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Abstract- Small and medium-sized enterprises (SMEs) 

are foundational to global economic development, yet 

their digital transformation introduces new sustainability 

dilemmas. As e-commerce expands, logistics emissions 

surge, driven by complex geophysical and geotechnical 

realities such as terrain slope, soil strength, subgrade 

stability, flood risk, and infrastructure inequality that 

most personalization systems ignore. Conventional 

recommender engines maximize sales metrics while 

neglecting environmental, geotechnical, and spatial 

variability in delivery operations. This review integrates 

digital economics, geophysical modeling, and 

geotechnical insights to propose a Geo-Carbon-Aware 

Personalization Framework (GCAPF) for SMEs. By 

incorporating terrain-adjusted emission models, route-

risk estimates, and basic ground-condition indicators 

(e.g., soil bearing capacity, erosion susceptibility, 

landslide exposure) into personalization algorithms, 

SMEs can optimize for both profit and sustainability. 

Drawing on 104 studies (2015–2025) across digital 

transformation, logistics sustainability, GeoAI, and 

emerging geotechnical work on road performance and 

slope stability, this synthesis reveals that fewer than 10% 

of existing frameworks integrate terrain- and soil-based 

carbon variability into e-commerce decision systems. 

Meta-analysis suggests potential emission reductions of 

10–20% without significant revenue loss, provided that 

routing penalties reflect both topographic and 

geotechnical constraints. The paper concludes with a 

roadmap for operationalizing geo- and geotechnics-

aware personalization through open data, policy 

incentives, and low-cost analytical tools, positioning 

SMEs as agents of low-carbon digital growth, 

particularly in developing regions such as Nigeria. 

 

Keywords: GeoAI, SME Digital Transformation, 

Carbon-Aware Recommender Systems, Logistics 

Emissions, Geophysical and Geotechnical Modeling 

 

 

I. INTRODUCTION 

 

1.1 Background and Context 

In the last decade, personalization has become the 

beating heart of digital commerce. Algorithms now 

determine which products are recommended, when 

promotions appear, and how customers interact with 

brands. For large corporations, these recommender 

systems (RS) have fueled precision marketing and 

operational efficiency (Felfernig et al., 2023; Vente 

et al., 2024; Wegmeth et al., 2025). Yet for SMEs, 

personalization is a double-edged sword: it boosts 

competitiveness but amplifies environmental 

footprints through intensified logistics networks 

(Dubisz et al., 2022). 

 

E-commerce’s “last mile” has emerged as one of the 

most carbon-intensive stages of the supply chain. 

Terrain gradients, soil composition, and flood-prone 

areas increase delivery distance and fuel 

consumption (Figliozzi, 2020; Allen et al., 2020; 

Anderson et al., 2021; Zhao et al., 2021; Caulfield et 

al., 2022). Beyond topography alone, geotechnical 

conditions such as weak subgrade soils, erodible 

unpaved roads, and climate-driven deterioration of 

gravel pavements further degrade road performance 

and raise energy demand, especially for heavy or 

frequently loaded vehicles (Nordmark et al., 2022; 

Ngezahayo et al., 2021; Foko Tamba et al., 2023). 

Studies show that soil properties, rainfall, and road 

geometry jointly control erosion rates and 

maintenance needs on unpaved roads, which in turn 

affect accessibility and operating costs for small 

businesses. The omission of spatial intelligence in 

logistics decisions particularly disadvantages 

developing economies such as Nigeria, where fragile 

infrastructure, unstable soil conditions and seasonal 
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flooding distort both delivery costs and reliability 

(Oluwafemi et al., 2023; Nnaji, 2024; Abdulhamid, 

2025). 

 

1.2 Problem Definition 

Traditional personalization frameworks focus solely 

on maximizing click-through or purchase 

probability. They ignore how real-world geography 

and ground conditions affect delivery emissions, 

route reliability, and sustainability. SMEs thus face a 

trade-off: increased digital efficiency often comes at 

the expense of environmental performance, 

particularly where unstable slopes, low-bearing-

capacity soils, or landslide-prone corridors expose 

road networks to disruption (Yao et al.,  2023; Zhou 

et al.,  2024; Salini et al.,  2024). Bridging this divide 

requires integrating both geophysical and 

geotechnical realities into digital decision-making. 

 

1.3 Objective and Scope 

This paper proposes a Geo-Carbon-Aware 

Personalization Framework (GCAPF) that merges 

recommender systems with terrain- and geotechnics-

aware emission modeling. By embedding spatial and 

environmental data into recommendation logic, the 

framework enables SMEs to optimize profitability, 

sustainability, and logistical reliability 

simultaneously. 

 

Figure 1 illustrates the conceptual framework 

connecting SME drivers and barriers, geo-

environmental and geotechnical factors, and 

business outcomes through a central, sustainability-

aware recommender system. 

 
Figure 1. Geo-Carbon-Aware Personalization Framework for SMEs 

 

A conceptual diagram linking SME drivers/barriers 

(innovation, resource constraints, culture) and geo-

environmental and geotechnical variables (slope, 

soil type, bearing capacity, flood and landslide risk) 

through a recommender system that produces 

optimized business and environmental outcomes 

(adapted from Almeida et al.,2021; Haruna, 2021; 

Corti, 2022; Smart Freight Centre, 2024; Ngezahayo 

et al.,2021; Nordmark et al.,2022). 

II. SME DIGITALIZATION: DRIVERS, 

BARRIERS, AND ENVIRONMENTAL 

MEDIATION 

 

2.1 Drivers of Digital Transformation 

SME digitalization is propelled by innovation, 

efficiency, and market expansion (Marques and 

Ferreira, 2020). Digital tools streamline operations, 

enable personalized experiences, and foster global 
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reach (Almeida et al., 2021). Sustainability itself has 

become a strategic driver, as eco-conscious 

consumers reward transparency in logistics and 

production (9. British Standards Institution, 2011; 

Olanrewaju et al., 2022; UN Statistics Division, 

2023; GHG Protocol, 2004/2015; GHG Protocol, 

2011). Moreover, global climate considerations, 

including emissions reduction goals outlined by the 

IPCC AR6 reports (IPCC, 2021; IPCC, 2022), 

reinforce environmental accountability in business 

operations. 

 

In addition, organizational culture, particularly 

openness to data-driven decision-making, strongly 

influences success (Baxter and Somerville, 2011). 

SMEs that adopt agile, learning-based cultures adapt 

faster to technological change and environmental 

constraints (Xie, et al.,2020; Duan, 2023; Casati, 

2023; Lenk, 2025; Mabangure et al.,  2025; Kargas 

et al.,  2025; Hafeez et al.,  2025); Sagala et al.,  

2024, 2025). Increasingly, firms leverage geospatial 

and environmental datasets; such as Copernicus 

DEM (Copernicus Programme, 2021), SRTM 

elevation models (Farr et al., 2007; Jarvis et al., 

2008), SoilGrids soil data (Hengl et al., 2017), and 

WorldClim climate layers (Fick and Hijmans, 2017), 

to guide logistics and personalized services in 

terrain- and climate-sensitive regions. 

 

2.2 Barriers to Digital and Sustainable Integration 

Despite these advantages, SMEs face systemic 

barriers. Financial constraints and skill shortages 

hinder the adoption of sophisticated analytics tools 

(OECD, 2022; UNCTAD, 2025; Bertsimas and 

Dunn, 2019; Deb, 2014). However, structural and 

behavioral barriers, particularly financial constraints, 

skill gaps, and resistance to change, remain critical 

obstacles to widespread adoption especially in 

resource-constrained contexts (Ndulue et al., 2025). 

Resistance to change arises when new technologies 

threaten established workflows. Infrastructural 

deficits like unreliable power supply, poor road 

conditions, and limited broadband further compound 

the issue (Anderson et al., 2021; OECD, 2025; 

World Bank, 2023). 

 

Most critically, few SMEs incorporate terrain, 

geotechnical, or environmental data into decision 

systems. Without such integration, sustainability 

remains reactive rather than strategic (Smart Freight 

Centre, 2019; McKinnon, 2018; Rodrigue, 2020; 

Khalufi et al., 2025). In regions with expansive 

lateritic or peat soils, climate-induced moisture 

variability can reduce pavement and gravel-road 

bearing capacity, increasing rutting and maintenance 

demand that directly affects logistics reliability 

(Nordmark et al., 2022; Foko Tamba et al., 2023; 

Nnaji, 2024). The lack of standardized geospatial 

intelligence, such as INSPIRE Directive-compliant 

datasets (European Commission, 2007), or citizen-

driven geographic information (Goodchild, 2007; 

OpenStreetMap Foundation, 2024), combined with 

limited access to geotechnical road-condition data, 

constrains predictive logistics and emission-

reduction potential. 

 

2.3 Geophysical/Geotechnical Modulation of SME 

Performance 

Geophysical factors such as slope, soil type, and 

flood exposure directly influence logistics emissions 

and delivery reliability (Figliozzi, 2020; Anderson et 

al., 2021; Zhao et al., 2021; Oluwafemi et al.,  2023; 

Aniramu et al.,2025). Also, geotechnical conditions 

such as soil strength, plasticity, and compaction, 

govern erosion rates, subgrade failure, and the long-

term performance of unpaved and low-volume roads 

that many SMEs depend on (Ngezahayo et al.,  2021; 

Paige-Green, 2017; Nordmark et al.,  2022). Areas 

closer to active water bodies tend to exhibit higher 

and more variable subsurface moisture due to 

frequent saturation and shallow water tables (Udoh 

et al., 2023). Terrain-diverse regions amplify the 

variability of delivery efficiency and carbon 

intensity. SMEs that integrate geospatial intelligence 

through DEM, SRTM, SoilGrids, and WorldClim 

data, alongside GeoAI analytics (Janowicz et al.,  

2020; Li et al.,  2022; Gupta et al.,  2024), can 

optimize route planning, reduce fuel consumption, 

and mitigate climate-related delivery disruptions. 

 

GCAPF thus positions geography not as a constraint 

but as a data source that informs greener, more 

strategic personalization strategies. Such integration 

aligns with global best practices in carbon 

accounting and transport emissions, as outlined by 

the GHG Protocol, Smart Freight Centre GLEC 

framework, and IPCC guidance on transport and 

mitigation (GHG Protocol, 2016; Smart Freight 

Centre, 2019; IPCC, 2019; IPCC, 2022). 

 

III. MATERIALS AND METHODS 

 

3.1 Search Design and Data Sources 

Following PRISMA (Moher et al., 2009), the review 

covered publications from 2015–2025 across 
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Scopus, Web of Science, ScienceDirect, 

SpringerLink, MDPI, and ACM Digital Library. 

Grey literature from OECD (2021, 2022, 2025), 

UNCTAD (2023, 2024, 2025), and ISO (2023) 

supplemented the dataset. 

 

Search clusters included: 

1. “Sustainable” AND (“recommender 

system” OR “personalization”) 

2. “SMEs” AND (“digital transformation” OR 

“e-commerce”) 

3. “terrain” OR “soil” OR “flood” AND 

(“delivery emissions” OR “logistics”) 

4. “multi-objective optimization” AND 

“environmental performance” 

Out of 314 records, 84 met inclusion criteria; 62 

journal papers, 12 conference papers, and 10 policy 

reports. 

 

3.2 Screening, Coding, and Analysis  

Titles and abstracts were screened for relevance to 

SMEs, sustainability, and spatial modeling. 

NVivo 14 was used to code data into four themes: 

Algorithmic Sustainability (A), Geo-Environmental 

Logistics (G), SME Adoption Factors (S), and Multi-

Objective Optimization (M). 

A mixed-methods synthesis followed Fereday and 

Muir-Cochrane (2006), combining deductive coding 

with inductive theme emergence. Emission data were 

standardized to kg CO₂e/km for comparability 

(DEFRA, 2024). 

 

3.3. Data Synthesis 

 

3.3.1 Source Integration Framework 

All quantitative relationships presented in this 

review, including the trade-off tables (Tables 3A–

3B) and the Pareto Frontier (Figure 2), were 

synthesized from previously published empirical and 

simulation studies. No new field measurements were 

conducted. Instead, effect sizes, slopes, and 

percentage deltas were extracted from reviewed 

literature (2015–2025) and normalized to 

comparable scales. 

 

The synthesis follows a meta-analytical triangulation 

procedure: 

1. Extraction: Each study’s reported metrics 

(fuel use, CO₂e/order, conversion change, 

or route length variation) were tabulated. 

2. Normalization: Effects were expressed as 

percentage change relative to baseline 

operations. 

3. Aggregation: Weighted averages were 

computed where multiple studies addressed 

the same variable (e.g., slope-related fuel 

use). 

4. Parameterization: The coefficients (α, β, γ) 

in the multi-objective model were assigned 

proportionally to these averaged effects. 

5. Visualization: Pareto-optimal points were 

generated to illustrate the feasible trade-off 

frontier between economic and 

environmental performance. 

 

3.3.2 Primary Evidence Base 

 

Table 1. Empirical Evidence Base for Geo-Carbon-Aware Personalization Parameters (The quantitative inputs 

were derived from the following key studies) 

Focus Area Representative References Empirical Range Used in 

Synthesis 

Terrain slope and logistics 

emissions 

Figliozzi (2020); Rodrigues et al.,  

(2022) 

+18–25 % fuel increase per >7° 

slope 

Flood and road-quality 

effects 

Oluwafemi et al.,  (2023); 

Anderson et al.,  (2021) 

+25–30 % CO₂e during flooding; 

+28 % for unpaved roads 

Sustainable recommender re-

ranking 

Kalisvaart et al.,  (2025); Spillo et 

al.,  (2023); Ferreira et al.,  (2025) 

−10 to −20 % CO₂e; ±2 % 

conversion 

Uplift and heterogeneous 

treatment effects 

Rößler et al.,  (2022) Segment-specific ΔConversion ± 

4 % 

Multi-objective optimization 

and Pareto methods 

Marler and Arora (2004) Framework for curve derivation 

GeoAI / real-time routing Rabelo et al.,  (2025); Nguyen et 

al.,  (2024) 

10–20 % emission reduction after 

slope training 
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3.3.3 Analytical Consistency and Uncertainty 

• Consistency Checks: Results were cross-

validated against baseline emission factors 

from DEFRA (2024) and ISO 14083 

(2023). 

• Uncertainty Bounds: Because reported 

values vary by study design, ±5 % 

uncertainty margins were applied to 

averaged CO₂e estimates; ±1 % for 

conversion changes. 

• Purpose: Visualizations are illustrative 

syntheses, showing plausible operational 

outcomes under geo-carbon-aware 

recommender optimization, not 

deterministic forecasts. 
 

IV. RESULTS AND ANALYSIS 

 

4.1 Publication Trends 

Research on sustainable AI and logistics has 

expanded rapidly over the past decade, but only 9–

10 % of studies explicitly incorporate terrain- or 

environment-based metrics into their analytical 

frameworks. To understand the evolution of this 

research field from early SME digitalization to 

geospatially informed sustainability, Table 2 

summarizes the dominant thematic clusters between 

2015 and 2025, while Table 2 tracks chronological 

evolution and spatial-integration intensity.  

 

Table 2. Integrated Distribution and Thematic Trends of Literature (2015–2025) 

Category / 

Theme 

Representative 

Studies 

Key Focus Areas No. of 

Publications 

Trend 

(2015–

2025) 

Main Insights / 

Observations 

Sustainable 

Recommender 

Systems (RS) 

Felfernig et al.,  

(2023); 

Kalisvaart et al.,  

(2025); Spillo et 

al.,  (2023); 

Ferreira et al.,  

(2025) 

Green 

personalization, 

algorithmic trade-

offs between 

accuracy and 

emissions, RS for 

sustainable choices 

22 ↑ Strong 

upward 

trend 

(2019–

2025) 

Research volume 

tripled since 

2018; emphasis 

on energy 

efficiency but 

limited 

geospatial 

integration. 

SME Digital 

Transformation 

and 

Sustainability 

Almeida et al.,  

(2021); Marques 

and Ferreira 

(2020); Sagala et 

al.,  (2024, 

2025); Hafeez et 

al.,  (2025) 

Drivers/barriers, 

digital readiness, 

circular economy, 

green innovation 

28 ↑ Moderate 

growth 

Predominantly 

economic focus; 

fewer than 10% 

integrate 

sustainability 

metrics into 

personalization 

or logistics. 

Geo-

Environmental 

and Terrain-

Based Logistics 

Figliozzi (2020); 

Rodrigues et al.,  

(2022); 

Oluwafemi et 

al.,  (2023); 

Kochanek et al.,  

(2025) 

Terrain slope, 

flood risk, soil 

stability, emission 

variability 

14 ↑ 

Emerging 

(post-

2020) 

Sparse literature 

in SME context; 

primarily GIS or 

civil engineering 

oriented; 

minimal link to 

e-commerce. 

Multi-

Objective 

Optimization 

and Decision 

Models 

Marler and 

Arora (2004); 

Rößler et al.,  

(2022); Nguyen 

et al.,  (2024); 

Rabelo et al.,  

(2025) 

Optimization 

trade-offs (profit–

emission–risk), 

uplift modeling, 

decision efficiency 

10 ↗ Steady 

but niche 

Strong 

theoretical 

foundation but 

few SME-level 

empirical 

validations. 
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Policy and 

Standards (ISO, 

GLEC, 

UNCTAD, 

OECD) 

ISO (2018, 

2023); Smart 

Freight Centre 

(2024); 

UNCTAD 

(2023–2025); 

OECD (2022, 

2025) 

Carbon reporting, 

SME sustainability 

disclosure, 

emission 

quantification 

standards 

18 ↑ Constant 

across 

decade 

Mature 

regulatory 

landscape; yet 

awareness and 

compliance 

remain low 

among SMEs 

(<20%). 

GeoAI and 

Spatial Data 

Science 

Goodchild 

(2020); Song et 

al.,  (2023); 

Mete et al.,  

(2023); Mai et 

al.,  (2025); 

Janowicz et al.,  

(2025) 

GeoAI 

frameworks, 

spatial modeling, 

digital twin 

logistics 

12 ↑ Sharp 

growth 

(post-

2022) 

Rapid GeoAI 

advancements; 

high technical 

maturity but 

underutilized in 

SME 

recommender 

applications. 

 

Table 3. Evolution of themes and spatial integration (2015–2025) 

Year Range No. of Studies Dominant Themes Geo Integration Insight 

2015–2017 8 SME digital 

readiness 

1 Basic e-commerce 

adoption 

2018–2020 22 Sustainable logistics 2 Early CO₂ metrics 

2021–2023 38 AI-based 

personalization 

5 Sustainability-aware 

RS emerges 

2024–2025 36 Terrain-aware 

logistics 

9 GeoAI integration 

matures 

 

4.2 Terrain and Emission Variability 

Terrain exerts strong control over logistics emissions (Table 4). 

 

Table 4. Terrain and environmental effects on delivery emissions 

Environmental Factor Avg. CO₂ Impact Key Sources 

Slope > 5° +2.5 % fuel/° Figliozzi (2020) 

Eroded or rutted unpaved roads +30 % CO₂e/km Anderson et al.,  (2021); Ngezahayo et 

al. (2021) 

Flooded corridors +30 % distance Oluwafemi et al.,  (2023); Aniramu et 

al. (2025) 

Poor soil/ low bearing capacity +10 % delay Kochanek et al.,  (2025); Foko Tamba 

et al. (2023); Zhulai et al. (2021) 

Urban congestion +15 % idle emissions Zhao et al.,  (2021) 

 

Empirical work on forest and off-road machinery 

shows that fuel consumption rises significantly on 

weak or saturated soils, as vehicles sink deeper and 

experience higher rolling resistance (Prinz et al.,  

2022; Zhulai et al.,  2021). Gravel-road studies in 

Nordic countries and geotechnical assessments in 

West and Central Africa similarly document how 

low bearing capacity and inadequate stabilization 

accelerate rutting and reduce serviceability, 

increasing the energy required per delivered unit 

(Nordmark et al.,  2022; Foko Tamba et al.,  2023). 

These findings reveal how static distance models 

understate emissions by up to 40%. Integrating 

topography, flood data, and basic geotechnical 

parameters (soil class, CBR, erosion risk) improves 

prediction accuracy and supports terrain- and 

ground-condition-aware logistics planning. 

 

4.3 Economic–Environmental Trade-Offs 

The GCAPF model integrates revenue and carbon 

objectives using a multi-objective optimization 

function, balancing purchase probability 
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(𝑃𝑏𝑢𝑦(𝑢, 𝑖)) with emission and route risk costs 

(𝐶𝑂2𝑒(𝑢, 𝑖, 𝑟)), 𝑅𝑖𝑠𝑘(𝑟)): 

 

𝑆𝑐𝑜𝑟𝑒(𝑢, 𝑖, 𝑟) = 𝛼𝑃𝑏𝑢𝑦(𝑢, 𝑖)  −  𝛽𝐶𝑂2𝑒(𝑢, 𝑖, 𝑟)  −  𝛾𝑅𝑖𝑠𝑘(𝑟)  

 

Where where 𝛼, 𝛽, 𝛾 are weights representing profit, 

emission, and risk importance respectively (Marler 

and Arora, 2004; Spillo et al.,  2023; Kalisvaart et al.,  

2025) and show achievable emission reductions of 

10–20% without significant sales loss (Table 4) and 

illustrated by hese simulations indicate that SMEs 

can achieve Pareto-optimal outcomes where 

emissions decline by ~15% with negligible 

conversion loss.. 

 

Table 5. Trade-offs under different optimization weights 

Weighting Conversion Change CO₂e Reduction Segment 

Profit-oriented (α=1, β=0.2, γ=0.1) +1.1 % −9 % Urban 

Balanced (α=1, β=0.5, γ=0.25) −0.2 % −15 % Peri-urban 

Carbon-focused (α=1, β=0.8, γ=0.3) −1.9 % −21 % Rural 

 

 
Figure 2 illustrates this Pareto frontier between conversion rate and CO₂ reduction (adapted from Figliozzi, 

2020; Ferreira et al.,2025; Kalisvaart et al.,(2025). 

 

4.4 Implementation Feasibility 

Open-source tools make GCAPF feasible even for small enterprises (Table 6). 

 

Table 6. Implementation strategies and results 

Implementation 

Approach 

Tools/Platforms 

Used 

Reported 

CO₂e 

Reduction 

Accessibility for 

SMEs 

Sources 

GIS-based open data 

integration (DEM, 

flood maps) 

QGIS + Python + 

SoilGrids API 

12% High (open 

source) 

Haruna (2021) 

Multi-objective 

routing optimization 

MATLAB / 

Simulink 

20% Medium Rodrigues et al.,  

(2022) 

IoT-enabled carbon 

tracking 

Sensors + MQTT + 

cloud API 

15% Medium Nguyen et al.,  

(2024) 
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Reinforcement 

learning optimization 

TensorFlow / 

PyTorch 

18% Low (requires 

GPU resources) 

Rabelo et al.,  

(2025) 

Route risk index 

integration 

Excel + open flood 

raster 

8% Very High (low 

skill requirement) 

Oluwafemi et al.,  

(2023) 

GeoAI frameworks 

for spatial modeling  

 

Sentinel-1 imagery, 

SoilGrids, elevation 
Terrain 

classification 

accuracy > 

85 % 
 

Medium Goodchild 

(2020); Kochanek 

et al.,  (2025) 

Standardized GHG 

accounting for 

logistics 

 

Fuel type, distance, 

load, mode 

Standardized 

CO₂e/km 

reporting  

Low-Medium Smart Freight 

Centre (2024); 

ISO 14083 (2023) 

Cloud-based ERP 

with sustainability 

dashboard 

Internal sales + 

inventory + delivery 

distance 

 

Improved 

energy-use 

visibility, +5 

% resource 

efficiency 

Moderate 

(subscription 

software) 

Almeida et al.,  

(2021) 

 

SME sustainability 

disclosure 

frameworks 

Self-reported 

emissions and digital 

KPIs 

Policy 

alignment; 

improves 

investor 

visibility 

Low 

 

UNCTAD (2025); 

OECD (2022) 

 

Over 70% of frameworks rely on open-source or low-code tools, making implementation financially feasible. The 

principal barrier is technical skill, not cost. The Nigerian pilot study (Haruna, 2021) demonstrated measurable 

benefits; fuel savings of 12% and improved delivery reliability by 8%, validating GCAPF’s real-world viability. 

 

4.5 Visualization and Decision Support 

Visualization tools translate data into actionable insight (Table 7). 

 

Table 7. Visualization tools and policy applications 

Visualization 

Type / Tool 

Underlying 

Data Layers 

User Group / 

Scale 

Reported or 

Modeled 

Impact 

Policy or 

Managerial 

Use 

Representative 

Sources 

1. Terrain-Based 

Emission 

Heatmap 

DEM, road 

gradient, 

vehicle type, 

fuel rate 

SME 

operations 

dashboard 

10–20 % CO₂e 

reduction after 

route 

optimization 

Prioritization 

of green 

routes; 

justification 

for fleet 

upgrades 

Rodrigues et al.,  

(2022); Haruna 

(2021) 

2. Flood-Risk 

Overlay Map 

Seasonal 

rainfall, flood 

index, road 

class 

Local 

logistics 

manager; city 

planners 

25–30 % 

fewer failed 

deliveries 

during wet 

season 

Supports 

disaster-

resilient road 

maintenance 

and last-mile 

planning 

Oluwafemi et 

al.,  (2023); 

Anderson et al.,  

(2021); Zhu et 

al.,  2023 

3. CO₂e 

Dashboard (ISO 

14083-aligned) 

Distance, load, 

mode, energy 

use 

SME owners; 

auditors 

Standardized 

CO₂e tracking; 

transparency 

gains 

Enables ESG 

reporting and 

incentive 

eligibility 

ISO (2023); 

Smart Freight 

Centre (2024) 
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4. Policy 

Aggregation 

Map 

Aggregated 

SME emission 

data 

(anonymized) 

Municipal 

and regional 

agencies 

Identification 

of emission 

hotspots by 

corridor 

Guides 

infrastructure 

investment 

and zoning 

reforms 

UNCTAD 

(2025); OECD 

(2022) 

5. GeoAI-Driven 

Predictive 

Dashboard 

Terrain, traffic, 

soil stability, 

climate data 

Tech 

startups; 

research–

policy 

partnerships 

Predictive 

maintenance; 

anticipates 

emission 

spikes 

Feeds smart-

city 

dashboards 

and climate-

risk models 

Kochanek et al.,  

(2025); Rabelo 

et al.,  (2025) 

6. Interactive 

Public Portal 

(“GreenRoute”) 

Simplified 

CO₂e indices, 

delivery 

reliability 

scores 

Consumers, 

civic groups 

Builds trust 

and visibility 

for SMEs 

Promotes 

behavioral 

shift toward 

low-carbon 

merchants 

UNEP (2024); 

Vinuesa et al.,  

(2020) 

By integrating these tools, GCAPF transforms data into both business intelligence and governance insight, 

supporting data-driven climate policies (UNCTAD, 2025). 

 

V. DISCUSSION 

 

5.1 From Digital Efficiency to Ecological 

Intelligence: Economic and Geophysical 

Interdependence 

The body of research summarized in Tables 2 and 3 

shows a clear transition in global research, from 

digitalization aimed at efficiency toward 

digitalization informed by ecological intelligence. 

Between 2015 and 2025, studies linking digital 

transformation, logistics, and sustainability 

increased fourfold, reflecting how environmental 

responsibility has become integral to 

competitiveness in the digital marketplace (Almeida 

et al.,  2021; Kalisvaart et al.,  2025). Yet, spatial 

awareness remains a major blind spot: less than one 

in ten publications include terrain, flooding, or soil-

related variables, even though these factors strongly 

affect both emissions and delivery reliability 

(Ngezahayo et al.,  2021; Oluwafemi et al.,  2023). 

The emergence of GeoAI since 2022 has begun to 

close this gap by combining geophysical data with 

digital analytics (Goodchild, 2020; Mai et al.,  2025), 

and recent geotechnical research now shows how 

climate change and hydrological shifts alter slope 

stability, gravel-road bearing capacity, and subgrade 

performance (Psarropoulos, 2024; Tetteh et al.,  

2025; Insana et al.,  2025). However, small 

enterprises still struggle to adopt such tools because 

of limited funds, scarce technical expertise, and poor 

infrastructure (Hafeez et al.,  2025). Policy 

frameworks such as ISO 14083 (2023) and OECD 

(2025) now provide robust standards for emissions 

reporting and SME sustainability disclosure, but 

implementation remains inconsistent, especially in 

developing economies. This imbalance reveals a 

policy–practice divide: algorithmic sustainability, 

concerned mainly with optimizing recommender 

systems for energy or carbon efficiency, has matured 

faster than spatial–geotechnical sustainability, which 

is still evolving to reflect real-world variability in 

geology, soil mechanics, and slope hazard. The Geo-

Carbon-Aware Personalization Framework 

(GCAPF) seeks to bridge that divide by embedding 

geophysical and geotechnical reasoning into digital 

and economic decision-making, thereby advancing 

low-carbon, terrain- and ground-condition-sensitive 

SME growth in line with SDGs 9 and 12. 

 

At a practical level, findings show that the digital 

economy, geophysics, and geotechnics function as 

mutually dependent systems, not as separate spheres. 

Delivery efficiency, fuel consumption, and 

emissions depend as much on topography and soil-

bearing capacity as on management or technology. 

SMEs operating in mountainous, flood-prone, or 

geotechnically weak areas such as corridors with 

landslide-prone slopes or expansive clays, bear 

structural disadvantages that inflate their carbon 

intensity per transaction (Anderson et al., 2021; Yao 

et al.,  2023; Kamara et al.,  2025). 

 

Incorporating parameters such as slope, soil strength, 

and flood frequency into predictive analytics allows 

GCAPF to realize what Goodchild (2020) calls 

geospatial systems thinking; the integration of Earth-

system and ground-engineering knowledge into 

economic models. Under this view, digital 
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sustainability becomes a matter of spatial and 

geotechnical equity: firms equipped with geospatial 

and basic geotechnical data can lower emissions and 

costs, while those lacking such insight risk exclusion 

from emerging low-carbon markets. Moreover, 

variations in terrain and subsurface conditions 

expose the weakness of uniform carbon-pricing 

schemes; a single CO₂ rate per kilometer overlooks 

the extra environmental cost of eroded, rutted, or 

landslide-threatened routes (Winter, 2019; Zhou et 

al.,  2024; Salini et al.,  2024). GCAPF’s adaptive 

weighting mechanism provides a fairer, more precise 

method for assigning emissions and route-risk 

penalties, reinforcing the polluter-pays principle of 

SDG 12 and promoting a more equitable, terrain- and 

geotechnics-aware model of sustainable digital 

commerce (Bocean, 2025) 

 

5.2 Terrain, Economic–Environmental Trade-offs, 

and Implementation Feasibility 

Terrain and subsurface conditions exert a strong and 

quantifiable influence on logistics-related emissions, 

extending the geophysical–geotechnical 

interdependence highlighted in Section 5.1. 

Gradients above five degrees increase fuel use by 

roughly 2.5% per degree (Figliozzi, 2020), while 

eroded or poorly maintained roads elevate emissions 

by up to 30% per kilometer (Anderson et al.,  2021). 

Seasonal flooding can lengthen delivery routes by 

nearly one-third (Oluwafemi et al.,  2023), and 

unstable soils, including expansive clays or low-

bearing-capacity subgrades, contribute to recurring 

delays of around 10% (Kochanek et al.,  2025; Udoh 

et al.,  2025). In a design, the gradation of the in situ 

or on-site soil often controls the design and ground 

water drainage of the site (Nnurum et al, 2021). Such 

factors show that static, distance-only models 

underestimate emissions by up to 40%. Incorporating 

slope, soil strength, and hydrological variability 

therefore strengthens predictive accuracy and forms 

a core pillar of the Geo-Carbon-Aware 

Personalization Framework (GCAPF). When these 

corrections are embedded into GCAPF’s multi-

objective optimization function, SMEs achieve 

meaningful sustainability gains. Balanced weighting 

(α = 1, β = 0.5, γ = 0.25) yields ~15% emission 

reduction with negligible conversion loss, while 

carbon-dominant strategies (β = 0.8) achieve up to 

21% reduction with only a minor sales impact; 

consistent with Pareto-optimal trade-offs (Marler 

and Arora, 2004; Spillo et al.,  2023; Kalisvaart et 

al.,  2025). 

Implementation feasibility further reinforces the 

practical potential of GCAPF, especially for SMEs 

in developing economies. Over 70% of terrain-aware 

optimization frameworks rely on open-source or 

low-code tools such as QGIS, Python APIs, DEMs, 

SoilGrids, and open flood rasters, enabling CO₂e 

reductions between 8% and 20% without significant 

investment (Haruna, 2021; Rodrigues et al.,  2022). 

More advanced approaches like IoT-enabled carbon 

monitoring (Nguyen et al.,  2024) and reinforcement 

learning for dynamic routing (Rabelo et al.,  2025), 

offer additional benefits where computational 

capacity exists. Visualization tools, including 

terrain-based emission heatmaps and flood-risk 

overlays, translate spatial and geotechnical data into 

actionable insights for both managers and 

policymakers (UNEP, 2024; Vinuesa et al.,  2020). 

Real-world evidence from the Nigerian GIS–e-

commerce pilot demonstrated substantial gains of 

12% fuel reduction and 8% improved delivery 

reliability, confirming that integrating terrain, 

hydrology, and ground conditions into 

personalization and logistics decisions provides 

SMEs with a scalable, financially accessible pathway 

toward low-carbon competitiveness. 

 

5.3 Algorithmic Integration within Recommender 

Systems 

Conventional recommender engines rank items 

solely on predicted purchase probability or 

profitability. In GCAPF, this logic is replaced by a 

multi-objective function that embeds spatial and 

environmental penalties into the ranking process. 

 

From an implementation standpoint, integrating 

carbon-aware scoring can be achieved through re-

ranking; an approach where conventional RS outputs 

are post-processed with carbon and route-risk 

weights. Studies by Spillo et al.,  (2023) and 

Kalisvaart et al.,  (2025) show that such hybrid 

pipelines maintain up to 98 % of baseline accuracy 

while adding sustainability interpretability. 

 

Equation (1) below captures this relationship: 

 

𝑆𝑐𝑜𝑟𝑒(𝑢, 𝑖, 𝑟) = 𝛼𝑃𝑏𝑢𝑦(𝑢, 𝑖)  −  𝛽𝐶𝑂2𝑒(𝑢, 𝑖, 𝑟)  

−  𝛾𝑅𝑖𝑠𝑘(𝑟)  

where: 

• 𝛼𝑃𝑏𝑢𝑦(𝑢, 𝑖) = predicted purchase 

probability for user u and item i, 

• 𝐶𝑂2𝑒(𝑢, 𝑖, 𝑟) = estimated emissions for the 

delivery route r, 
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• 𝑅𝑖𝑠𝑘(𝑟) = route reliability or terrain hazard 

score, 

• 𝛼, 𝛽, 𝛾 = weighting coefficients tuned to 

SME priorities. 

This formulation allows SMEs to flexibly adjust the 

trade-off between economic performance and 

environmental responsibility. As observed by Marler 

and Arora (2004), such multi-objective systems can 

produce Pareto-optimal frontiers where small 

efficiency losses generate disproportionate 

ecological gains (Figure 2). 

 

5.4 Organizational and Cultural Transformation 

Adopting GCAPF also implies an internal cultural 

shift. SMEs must evolve from reactive 

environmental compliance to proactive carbon 

governance. Integrating spatial and sustainability 

data into marketing or logistics workflows 

encourages inter-departmental collaboration 

between marketing teams that manage RS algorithms 

and operations teams that handle fleet logistics. 

This aligns with socio-technical systems theory 

(Baxter and Somerville, 2011), which emphasizes 

the need for coherence between human, 

technological, and organizational subsystems. 

Training programs that merge basic GIS literacy with 

digital-marketing analytics can bridge existing skill 

gaps. In this way, environmental awareness becomes 

embedded in everyday decision-making rather than 

confined to corporate reporting. 

 

5.5 Socioeconomic Equity and Consumer Fairness 

While GCAPF provides efficiency gains, it also 

introduces ethical considerations. Carbon-weighted 

re-ranking could inadvertently deprioritize 

customers in rural or remote regions by labeling their 

deliveries as “high-emission.” To maintain equity, 

SMEs must implement fairness constraints, for 

example, rotating green incentives so that 

environmentally efficient customers subsidize 

harder-to-reach ones. 

 

García-Sánchez et al.,  (2023) warn that algorithmic 

sustainability must be balanced with social fairness 

to prevent new forms of digital exclusion. 

Incorporating fairness metrics, such as equalized 

expected delivery times, ensures that the pursuit of 

sustainability does not undermine inclusivity. 

 

5.6 Data Limitations and Technical Challenges 

Despite clear potential, several technical barriers 

remain: 

1. Low-Resolution Spatial Data: Many 

developing countries lack high-quality 

digital elevation models and soil datasets 

(Goodchild, 2020). 

2. Dynamic Environmental Conditions: 

Seasonal floods and erosion change rapidly, 

requiring real-time updates to route-risk 

layers. 

3. Opaque Algorithms: Multi-objective 

models can obscure causal relationships, 

complicating accountability (Vinuesa et al.,  

2020). 

4. Computational Overhead: Small enterprises 

often lack GPU capacity for complex 

optimization. 

 

Addressing these limitations demands a blend of 

open-data policies, lightweight models, and shared 

cloud infrastructures accessible to SMEs. 

 

VI. POLICY AND ECOSYSTEM ENABLERS 

 

6.1 Open Spatial Data Infrastructure 

Governments play a pivotal role in enabling terrain- 

and geotechnics-aware digital transformation. Public 

release of high-resolution geospatial datasets; digital 

elevation models (DEMs), flood rasters, and soil and 

geotechnical maps (e.g., soil classification, bearing 

capacity, landslide susceptibility) reduces the cost of 

integrating environmental intelligence into SME 

operations. Nigeria’s National Geospatial Data 

Infrastructure (NGDI, 2023), ongoing work on 

climate-resilient geotechnical infrastructure in West 

Africa (Nnaji, 2024), and the EU’s INSPIRE 

directive (EC, 2022) exemplify how open data 

accelerates private-sector innovation. 

 

6.2 Carbon Accounting and Green Incentives 

National agencies should establish simplified carbon 

accounting standards aligned with ISO 14083 

(2023). These standards would allow SMEs to report 

route-level emissions using plug-in APIs rather than 

full life-cycle assessments. Coupled with green-

commerce credits or tax deductions, such 

mechanisms can reward emission-reducing digital 

behavior. 

 

6.3 Capacity Building and Knowledge Transfer 

Regional development programs can create 

vocational curricula combining GIS, logistics 

optimization, and sustainability management. 

Partnerships between universities, start-ups, and 
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local chambers of commerce can host “Digital 

Sustainability Clinics” where SMEs receive tailored 

advice on implementing GCAPF with open-source 

tools like QGIS and Python. 

 

6.4 Financial and Technological Support 

Access to concessional financing is crucial. Green 

funds or development banks could subsidize 

software-as-a-service (SaaS) licenses that include 

carbon-aware modules. Furthermore, collaborations 

with telecom providers can enable data-sharing 

agreements that integrate mobile coverage, traffic 

patterns, and flood alerts into SME routing engines. 

 

6.5 Governance and Public Engagement 

At the policy level, integrating GCAPF principles 

into national digital-economy blueprints can 

strengthen coherence between industrial innovation 

and climate strategies. Transparent consumer 

dashboards, showing the carbon intensity of delivery 

options, can promote behavioral change and public 

trust in sustainability metrics (Olanrewaju et al.,  

2022). 

 

VII. FUTURE RESEARCH DIRECTIONS 

 

The intersection of digital personalization and 

geophysical analytics remains under-explored. Key 

research opportunities include: 

1. Field-Scale A/B Trials: Deploy GCAPF 

within live SME e-commerce systems to 

measure real-world conversion, emission, 

and route-disruption impacts, explicitly 

tracking performance across different soil 

types and slope classes (Nguyen et al.,  

2024; Kamara et al.,  2025). 

2. Minimal-Data Models: Develop surrogate 

machine-learning models capable of 

estimating emissions using proxy terrain 

and ground-condition indicators (e.g., road 

type, erosion risk, subgrade class) where 

detailed geotechnical data are lacking. 

3. Geo-Temporal Adaptation: Incorporate 

time-series hydrological data for dynamic 

route-risk prediction. 

4. Fairness and Transparency Metrics: Create 

interpretable frameworks ensuring 

equitable treatment across customer 

geographies, including those in 

geotechnically challenging or hazard-prone 

areas, so that high-risk routes are not simply 

excluded but managed through shared-cost 

or policy mechanisms. 

5. Cross-Regional Comparative Analyses: 

Apply GCAPF across Africa, South Asia, 

and Latin America to benchmark 

performance in diverse geoclimatic 

contexts. 

 

Such studies will validate the scalability and 

robustness of GCAPF and support its inclusion in 

international sustainability standards. 

 

VIII. CONCLUSION 

 

This review establishes a compelling case for 

integrating geophysical and geotechnical 

intelligence into digital personalization. The 

proposed Geo-Carbon-Aware Personalization 

Framework enables SMEs to align competitiveness 

with climate responsibility by combining terrain-

adjusted emission modeling, route-risk and ground-

condition analytics, and recommender-system 

optimization. 

 

Empirical synthesis of 104 studies shows that while 

terrain and ground conditions can increase logistics 

emissions by up to 40 %, algorithmic integration of 

slope, soil, and road-condition penalties can offset 

10–20 % of this footprint without compromising 

conversion rates. Implemented with open-source 

tools and supported by policy incentives, GCAPF 

offers a scalable pathway to low-carbon digital 

growth, particularly vital for developing economies 

such as Nigeria, where infrastructure fragility, 

problematic soils, and environmental volatility 

converge. 

 

Ultimately, greener personalization redefines digital 

success; not measured only by sales or engagement 

metrics, but by how intelligently commerce systems 

interact with the planet’s physical and geotechnical 

reality. By embedding geophysical and geotechnical 

awareness into the algorithms that drive global trade, 

SMEs can transform from passive emitters into 

active contributors to a sustainable, climate- and 

ground-resilient digital future. 
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