVIEW 

 

Previous approaches to sign language translation 

ranged from expensive sensor gloves to vision-based 

systems using deep learning. Recent works have 

shown that Convolutional Neural Networks (CNNs) 

can effectively recognize static ASL alphabet gestures 

with high accuracy. Some studies also explore 

transformer models for sentence-level translation, but 

these are often computationally intensive. Our project 

focuses on a lightweight, real-time CNN-based system 

using webcam input to provide an affordable solution 

for daily communication. 

 

III. METHODOLOGY 

 

The system workflow includes the following 

components: image capture using a webcam, image 

preprocessing (grayscale conversion, normalization, 

and resizing), gesture classification using a pre-trained 

CNN model, and output display as text. Python and 

TensorFlow were used for model training, while 

OpenCV handled real-time video capture and 

preprocessing. 

 

The CNN architecture includes convolutional, 

pooling, and fully connected layers with ReLU and 

Softmax activations for classification of ASL 

alphabets (A–Z). 

 

IV. IMPLEMENTATION 

 

The AI-powered Sign Language Translator was 

developed using Python with key libraries including 

OpenCV for image capture and preprocessing, and 

TensorFlow/Keras for building and training the CNN 

model. The dataset used was the publicly available 

American Sign Language (ASL) Alphabet dataset, 
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split into training and validation sets. The model 

achieved approximately 92% accuracy on validation 

data, confirming its reliability for static gesture 

recognition. 

 

V. RESULTS 

 

The trained CNN model achieved 92% accuracy on 

validation data. Real-time webcam testing 

demonstrated accurate recognition of most static 

gestures with minimal delay. However, lighting 

conditions and hand orientation sometimes caused 

misclassification. Future improvements may include 

transformer-based temporal models, dynamic gesture 

recognition, and expanded datasets for full-sentence 

translation. 

 

VI. DIAGRAM 

 

1.FlowChart 

2.Data Flow Diagram 

3. Use Case Diagram 

4. ER Diagram 

We represent the both type of diagram properly for the 

Ai Sign Language Translator. 

 

1.FlowChart  

 
Below is a clear and complete explanation of the 

Flowchart Diagram  for your AI Sign Language 

Translator System. 

every step and both branches (uploading an image or 

capturing live video). 

 

Explanation of the Use Case / Flowchart Diagram 

The diagram shows the user interaction flow in an AI 

Sign Language Translator application. It explains how 

the user selects the language, chooses how to input the 

sign, and receives the translation. 

 

1. Start 

The process begins when the user opens the AI Sign 

Language Translator application. 

 

2. Select Language 

The user is asked to choose a preferred output 

language— 

Example: 

• English 

• Hindi 

• Telugu 

• Tamil 

• Any supported language 

This ensures that the predicted sign gesture will be 

translated into the selected language. 

 

3. Select Mode (Decision Point) 

A decision diamond indicates that the system now asks 

the user to pick one of two modes: 

 

Mode Options: 

1. Upload Image From Device 

2. Capture Image From Live Camera 

This decision splits the flow into two parallel paths. 

4A. Upload Image From Device (Left Branch) 

If the user chooses to upload an image: 

Steps: 

• User selects an image containing a hand sign from 

their phone or computer. 

• The system prepares this image for prediction. 

 

Then: 

The system moves to the Predict step. 

 

4B. Capture Image from Live Camera (Right Branch) 

If the user chooses the live camera option: 

Steps: 

• The system activates the live camera. 
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• The user performs a sign gesture in front of the 

camera. 

• A frame is captured for recognition. 

Then: 

The system moves to the Predict step. 

 

5. Predict 

In both paths, the system now processes the image 

using the trained AI model. 

 

What happens here: 

• Hand keypoints are extracted. 

• The model identifies the sign. 

• The system predicts the corresponding text 

meaning. 

 

Example: 

          ➝ “Hello” 

   ➝ “I Love English” 

     ➝ “OK” 

 

6. Edit the Prediction (Clear or Add to Sentence) 

After prediction, the user has two options: 

Edit Options: 

1. Clear – Delete the prediction and try again. 

2. Add to Sentence – Append the predicted word to 

build a full sentence. 

Example sentence building: 

“I” + “Love” + “English” 

This step allows the user to create meaningful 

sentences from multiple signs. 

Both branches (upload or live capture) reach this same 

editing step. 

7. End 

Once the user has completed editing or building a 

sentence, the process ends. 

 

2. Data Flow Diagram  

 
 

Here is a clear, step-by-step explanation of the AI Sign 

Language Translator Data Flow Diagram. The 

Diagram describe every block (P1–P4, D1–D5) and 

how data moves through the system. 

AI Sign Language Translator – Data Flow Explanation 

:→ 

The Diagram shows how an AI system captures sign 

gestures from a user, processes them with deep 

learning, and converts them into text or speech. The 

flow is divided into Processes (P) and Data Stores (D). 

 

1. User → P1: Video/Sign Input Capture 

• The process starts with the User performing sign 

gestures. 

• These gestures are captured in real-time using: 

• A camera 

• A mobile device 

• A webcam 

P1: Video/Sign Input Capture 

This module: 

• Records video frames of hand and body 

movements. 

• Cleans the frames (removes noise, adjusts lighting, 

etc.). 

• Prepares the visual input for further processing. 

Output of P1: Cleaned video frames. 

 

2. P1 → P3 (Processing continues) 

       After capture, the cleaned frames are sent to the 

AI model for recognition. 

 

3. D1 → P3: Sign Language Dataset 

D1: Sign Language Dataset 

This contains: 

• Labeled sign samples 

• Keypoints (hand skeleton points) 
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• Training data used for recognizing gestures 

P3 uses this dataset to compare input signs with known 

patterns. 

 

4. P3: AI Model Recognition (Deep Learning) 

This is the heart of the system. 

P3 Responsibilities: 

• Takes cleaned frames. 

• Extracts keypoints (hand, face, body joints). 

• Uses Deep Learning (CNN, RNN, LSTM, or 

Transformers) to: 

• Recognize each sign 

• Map it to a corresponding meaning 

 

Output of P3: Recognized sign → converted to text 

meaning. 

Also Connected: 

D2: Trained Model Repository 

• Stores trained deep learning model. 

• P3 loads this model to interpret signs. 

 

5. P3 → P4: Recognized text generation 

After recognizing the sign, the system sends the 

interpreted text to the next process. 

 

6. D3 → P4: Translation Text Library 

D3: Translation Library 

This includes: 

• Natural language phrases 

• Grammar rules 

• Speech synthesis resources 

 

Helps convert recognized signs into: 

• Proper readable text 

• Natural speech output 

 

7. P4: Text/Speech Generation 

This module generates the final communication 

output. 

 

P4 Responsibilities: 

• Converts recognized text into readable sentences. 

• Optionally converts text to speech using TTS 

(Text-to-Speech). 

• Ensures the final output is user-friendly. 

Output of P4: Text or speech message. 

 

8. P4 → D5: Output Delivery 

D5: Output Delivery to User 

This includes: 

• Mobile device screen 

• Speaker output 

• Application display 

• Notifications 

Final message is delivered to the user as: 

• Text (written message) 

• Audio (spoken sentence) 

 Summary (Simple View) :→ 

1. User performs sign. 

2. P1 captures and cleans video. 

3. P3 analyzes gestures with deep learning. 

4. P4 converts recognized gestures into text/speech. 

5. D5 delivers final output to user. 

Data Stores support: 

• D1: Sign dataset 

• D2: Trained deep learning model 

• D3: Language and translation library 

• D5: Output handling 

 

3.Use Case Diagram  

 
 

Explanation of the Use Case Diagram for the AI Sign 

Language Translator 

The Use Case Diagram illustrates the major 

interactions between the User and the AI Sign 

Language Translator System. It identifies the core 

functionalities provided by the system and shows how 

an external user interacts with each feature. This 

diagram is essential for understanding the functional 

requirements of the application. 

 

1. Actor: User 

The User represents anyone who operates the AI Sign 

Language Translator. This may include: 

• People communicating using sign language, 
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• Hearing individuals who want to understand signs, 

• Researchers or administrators managing datasets 

and model training. 

 

The actor interacts with the system through all four 

main use cases. 

 

2. Use Case: Translate 

This use case allows the user to convert real-time sign 

language gestures (captured via camera or uploaded 

video) into readable text or speech. 

Functional steps may include: 

• Capturing the gesture input 

• Preprocessing the video frames 

• Running the AI model for prediction 

• Displaying the recognized text 

This is the primary feature of the system. 

 

3. Use Case: Upload Dataset 

This functionality is typically used by researchers, 

developers, or system administrators. 

It enables the user to upload a new dataset consisting 

of sign language images or video samples for model 

improvement. 

 

The purpose of this use case is: 

• Expanding or updating the dataset 

• Improving model accuracy 

• Supporting diverse sign patterns 

 

4. Use Case: Train Model 

After uploading or updating the dataset, the user can 

trigger the Train Model use case. 

This involves: 

• Data preprocessing 

• Model training with machine learning or deep 

learning techniques 

• Generating a trained model for real-time 

translation 

This use case ensures the system stays accurate and 

up-to-date. 

 

5. Use Case: View Translation 

This use case allows the user to view the output of the 

translation process. 

The system displays the translated text, which may 

also be converted into speech through a text-to-speech 

module. 

Users can: 

• Review the recognized signs 

• Verify the accuracy 

• Use the output for communication 

 

Overall Functionality 

The diagram clearly shows that the User is the central 

actor who interacts with all system features. The 

system provides four major capabilities: 

1. Translate sign language 

2. Upload sign datasets 

3. Train or retrain AI models 

4. View translation results 

These use cases collectively define the functional 

architecture of the AI Sign Language Translator and 

ensure efficient gesture recognition, model 

improvement, and user interaction. 

 

4.ER Diagram 

 

 
 

Explanation of the ER Diagram for AI Sign Language 

Translator 

The Entity–Relationship (ER) Diagram represents the 

database structure of the AI Sign Language Translator 

system. It shows the key entities, their attributes, and 

how they are logically related. This diagram ensures 

that the system has an efficient and well-organized 

data model to support translation, dataset 

management, and AI model training. 

 

1. Entity: User 

This entity stores information about every person who 

interacts with the system. 
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Attributes: 

• User_ID – A unique identifier for each user. 

• Name – Stores the user's name. 

Purpose: 

 

The User entity helps track: 

• Who uploads datasets 

• Who trains or uses models 

• System-level personalization 

The User is connected to the AI_Model entity, 

meaning each user manages or utilizes one or more AI 

models. 

 

2. Entity: AI_Model 

This entity represents the AI models used for sign 

language translation. 

Attributes: 

• Model_ID – Unique ID assigned to each AI model. 

• Model_Name – Name or type of the model (e.g., 

CNN-Model, MobileNet-Model). 

Purpose: 

The AI_Model stores details of the machine-learning 

or deep-learning models created, trained, or used. 

It connects: 

• With User (user who uses/trains the model) 

• With Dataset (the dataset used for training) 

 

3. Relationship: Contains 

This is the central relationship connecting AI_Model, 

Sign_Language, and Dataset. 

Meaning: 

 

The Contains relationship indicates that: 

• Every AI Model contains or uses 

• A Dataset, which is 

• Related to a specific Sign Language 

Thus, an AI Model is trained on a Dataset that belongs 

to a particular Sign Language. 

This helps ensure that models and datasets are 

organized language-wise (example: ISL, ASL, BSL). 

 

4. Entity: Sign_Language 

This entity represents the different sign languages 

supported by the system. 

Attributes: 

• Language_Code – A unique language identifier. 

• Language_Name – Example: “American Sign 

Language (ASL)”, “Indian Sign Language (ISL)”. 

Purpose: 

To categorize datasets and models based on the 

language they represent. 

 

5. Entity: Dataset 

This entity stores information about the datasets used 

for training AI models. 

Attributes: 

• Dataset_ID – A unique identifier for each dataset. 

• Dataset_Name – Name of the dataset (e.g., 

“ASL_HandGestures_V1”). 

Purpose: 

Each dataset belongs to a specific sign language and is 

used to train AI models. 

Organized dataset storage ensures proper training and 

updating of the system. 

 

6. Entity: Translation 

This entity stores the translations generated by the AI 

model. 

Attributes: 

• Translation_ID – Unique identifier for each 

translation instance. 

• Translated_Text – Output text generated after 

interpreting sign gestures. 

Purpose: 

To store and retrieve past translation results, which can 

be useful for: 

• Displaying results to the user 

• Evaluation and accuracy testing 

• Learning analytics 

This entity is directly linked to the Contains 

relationship through the datasets used for translation. 

 

Overall ER Structure Summary 

This ER model clearly defines how the system 

manages essential elements: 

• Users create or use AI Models 

• AI Models are trained using Datasets 

• Datasets belong to a particular Sign Language 

• Translations store the recognized text output 

 

The diagram provides a strong and normalized 

database structure for efficient handling of sign 

language data, training workflows, and translation 

outputs. 
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VII. CONCLUSION 

  

This paper presented an AI-based Sign Language 

Translator using a CNN model to recognize ASL 

alphabet gestures. The proposed system provides a 

low-cost, real-time, and accessible tool for bridging 

communication between deaf and hearing individuals. 

Future work will explore transformer architectures, 

dynamic sign recognition, and enhanced user 

interfaces for everyday usability. 
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